51
|
Heterologously secreted MbxA from Moraxella bovis induces a membrane blebbing response of the human host cell. Sci Rep 2022; 12:17825. [PMID: 36280777 PMCID: PMC9592583 DOI: 10.1038/s41598-022-22480-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/14/2022] [Indexed: 01/20/2023] Open
Abstract
Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca2+-rich extracellular environment. Here we employed the E. coli HlyA T1SS as a heterologous surrogate system for the RTX toxin MbxA from the bovine pathogen Moraxella bovis. In E. coli the HlyA system successfully activates the heterologous MbxA substrate by acylation and secretes the precursor proMbxA and active MbxA allowing purification of both species in quantities sufficient for a variety of investigations. The activating E. coli acyltransferase HlyC recognizes the acylation sites in MbxA, but unexpectedly in a different acylation pattern as for its endogenous substrate HlyA. HlyC-activated MbxA shows host species-independent activity including a so-far unknown toxicity against human lymphocytes and epithelial cells. Using live-cell imaging, we show an immediate MbxA-mediated permeabilization and a rapidly developing blebbing of the plasma membrane in epithelial cells, which is associated with immediate cell death.
Collapse
|
52
|
Garcia L, Molina MC, Padgett-Pagliai KA, Torres PS, Bruna RE, García Véscovi E, González CF, Gadea J, Marano MR. A serralysin-like protein of Candidatus Liberibacter asiaticus modulates components of the bacterial extracellular matrix. Front Microbiol 2022; 13:1006962. [DOI: 10.3389/fmicb.2022.1006962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Huanglongbing (HLB), the current major threat for Citrus species, is caused by intracellular alphaproteobacteria of the genus Candidatus Liberibacter (CaL), with CaL asiaticus (CLas) being the most prevalent species. This bacterium inhabits phloem cells and is transmitted by the psyllid Diaphorina citri. A gene encoding a putative serralysin-like metalloprotease (CLIBASIA_01345) was identified in the CLas genome. The expression levels of this gene were found to be higher in citrus leaves than in psyllids, suggesting a function for this protease in adaptation to the plant environment. Here, we study the putative role of CLas-serralysin (Las1345) as virulence factor. We first assayed whether Las1345 could be secreted by two different surrogate bacteria, Rhizobium leguminosarum bv. viciae A34 (A34) and Serratia marcescens. The protein was detected only in the cellular fraction of A34 and S. marcescens expressing Las1345, and increased protease activity of those bacteria by 2.55 and 4.25-fold, respectively. In contrast, Las1345 expressed in Nicotiana benthamiana leaves did not show protease activity nor alterations in the cell membrane, suggesting that Las1345 do not function as a protease in the plant cell. Las1345 expression negatively regulated cell motility, exopolysaccharide production, and biofilm formation in Xanthomonas campestris pv. campestris (Xcc). This bacterial phenotype was correlated with reduced growth and survival on leaf surfaces as well as reduced disease symptoms in N. benthamiana and Arabidopsis. These results support a model where Las1345 could modify extracellular components to adapt bacterial shape and appendages to the phloem environment, thus contributing to virulence.
Collapse
|
53
|
Chen YJ, Hung WC, Chou YH, Lai CH, Peng P, Jhou PS, Tsai MR, Sheu JJC, Yen JH. Subgingival Microbiome in Rheumatoid Arthritis Patients with Periodontitis. Int J Mol Sci 2022; 23:ijms23179883. [PMID: 36077282 PMCID: PMC9456296 DOI: 10.3390/ijms23179883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are suggested to be closely linked based on microbial dysbiosis, but limited subgingival bacteria have been proven in the pathogenesis of RA. We enrolled 30 RA patients and 25 controls and divided them into three groups with matched age, gender, and diabetes statuses: group AM (all of the matched participants), group PD (periodontally diseased), and group PH (periodontally healthy). Their subgingival microbial composition was determined by V3–V4 16S rRNA gene sequencing. Significant differences in subgingival microbial clustering between the RA patients and controls were observed in groups AM and PD. Among the taxa enriched in RA, Aminipila butyrica and Peptococcus simiae were the only two species displaying positive correlation to the level of anti-citrullinated protein antibodies (ACPAs) in both of the groups. Surprisingly, the median of relative abundances of A. butyrica and P. simiae were 0% in the controls of group PD. Furthermore, a gene encoding arginine deiminase with the capability to produce citrulline was addressed in the complete genome sequence of A. butyrica. This is the first study to elucidate the important roles of A. butyrica and P. simiae as periodontal bacteria leading to RA possibly through the induction of ACPA production.
Collapse
Affiliation(s)
- Yi-Jing Chen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yu-Hsiang Chou
- Division of Periodontics, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chern-Hsiung Lai
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Anaerobic and Oral Microbiology Testing Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Po Peng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Pei-Syuan Jhou
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Min-Ru Tsai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (J.J.-C.S.); (J.-H.Y.)
| | - Jeng-Hsien Yen
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence: (J.J.-C.S.); (J.-H.Y.)
| |
Collapse
|
54
|
Goldsmith JA, DiVenere AM, Maynard JA, McLellan JS. Structural basis for non-canonical integrin engagement by Bordetella adenylate cyclase toxin. Cell Rep 2022; 40:111196. [PMID: 35977491 PMCID: PMC9416875 DOI: 10.1016/j.celrep.2022.111196] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
Integrins are ubiquitous cell-surface heterodimers that are exploited by pathogens and toxins, including leukotoxins that target β2 integrins on phagocytes. The Bordetella adenylate cyclase toxin (ACT) uses the αMβ2 integrin as a receptor, but the structural basis for integrin binding and neutralization by antibodies is poorly understood. Here, we use cryoelectron microscopy to determine a 2.7 Å resolution structure of an ACT fragment bound to αMβ2. This structure reveals that ACT interacts with the headpiece and calf-2 of the αM subunit in a non-canonical manner specific to bent, inactive αMβ2. Neutralizing antibody epitopes map to ACT residues involved in αM binding, providing the basis for antibody-mediated attachment inhibition. Furthermore, binding to αMβ2 positions the essential ACT acylation sites, which are conserved among toxins exported by type I secretion systems, at the cell membrane. These findings reveal a structural mechanism for integrin-mediated attachment and explain antibody-mediated neutralization of ACT intoxication.
Collapse
Affiliation(s)
- Jory A Goldsmith
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea M DiVenere
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
55
|
Ozuna H, Snider I, Belibasakis GN, Oscarsson J, Johansson A, Uriarte SM. Aggregatibacter actinomycetemcomitans and Filifactor alocis: Two exotoxin-producing oral pathogens. FRONTIERS IN ORAL HEALTH 2022; 3:981343. [PMID: 36046121 PMCID: PMC9420871 DOI: 10.3389/froh.2022.981343] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is a dysbiotic disease caused by the interplay between the microbial ecosystem present in the disease with the dysregulated host immune response. The disease-associated microbial community is formed by the presence of established oral pathogens like Aggregatibacter actinomycetemcomitans as well as by newly dominant species like Filifactor alocis. These two oral pathogens prevail and grow within the periodontal pocket which highlights their ability to evade the host immune response. This review focuses on the virulence factors and potential pathogenicity of both oral pathogens in periodontitis, accentuating the recent description of F. alocis virulence factors, including the presence of an exotoxin, and comparing them with the defined factors associated with A. actinomycetemcomitans. In the disease setting, possible synergistic and/or mutualistic interactions among both oral pathogens might contribute to disease progression.
Collapse
Affiliation(s)
- Hazel Ozuna
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Ian Snider
- Department of Biology, School of Arts and Sciences, University of Louisville, Louisville, KY, United States
| | | | - Jan Oscarsson
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Silvia M. Uriarte
| |
Collapse
|
56
|
de Sousa LP, Cipriano MAP, Freitas SDS, Carazzolle MF, da Silva MJ, Mondego JMC. Genomic and physiological evaluation of two root associated Pseudomonas from Coffea arabica. Microbiol Res 2022; 263:127129. [PMID: 35907286 DOI: 10.1016/j.micres.2022.127129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Many Pseudomonas species promote plant growth and colonize a wide range of environments. The annotation of a Coffea arabica ESTs database revealed a considerable number of Pseudomonas sequences. To evaluate the genomic and physiology of Pseudomonas that inhabit coffee plants, fluorescent Pseudomonas from C. arabica root environment were isolated. Two of them had their genomes sequenced; one from rhizospheric soil, named as MNR3A, and one from internal part of the root, named as EMN2. In parallel, we performed biochemical and physiological experiments to confirm genomic analyses results. Interestingly, EMN2 has achromobactin and aerobactin siderophore receptors, but does not have the genes responsible for the production of these siderophores, suggesting an interesting bacterial competition strategy. The two bacterial isolates were able to degrade and catabolize plant phenolic compounds for their own benefit. Surprisingly, MNR3A and EMN2 do not contain caffeine methylases that are responsible for the catabolism of caffeine. In fact, bench experiments confirm that the bacteria did not metabolize caffeine, but were resistant and chemically attracted to it. Furthermore, both bacteria, most especially MNR3A, were able to increase growth of lettuce plants. Our results indicate MNR3A as a potential plant growth promoting bacteria.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico de Campinas, IAC, Campinas, SP, Brazil; UNICAMP, Programa de Pós-graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | | | | | | | | | | |
Collapse
|
57
|
Hakmi M, Bouricha EM, El Harti J, Amzazi S, Belyamani L, Khanfri JE, Ibrahimi A. Computational modeling and druggability assessment of Aggregatibacter actinomycetemcomitans leukotoxin. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106952. [PMID: 35724475 DOI: 10.1016/j.cmpb.2022.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The leukotoxin (LtxA) of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is a protein exotoxin belonging to the repeat-in-toxin family (RTX). Numerous studies have demonstrated that LtxA may play a critical role in the pathogenicity of A. actinomycetemcomitans since hyper-leukotoxic strains have been associated with severe disease. Accordingly, considerable effort has been made to elucidate the mechanisms by which LtxA interacts with host cells and induce their death. However, these attempts have been hampered by the unavailability of a tertiary structure of the toxin, which limits the understanding of its molecular properties and mechanisms. In this paper, we used homology and template free modeling algorithms to build the complete tertiary model of LtxA at atomic level in its calcium-bound Holo-state. The resulting model was refined by energy minimization, validated by Molprobity and ProSA tools, and subsequently subjected to a cumulative 600ns of all-atom classical molecular dynamics simulation to evaluate its structural aspects. The druggability of the proposed model was assessed using Fpocket and FTMap tools, resulting in the identification of four putative cavities and fifteen binding hotspots that could be targeted by rational drug design tools to find new ligands to inhibit LtxA activity.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Jaouad El Harti
- Therapeutic Chemistry Laboratory, Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Said Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Emergency Department, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Jamal Eddine Khanfri
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
58
|
Mutations of γCOP Gene Disturb Drosophila melanogaster Innate Immune Response to Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms23126499. [PMID: 35742941 PMCID: PMC9223523 DOI: 10.3390/ijms23126499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
Drosophila melanogaster (the fruit fly) is a valuable experimental platform for modeling host–pathogen interactions. It is also commonly used to define innate immunity pathways and to understand the mechanisms of both host tolerance to commensal microbiota and response to pathogenic agents. Herein, we investigate how the host response to bacterial infection is mirrored in the expression of genes of Imd and Toll pathways when D. melanogaster strains with different γCOP genetic backgrounds are infected with Pseudomonas aeruginosa ATCC 27853. Using microarray technology, we have interrogated the whole-body transcriptome of infected versus uninfected fruit fly males with three specific genotypes, namely wild-type Oregon, γCOPS057302/TM6B and γCOP14a/γCOP14a. While the expression of genes pertaining to Imd and Toll is not significantly modulated by P. aeruginosa infection in Oregon males, many of the components of these cascades are up- or downregulated in both infected and uninfected γCOPS057302/TM6B and γCOP14a/γCOP14a males. Thus, our results suggest that a γCOP genetic background modulates the gene expression profiles of Imd and Toll cascades involved in the innate immune response of D. melanogaster, inducing the occurrence of immunological dysfunctions in γCOP mutants.
Collapse
|
59
|
Klimova N, Holubova J, Streparola G, Tomala J, Brazdilova L, Stanek O, Bumba L, Sebo P. Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes. PLoS Pathog 2022; 18:e1010577. [PMID: 35666769 PMCID: PMC9216613 DOI: 10.1371/journal.ppat.1010577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/22/2022] [Accepted: 05/08/2022] [Indexed: 11/18/2022] Open
Abstract
The adenylate cyclase (ACT) and the pertussis (PT) toxins of Bordetella pertussis exert potent immunomodulatory activities that synergize to suppress host defense in the course of whooping cough pathogenesis. We compared the mouse lung infection capacities of B. pertussis (Bp) mutants (Bp AC− or Bp PT–) producing enzymatically inactive toxoids and confirm that ACT action is required for maximal bacterial proliferation in the first days of infection, whereas PT action is crucial for persistence of B. pertussis in mouse lungs. Despite accelerated and near complete clearance from the lungs by day 14 of infection, the PT− bacteria accumulated within the lymphoid tissue of lung-draining mediastinal lymph nodes (mLNs). In contrast, the wild type or AC− bacteria colonized the lungs but did not enter into mLNs. Lung infection by the PT− mutant triggered an early arrival of migratory conventional dendritic cells with associated bacteria into mLNs, where the PT− bacteria entered the T cell-rich paracortex of mLNs by day 5 and proliferated in clusters within the B-cell zone (cortex) of mLNs by day 14, being eventually phagocytosed by infiltrating neutrophils. Finally, only infection by the PT− bacteria triggered an early production of anti-B. pertussis serum IgG antibodies already within 14 days of infection. These results reveal that action of the pertussis toxin blocks DC-mediated delivery of B. pertussis bacteria into mLNs and prevents bacterial colonization of mLNs, thus hampering early adaptive immune response to B. pertussis infection. Of the three classical Bordetella species causing respiratory infections in mammals, only the human-specialized whooping cough agent B. pertussis produces the pertussis toxin (PT) as its major virulence factor. Human pertussis is an acute respiratory illness and the pleiotropic activities of pertussis toxin account for the characteristic systemic manifestations of the disease, such as hyperleukocytosis, histamine sensitization, hyperinsulinemia, or inflammatory lung pathology. We found that PT activity inhibits the migration of infected dendritic cells from the lungs into the draining mediastinal lymph nodes (mLNs). This prevents mLN infection by bacteria evading from migratory cells and delivery of bacterial antigens into mLNs. As a result, the induction of adaptive serum antibody responses to infection is delayed. We thus propose that PT action serves to create a time window for proliferation of B. pertussis on airway mucosa to facilitate transmission of the pathogen among humans.
Collapse
Affiliation(s)
- Nela Klimova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
| | - Gaia Streparola
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Czech Centre for Phenogenomics BIOCEV, Vestec, Czech Republic
| | - Jakub Tomala
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Ludmila Brazdilova
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- * E-mail: (LB); (PS)
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences,Prague, Czech Republic
- * E-mail: (LB); (PS)
| |
Collapse
|
60
|
Wang H, Chen G, Li H. Templated folding of the RTX domain of the bacterial toxin adenylate cyclase revealed by single molecule force spectroscopy. Nat Commun 2022; 13:2784. [PMID: 35589788 PMCID: PMC9120197 DOI: 10.1038/s41467-022-30448-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
The RTX (repeats-in-toxin) domain of the bacterial toxin adenylate cyclase (CyaA) contains five RTX blocks (RTX-i to RTX-v) and its folding is essential for CyaA’s functions. It was shown that the C-terminal capping structure of RTX-v is critical for the whole RTX to fold. However, it is unknown how the folding signal transmits within the RTX domain. Here we use optical tweezers to investigate the interplay between the folding of RTX-iv and RTX-v. Our results show that RTX-iv alone is disordered, but folds into a Ca2+-loaded-β-roll structure in the presence of a folded RTX-v. Folding trajectories of RTX-iv-v reveal that the folding of RTX-iv is strictly conditional upon the folding of RTX-v, suggesting that the folding of RTX-iv is templated by RTX-v. This templating effect allows RTX-iv to fold rapidly, and provides significant mutual stabilization. Our study reveals a possible mechanism for transmitting the folding signal within the RTX domain. The authors use optical tweezers to show that the folding of repeats-in-toxin (RTX) block-iv in adenylate cyclase is templated by the folded RTX block-v. The findings suggest a possible mechanism for transmitting the folding signal in the RTX domain.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.,State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Optoelectronics Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Guojun Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Hongbin Li
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
61
|
Proteomic Characterization of the Oral Pathogen Filifactor alocis Reveals Key Inter-Protein Interactions of Its RTX Toxin: FtxA. Pathogens 2022; 11:pathogens11050590. [PMID: 35631111 PMCID: PMC9145396 DOI: 10.3390/pathogens11050590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/16/2022] Open
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod that has been isolated from a variety of oral infections including periodontitis, peri-implantitis, and odontogenic abscesses. As a newly emerging pathogen, its type strain has been investigated for pathogenic properties, yet little is known about its virulence variations among strains. We previously screened the whole genome of nine clinical oral isolates and a reference strain of F. alocis, and they expressed a novel RTX toxin, FtxA. In the present study, we aimed to use label-free quantification proteomics to characterize the full proteome of those ten F. alocis strains. A total of 872 proteins were quantified, and 97 among them were differentially expressed in FtxA-positive strains compared with the negative strains. In addition, 44 of these differentially expressed proteins formed 66 pairs of associations based on their predicted functions, which included clusters of proteins with DNA repair/mediated transformation and catalytic activity-related function, indicating different biosynthetic activities among strains. FtxA displayed specific interactions with another six intracellular proteins, forming a functional cluster that could discriminate between FtxA-producing and non-producing strains. Among them were FtxB and FtxD, predicted to be encoded by the same operon as FtxA. While revealing the broader qualitative and quantitative proteomic landscape of F. alocis, this study also sheds light on the deeper functional inter-relationships of FtxA, thus placing this RTX family member into context as a major virulence factor of this species.
Collapse
|
62
|
Genotypic assay to determine some virulence factors of Uropathogenic E. coli (UPEC) isolates. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns4.6289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A total of 179 urine samples were collected from patients suffering from urinary tract infections were admitted and visit Al-Hilla General Teaching Hospital in Al-Hilla City, during a period from April 2021 to December 2021, from both sex (male and female). Out of 179,123 (68.7%) were positive culture, whereas 56 (31.3%) samples showed no bacterial growth, To confirm the identification of E. coli by use selective media (EMB agar medium, biochemical tests, automated Vitek 2 system and 16s RNA specific primer by the presence of (1492 bp) compared with allelic ladder, it was found that, E. coli were deliberated the main an etiological causes UTI to other types bacteria which constitute 56/123 (45.5%), [45/56 (80.4%) from female and 11/56 (19.6%) from male], while 67/123 (54.4%) were related to other types of bacteria. Molecular detection of some virulence factors genes were studied, out of 56 E. coli isolates, hlyA gene was detected in 21/56 (37.5%) isolates by the presence of (1177 bp) and sat gene was detected in 35/56 (62.5%) isolates by the presence of (410 bp) compared with allelic ladder.
Collapse
|
63
|
Ulhuq FR, Mariano G. Bacterial pore-forming toxins. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001154. [PMID: 35333704 PMCID: PMC9558359 DOI: 10.1099/mic.0.001154] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022]
Abstract
Pore-forming toxins (PFTs) are widely distributed in both Gram-negative and Gram-positive bacteria. PFTs can act as virulence factors that bacteria utilise in dissemination and host colonisation or, alternatively, they can be employed to compete with rival microbes in polymicrobial niches. PFTs transition from a soluble form to become membrane-embedded by undergoing large conformational changes. Once inserted, they perforate the membrane, causing uncontrolled efflux of ions and/or nutrients and dissipating the protonmotive force (PMF). In some instances, target cells intoxicated by PFTs display additional effects as part of the cellular response to pore formation. Significant progress has been made in the mechanistic description of pore formation for the different PFTs families, but in several cases a complete understanding of pore structure remains lacking. PFTs have evolved recognition mechanisms to bind specific receptors that define their host tropism, although this can be remarkably diverse even within the same family. Here we summarise the salient features of PFTs and highlight where additional research is necessary to fully understand the mechanism of pore formation by members of this diverse group of protein toxins.
Collapse
Affiliation(s)
- Fatima R. Ulhuq
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
64
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
65
|
Chen Z, Zhao Z, Hui X, Zhang J, Hu Y, Chen R, Cai X, Hu Y, Wang Y. T1SEstacker: A Tri-Layer Stacking Model Effectively Predicts Bacterial Type 1 Secreted Proteins Based on C-Terminal Non-repeats-in-Toxin-Motif Sequence Features. Front Microbiol 2022; 12:813094. [PMID: 35211101 PMCID: PMC8861453 DOI: 10.3389/fmicb.2021.813094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
Type 1 secretion systems play important roles in pathogenicity of Gram-negative bacteria. However, the substrate secretion mechanism remains largely unknown. In this research, we observed the sequence features of repeats-in-toxin (RTX) proteins, a major class of type 1 secreted effectors (T1SEs). We found striking non-RTX-motif amino acid composition patterns at the C termini, most typically exemplified by the enriched “[FLI][VAI]” at the most C-terminal two positions. Machine-learning models, including deep-learning ones, were trained using these sequence-based non-RTX-motif features and further combined into a tri-layer stacking model, T1SEstacker, which predicted the RTX proteins accurately, with a fivefold cross-validated sensitivity of ∼0.89 at the specificity of ∼0.94. Besides substrates with RTX motifs, T1SEstacker can also well distinguish non-RTX-motif T1SEs, further suggesting their potential existence of common secretion signals. T1SEstacker was applied to predict T1SEs from the genomes of representative Salmonella strains, and we found that both the number and composition of T1SEs varied among strains. The number of T1SEs is estimated to reach 100 or more in each strain, much larger than what we expected. In summary, we made comprehensive sequence analysis on the type 1 secreted RTX proteins, identified common sequence-based features at the C termini, and developed a stacking model that can predict type 1 secreted proteins accurately.
Collapse
Affiliation(s)
- Zewei Chen
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Ziyi Zhao
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Xinjie Hui
- Department of Respiratory Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Junya Zhang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yixue Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Runhong Chen
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Xuxia Cai
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yueming Hu
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| | - Yejun Wang
- Youth Innovation Team of Medical Bioinformatics, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
66
|
Braffman NR, Ruskoski TB, Davis KM, Glasser NR, Johnson C, Okafor CD, Boal AK, Balskus EP. Structural basis for an unprecedented enzymatic alkylation in cylindrocyclophane biosynthesis. eLife 2022; 11:75761. [PMID: 35212625 PMCID: PMC8916777 DOI: 10.7554/elife.75761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterial enzyme CylK assembles the cylindrocyclophane natural products by performing two unusual alkylation reactions, forming new carbon–carbon bonds between aromatic rings and secondary alkyl halide substrates. This transformation is unprecedented in biology, and the structure and mechanism of CylK are unknown. Here, we report X-ray crystal structures of CylK, revealing a distinctive fusion of a Ca2+-binding domain and a β-propeller fold. We use a mutagenic screening approach to locate CylK’s active site at its domain interface, identifying two residues, Arg105 and Tyr473, that are required for catalysis. Anomalous diffraction datasets collected with bound bromide ions, a product analog, suggest that these residues interact with the alkyl halide electrophile. Additional mutagenesis and molecular dynamics simulations implicate Asp440 in activating the nucleophilic aromatic ring. Bioinformatic analysis of CylK homologs from other cyanobacteria establishes that they conserve these key catalytic amino acids, but they are likely associated with divergent reactivity and altered secondary metabolism. By gaining a molecular understanding of this unusual biosynthetic transformation, this work fills a gap in our understanding of how alkyl halides are activated and used by enzymes as biosynthetic intermediates, informing enzyme engineering, catalyst design, and natural product discovery.
Collapse
Affiliation(s)
- Nathaniel R Braffman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Terry B Ruskoski
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Katherine M Davis
- Department of Chemistry, Pennsylvania State University, University Park, United States
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Cassidy Johnson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - C Denise Okafor
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Amie K Boal
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
67
|
Lassak J, Sieber A, Hellwig M. Exceptionally versatile take II: post-translational modifications of lysine and their impact on bacterial physiology. Biol Chem 2022; 403:819-858. [PMID: 35172419 DOI: 10.1515/hsz-2021-0382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023]
Abstract
Among the 22 proteinogenic amino acids, lysine sticks out due to its unparalleled chemical diversity of post-translational modifications. This results in a wide range of possibilities to influence protein function and hence modulate cellular physiology. Concomitantly, lysine derivatives form a metabolic reservoir that can confer selective advantages to those organisms that can utilize it. In this review, we provide examples of selected lysine modifications and describe their role in bacterial physiology.
Collapse
Affiliation(s)
- Jürgen Lassak
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Alina Sieber
- Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2-4, D-82152 Planegg, Germany
| | - Michael Hellwig
- Technische Universität Braunschweig - Institute of Food Chemistry, Schleinitzstraße 20, D-38106 Braunschweig, Germany
| |
Collapse
|
68
|
Spitz O, Erenburg IN, Kanonenberg K, Peherstorfer S, Lenders MHH, Reiners J, Ma M, Luisi BF, Smits SHJ, Schmitt L. Identity Determinants of the Translocation Signal for a Type 1 Secretion System. Front Physiol 2022; 12:804646. [PMID: 35222063 PMCID: PMC8870123 DOI: 10.3389/fphys.2021.804646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022] Open
Abstract
The toxin hemolysin A was first identified in uropathogenic E. coli strains and shown to be secreted in a one-step mechanism by a dedicated secretion machinery. This machinery, which belongs to the Type I secretion system family of the Gram-negative bacteria, is composed of the outer membrane protein TolC, the membrane fusion protein HlyD and the ABC transporter HlyB. The N-terminal domain of HlyA represents the toxin which is followed by a RTX (Repeats in Toxins) domain harboring nonapeptide repeat sequences and the secretion signal at the extreme C-terminus. This secretion signal, which is necessary and sufficient for secretion, does not appear to require a defined sequence, and the nature of the encoded signal remains unknown. Here, we have combined structure prediction based on the AlphaFold algorithm together with functional and in silico data to examine the role of secondary structure in secretion. Based on the presented data, a C-terminal, amphipathic helix is proposed between residues 975 and 987 that plays an essential role in the early steps of the secretion process.
Collapse
Affiliation(s)
- Olivia Spitz
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Isabelle N. Erenburg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael H. H. Lenders
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jens Reiners
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Miao Ma
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ben F. Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sander H. J. Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
69
|
Caetano BDL, Domingos MDO, da Silva MA, da Silva JCA, Polatto JM, Montoni F, Iwai LK, Pimenta DC, Vigerelli H, Vieira PCG, Ruiz RDC, Patané JS, Piazza RMF. In Silico Prediction and Design of Uropathogenic Escherichia coli Alpha-Hemolysin Generate a Soluble and Hemolytic Recombinant Toxin. Microorganisms 2022; 10:microorganisms10010172. [PMID: 35056621 PMCID: PMC8778037 DOI: 10.3390/microorganisms10010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
The secretion of α-hemolysin by uropathogenic Escherichia coli (UPEC) is commonly associated with the severity of urinary tract infections, which makes it a predictor of poor prognosis among patients. Accordingly, this toxin has become a target for diagnostic tests and therapeutic interventions. However, there are several obstacles associated with the process of α-hemolysin purification, therefore limiting its utilization in scientific investigations. In order to overcome the problems associated with α-hemolysin expression, after in silico prediction, a 20.48 kDa soluble α-hemolysin recombinant denoted rHlyA was constructed. This recombinant is composed by a 182 amino acid sequence localized in the aa542–723 region of the toxin molecule. The antigenic determinants of the rHlyA were estimated by bioinformatics analysis taking into consideration the tertiary form of the toxin, epitope analysis tools, and solubility inference. The results indicated that rHlyA has three antigenic domains localized in the aa555–565, aa600–610, and aa674–717 regions. Functional investigation of rHlyA demonstrated that it has hemolytic activity against sheep red cells, but no cytotoxic effect against epithelial bladder cells. In summary, the results obtained in this study indicate that rHlyA is a soluble recombinant protein that can be used as a tool in studies that aim to understand the mechanisms involved in the hemolytic and cytotoxic activities of α-hemolysin produced by UPEC. In addition, rHlyA can be applied to generate monoclonal and/or polyclonal antibodies that can be utilized in the development of diagnostic tests and therapeutic interventions.
Collapse
Affiliation(s)
- Bruna De Lucca Caetano
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Marta de Oliveira Domingos
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Miriam Aparecida da Silva
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Jessika Cristina Alves da Silva
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Juliana Moutinho Polatto
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Fabio Montoni
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (F.M.); (L.K.I.)
| | - Leo Kei Iwai
- Laboratório de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (F.M.); (L.K.I.)
| | - Daniel Carvalho Pimenta
- Laboratório de Biofísica e Bioquímica, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (D.C.P.); (H.V.)
| | - Hugo Vigerelli
- Laboratório de Biofísica e Bioquímica, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (D.C.P.); (H.V.)
| | - Paulo Cesar Gomes Vieira
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - Rita de Cassia Ruiz
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
| | - José Salvatore Patané
- Laboratório de Ciclo Celular, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil
- Correspondence: (J.S.P.); (R.M.F.P.)
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, São Paulo 1500-05503-900, SP, Brazil; (B.D.L.C.); (M.d.O.D.); (M.A.d.S.); (J.C.A.d.S.); (J.M.P.); (P.C.G.V.); (R.d.C.R.)
- Correspondence: (J.S.P.); (R.M.F.P.)
| |
Collapse
|
70
|
Interactive Dynamics of Cell Volume and Cell Death in Human Erythrocytes Exposed to α-Hemolysin from Escherichia coli. Int J Mol Sci 2022; 23:ijms23020872. [PMID: 35055067 PMCID: PMC8778525 DOI: 10.3390/ijms23020872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/16/2022] Open
Abstract
α-hemolysin (HlyA) of E. coli binds irreversibly to human erythrocytes and induces cell swelling, ultimately leading to hemolysis. We characterized the mechanism involved in water transport induced by HlyA and analyzed how swelling and hemolysis might be coupled. Osmotic water permeability (Pf) was assessed by stopped-flow light scattering. Preincubation with HlyA strongly reduced Pf in control- and aquaporin 1-null red blood cells, although the relative Pf decrease was similar in both cell types. The dynamics of cell volume and hemolysis on RBCs was assessed by electrical impedance, light dispersion and hemoglobin release. Results show that HlyA induced erythrocyte swelling, which is enhanced by purinergic signaling, and is coupled to osmotic hemolysis. We propose a mathematical model of HlyA activity where the kinetics of cell volume and hemolysis in human erythrocytes depend on the flux of osmolytes across the membrane, and on the maximum volume that these cells can tolerate. Our results provide new insights for understanding signaling and cytotoxicity mediated by HlyA in erythrocytes.
Collapse
|
71
|
Shahrear S, Afroj Zinnia M, Sany MRU, Islam ABMMK. Functional Analysis of Hypothetical Proteins of Vibrio parahaemolyticus Reveals the Presence of Virulence Factors and Growth-Related Enzymes With Therapeutic Potential. Bioinform Biol Insights 2022; 16:11779322221136002. [PMID: 36386863 PMCID: PMC9661560 DOI: 10.1177/11779322221136002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Vibrio parahaemolyticus, an aquatic pathogen, is a major concern in the shrimp aquaculture industry. Several strains of this pathogen are responsible for causing acute hepatopancreatic necrosis disease as well as other serious illness, both of which result in severe economic losses. The genome sequence of two pathogenic strains of V. parahaemolyticus, MSR16 and MSR17, isolated from Bangladesh, have been reported to gain a better understanding of their diversity and virulence. However, the prevalence of hypothetical proteins (HPs) makes it challenging to obtain a comprehensive understanding of the pathogenesis of V. parahaemolyticus. The aim of the present study is to provide a functional annotation of the HPs to elucidate their role in pathogenesis employing several in silico tools. The exploration of protein domains and families, similarity searches against proteins with known function, gene ontology enrichment, along with protein-protein interaction analysis of the HPs led to the functional assignment with a high level of confidence for 656 proteins out of a pool of 2631 proteins. The in silico approach used in this study was important for accurately assigning function to HPs and inferring interactions with proteins with previously described functions. The HPs with function predicted were categorized into various groups such as enzymes involved in small-compound biosynthesis pathway, iron binding proteins, antibiotics resistance proteins, and other proteins. Several proteins with potential druggability were identified among them. In addition, the HPs were investigated in search of virulent factors, which led to the identification of proteins that have the potential to be exploited as vaccine candidate. The findings of the study will be effective in gaining a better understanding of the molecular mechanisms of bacterial pathogenesis. They may also provide an insight into the process of evaluating promising targets for the development of drugs and vaccines against V. parahaemolyticus.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md. Rabi Us Sany
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
72
|
Porsch EA, Hernandez KA, Morreale DP, Montoya NR, Yount TA, St Geme JW. Pathogenic determinants of Kingella kingae disease. Front Pediatr 2022; 10:1018054. [PMID: 36304526 PMCID: PMC9592894 DOI: 10.3389/fped.2022.1018054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023] Open
Abstract
Kingella kingae is an emerging pediatric pathogen and is increasingly recognized as a leading etiology of septic arthritis, osteomyelitis, and bacteremia and an occasional cause of endocarditis in young children. The pathogenesis of K. kingae disease begins with colonization of the upper respiratory tract followed by breach of the respiratory epithelial barrier and hematogenous spread to distant sites of infection, primarily the joints, bones, and endocardium. As recognition of K. kingae as a pathogen has increased, interest in defining the molecular determinants of K. kingae pathogenicity has grown. This effort has identified numerous bacterial surface factors that likely play key roles in the pathogenic process of K. kingae disease, including type IV pili and the Knh trimeric autotransporter (adherence to the host), a potent RTX-family toxin (epithelial barrier breach), and multiple surface polysaccharides (complement and neutrophil resistance). Herein, we review the current state of knowledge of each of these factors, providing insights into potential approaches to the prevention and/or treatment of K. kingae disease.
Collapse
Affiliation(s)
- Eric A Porsch
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Kevin A Hernandez
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel P Morreale
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nina R Montoya
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taylor A Yount
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Joseph W St Geme
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, United States.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
73
|
Cawley JL, Blauch ME, Collins SM, Nice JB, Xie Q, Jordan LR, Brown AC, Wittenberg NJ. Nanoarrays of Individual Liposomes and Bacterial Outer Membrane Vesicles by Liftoff Nanocontact Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103338. [PMID: 34655160 PMCID: PMC8678320 DOI: 10.1002/smll.202103338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Analytical characterization of small biological particles, such as extracellular vesicles (EVs), is complicated by their extreme heterogeneity in size, lipid, membrane protein, and cargo composition. Analysis of individual particles is essential for illuminating particle property distributions that are obscured by ensemble measurements. To enable high-throughput analysis of individual particles, liftoff nanocontact printing (LNCP) is used to define hexagonal antibody and toxin arrays that have a 425 nm dot size, on average, and 700 nm periodicity. The LNCP process is rapid, simple, and does not require access to specialized nanofabrication tools. These densely packed, highly ordered arrays are used to capture liposomes and bacterial outer membrane vesicles on the basis of their surface biomarkers, with a maximum of one particle per array dot, resulting in densely packed arrays of particles. Despite the high particle density, the underlying antibody or toxin array ensured that neighboring individual particles are optically resolvable. Provided target particle biomarkers and suitable capture molecules are identified, this approach can be used to generate high density arrays of a wide variety of small biological particles, including other types of EVs like exosomes.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Megan E Blauch
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Shannon M Collins
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Justin B Nice
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Qing Xie
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Luke R Jordan
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Drive, Bethlehem, PA, 18015, USA
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 E Packer Ave, Bethlehem, PA, 18015, USA
| |
Collapse
|
74
|
Potter R, Meade A, Potter S, Cooper RL. Rapid and Direct Action of Lipopolysaccharide (LPS) on Skeletal Muscle of Larval Drosophila. BIOLOGY 2021; 10:1235. [PMID: 34943150 PMCID: PMC8698716 DOI: 10.3390/biology10121235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
The endotoxin lipopolysaccharide (LPS) from Gram-negative bacteria exerts a direct and rapid effect on tissues. While most attention is given to the downstream actions of the immune system in response to LPS, this study focuses on the direct actions of LPS on skeletal muscle in Drosophila melanogaster. It was noted in earlier studies that the membrane potential rapidly hyperpolarizes in a dose-dependent manner with exposure to LPS from Pseudomonas aeruginosa and Serratia marcescens. The response is transitory while exposed to LPS, and the effect does not appear to be due to calcium-activated potassium channels, activated nitric oxide synthase (NOS), or the opening of Cl- channels. The purpose of this study was to further investigate the mechanism of the hyperpolarization of the larval Drosophila muscle due to exposure of LPS using several different experimental paradigms. It appears this response is unlikely related to activation of the Na-K pump or Ca2+ influx. The unknown activation of a K+ efflux could be responsible. This will be an important factor to consider in treatments of bacterial septicemia and cellular energy demands.
Collapse
Affiliation(s)
- Rachel Potter
- College of Medicine, University of Kentucky, 800 Rose Street MN 150, Lexington, KY 40506, USA; (R.P.); (S.P.)
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Alexis Meade
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| | - Samuel Potter
- College of Medicine, University of Kentucky, 800 Rose Street MN 150, Lexington, KY 40506, USA; (R.P.); (S.P.)
| | - Robin L. Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
75
|
Giglione C, Meinnel T. Mapping the myristoylome through a complete understanding of protein myristoylation biochemistry. Prog Lipid Res 2021; 85:101139. [PMID: 34793862 DOI: 10.1016/j.plipres.2021.101139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/22/2022]
Abstract
Protein myristoylation is a C14 fatty acid modification found in all living organisms. Myristoylation tags either the N-terminal alpha groups of cysteine or glycine residues through amide bonds or lysine and cysteine side chains directly or indirectly via glycerol thioester and ester linkages. Before transfer to proteins, myristate must be activated into myristoyl coenzyme A in eukaryotes or, in bacteria, to derivatives like phosphatidylethanolamine. Myristate originates through de novo biosynthesis (e.g., plants), from external uptake (e.g., human tissues), or from mixed origins (e.g., unicellular organisms). Myristate usually serves as a molecular anchor, allowing tagged proteins to be targeted to membranes and travel across endomembrane networks in eukaryotes. In this review, we describe and discuss the metabolic origins of protein-bound myristate. We review strategies for in vivo protein labeling that take advantage of click-chemistry with reactive analogs, and we discuss new approaches to the proteome-wide discovery of myristate-containing proteins. The machineries of myristoylation are described, along with how protein targets can be generated directly from translating precursors or from processed proteins. Few myristoylation catalysts are currently described, with only N-myristoyltransferase described to date in eukaryotes. Finally, we describe how viruses and bacteria hijack and exploit myristoylation for their pathogenicity.
Collapse
Affiliation(s)
- Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
76
|
Pourhassan N Z, Smits SHJ, Ahn JH, Schmitt L. Biotechnological applications of type 1 secretion systems. Biotechnol Adv 2021; 53:107864. [PMID: 34767962 DOI: 10.1016/j.biotechadv.2021.107864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Bacteria have evolved a diverse range of secretion systems to export different substrates across their cell envelope. Although secretion of proteins into the extracellular space could offer advantages for recombinant protein production, the low secretion titers of the secretion systems for some heterologous proteins remain a clear drawback of their utility at commercial scales. Therefore, a potential use of most of secretion systems as production platforms at large scales are still limited. To overcome this limitation, remarkable efforts have been made toward improving the secretion efficiency of different bacterial secretion systems in recent years. Here, we review the progress with respect to biotechnological applications of type I secretion system (T1SS) of Gram-negative bacteria. We will also focus on the applicability of T1SS for the secretion of heterologous proteins as well as vaccine development. Last but not least, we explore the employed engineering strategies that have enhanced the secretion efficiencies of T1SS. Attention is also paid to directed evolution approaches that may offer a more versatile approach to optimize secretion efficiency of T1SS.
Collapse
Affiliation(s)
- Zohreh Pourhassan N
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jung Hoon Ahn
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, South Korea
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
77
|
Lepesheva A, Osickova A, Holubova J, Jurnecka D, Knoblochova S, Espinosa-Vinals C, Bumba L, Skopova K, Fiser R, Osicka R, Sebo P, Masin J. Different roles of conserved tyrosine residues of the acylated domains in folding and activity of RTX toxins. Sci Rep 2021; 11:19814. [PMID: 34615931 PMCID: PMC8494930 DOI: 10.1038/s41598-021-99112-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/17/2021] [Indexed: 12/31/2022] Open
Abstract
Pore-forming repeats in toxins (RTX) are key virulence factors of many Gram-negative pathogens. We have recently shown that the aromatic side chain of the conserved tyrosine residue 940 within the acylated segment of the RTX adenylate cyclase toxin-hemolysin (CyaA, ACT or AC-Hly) plays a key role in target cell membrane interaction of the toxin. Therefore, we used a truncated CyaA-derived RTX719 construct to analyze the impact of Y940 substitutions on functional folding of the acylated segment of CyaA. Size exclusion chromatography combined with CD spectroscopy revealed that replacement of the aromatic side chain of Y940 by the side chains of alanine or proline residues disrupted the calcium-dependent folding of RTX719 and led to self-aggregation of the otherwise soluble and monomeric protein. Intriguingly, corresponding alanine substitutions of the conserved Y642, Y643 and Y639 residues in the homologous RtxA, HlyA and ApxIA hemolysins from Kingella kingae, Escherichia coli and Actinobacillus pleuropneumoniae, affected the membrane insertion, pore-forming (hemolytic) and cytotoxic capacities of these toxins only marginally. Activities of these toxins were impaired only upon replacement of the conserved tyrosines by proline residues. It appears, hence, that the critical role of the aromatic side chain of the Y940 residue is highly specific for the functional folding of the acylated domain of CyaA and determines its capacity to penetrate target cell membrane.
Collapse
Affiliation(s)
- Anna Lepesheva
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Adriana Osickova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Knoblochova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Skopova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radovan Fiser
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Masin
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
78
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
79
|
Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog 2021; 17:e1009920. [PMID: 34547035 PMCID: PMC8486122 DOI: 10.1371/journal.ppat.1009920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
RTX leukotoxins are a diverse family of prokaryotic virulence factors that are secreted by the type 1 secretion system (T1SS) and target leukocytes to subvert host defenses. T1SS substrates all contain a C-terminal RTX domain that mediates recruitment to the T1SS and drives secretion via a Brownian ratchet mechanism. Neutralizing antibodies against the Bordetella pertussis adenylate cyclase toxin, an RTX leukotoxin essential for B. pertussis colonization, have been shown to target the RTX domain and prevent binding to the αMβ2 integrin receptor. Knowledge of the mechanisms by which antibodies bind and neutralize RTX leukotoxins is required to inform structure-based design of bacterial vaccines, however, no structural data are available for antibody binding to any T1SS substrate. Here, we determine the crystal structure of an engineered RTX domain fragment containing the αMβ2-binding site bound to two neutralizing antibodies. Notably, the receptor-blocking antibodies bind to the linker regions of RTX blocks I–III, suggesting they are key neutralization-sensitive sites within the RTX domain and are likely involved in binding the αMβ2 receptor. As the engineered RTX fragment contained these key epitopes, we assessed its immunogenicity in mice and showed that it elicits similar neutralizing antibody titers to the full RTX domain. The results from these studies will support the development of bacterial vaccines targeting RTX leukotoxins, as well as next-generation B. pertussis vaccines. Diverse bacterial pathogens use the type 1 secretion system (T1SS) to secrete RTX leukotoxins, which target host leukocytes during infection. T1SS substrates all contain a repetitive C-terminal ‘RTX’ domain that adopts a characteristic β-roll fold and is involved in secretion. Notably, The RTX domain of Bordetella pertussis adenylate cyclase toxin (ACT) mediates leukocyte targeting via binding to the αMβ2 integrin receptor, and antibodies that block receptor binding neutralize toxin activity. However, ACT also contains multiple non-neutralizing epitopes, and precise knowledge of the sites targeted by neutralizing antibodies is desirable for vaccine design. Here we determine the crystal structure of an ACT fragment in complex with two neutralizing antibodies and define the key neutralization-sensitive sites within the RTX domain. This first structure of a heterotypic protein–protein interaction formed by an RTX domain suggests the linker regions between β-roll segments engage binding partners.
Collapse
|
80
|
Abstract
PURPOSE OF REVIEW RTX toxin action often defines the outcome of bacterial infections. Here, we discuss the progress in understanding the impacts of RTX toxin activities on host immunity. RECENT FINDINGS Bordetella pertussis CyaA activity paralyzes sentinel phagocytic cells by elevating cellular cAMP levels and blocks differentiation of infiltrating monocytes into bactericidal macrophages, promoting also de-differentiation of resident alveolar macrophages into monocyte-like cells. Vibrio cholerae multifunctional autoprocessing repeats-in-toxins (MARTX), through Rho inactivating and α/β-hydrolase (ABH) domain action blocks mitogen-activated protein kinase signaling in epithelial cells and dampens the inflammatory responses of intestinal epithelia by blocking immune cell recruitment. The action of actin crosslinking effector domain and Ras/Rap1-specific endopeptidase (RRSP) domains of MARTX compromises the phagocytic ability of macrophages. Aggregatibacter actinomycetemcomitans LtxA action triggers neutrophil elastase release into periodontal tissue, compromising the epithelial barrier and promoting bacterial spreads into deeper tissue. SUMMARY Action of RTX toxins enables bacterial pathogens to cope with the fierce host immune defenses. RTX toxins often block phagocytosis and bactericidal reactive oxygen species and NO production. Some RTX toxins can reprogram the macrophages to less bactericidal cell types. Autophagy is hijacked for example by the activity of the V. cholerae ABH effector domain of the MARTX protein. Subversion of immune functions by RTX toxins thus promotes bacterial survival and proliferation in the host.
Collapse
|
81
|
Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein. Int J Mol Sci 2021; 22:ijms22169064. [PMID: 34445770 PMCID: PMC8396599 DOI: 10.3390/ijms22169064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
The mucus layer protects airway epithelia from damage by noxious agents. Intriguingly, Bordetella pertussis bacteria provoke massive mucus production by nasopharyngeal epithelia during the initial coryza-like catarrhal stage of human pertussis and the pathogen transmits in mucus-containing aerosol droplets expelled by sneezing and post-nasal drip-triggered cough. We investigated the role of the cAMP-elevating adenylate cyclase (CyaA) and pertussis (PT) toxins in the upregulation of mucin production in B. pertussis-infected airway epithelia. Using human pseudostratified airway epithelial cell layers cultured at air–liquid interface (ALI), we show that purified CyaA and PT toxins (100 ng/mL) can trigger production of the major airway mucins Muc5AC and Muc5B. Upregulation of mucin secretion involved activation of the cAMP response element binding protein (CREB) and was blocked by the 666-15-Calbiochem inhibitor of CREB-mediated gene transcription. Intriguingly, a B. pertussis mutant strain secreting only active PT and producing the enzymatically inactive CyaA-AC– toxoid failed to trigger any important mucus production in infected epithelial cell layers in vitro or in vivo in the tracheal epithelia of intranasally infected mice. In contrast, the PT– toxoid-producing B. pertussis mutant secreting the active CyaA toxin elicited a comparable mucin production as infection of epithelial cell layers or tracheal epithelia of infected mice by the wild-type B. pertussis secreting both PT and CyaA toxins. Hence, the cAMP-elevating activity of B. pertussis-secreted CyaA was alone sufficient for activation of mucin production through a CREB-dependent mechanism in B. pertussis-infected airway epithelia in vivo.
Collapse
|
82
|
Vibrio cholerae Infection Induces Strain-Specific Modulation of the Zebrafish Intestinal Microbiome. Infect Immun 2021; 89:e0015721. [PMID: 34061623 DOI: 10.1128/iai.00157-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) is an attractive model organism to use for an array of scientific studies, including host-microbe interactions. Zebrafish contain a core (i.e., consistently detected) intestinal microbiome consisting primarily of Proteobacteria. Furthermore, this core intestinal microbiome is plastic and can be significantly altered due to external factors. Zebrafish are particularly useful for the study of aquatic microbes that can colonize vertebrate hosts, including Vibrio cholerae. As an intestinal pathogen, V. cholerae must colonize the intestine of an exposed host for pathogenicity to occur. Members of the resident intestinal microbial community likely must be reduced or eliminated by V. cholerae for colonization, and subsequent disease, to occur. Many studies have explored a variety of aspects of the pathogenic effects of V. cholerae on zebrafish and other model organisms but few have researched how a V. cholerae infection changes the resident intestinal microbiome. In this study, 16S rRNA gene sequencing was used to examine how five genetically diverse V. cholerae strains alter the intestinal microbiome following an infection. We found that V. cholerae colonization induced significant changes in the zebrafish intestinal microbiome. Notably, changes in the microbial profile were significantly different from each other, based on the particular strain of V. cholerae used to infect zebrafish hosts. We conclude that V. cholerae significantly modulates the zebrafish intestinal microbiota to enable colonization and that specific microbes that are targeted depend on the V. cholerae genotype.
Collapse
|
83
|
The Vibrio cholerae Type Six Secretion System Is Dispensable for Colonization but Affects Pathogenesis and the Structure of Zebrafish Intestinal Microbiome. Infect Immun 2021; 89:e0015121. [PMID: 34097462 DOI: 10.1128/iai.00151-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) are an attractive model organism for a variety of scientific studies, including host-microbe interactions. The organism is particularly useful for the study of aquatic microbes that can colonize vertebrate hosts, including Vibrio cholerae, an intestinal pathogen. V. cholerae must colonize the intestine of an exposed host for pathogenicity to occur. While numerous studies have explored various aspects of the pathogenic effects of V. cholerae on zebrafish and other model organisms, few, if any, have examined how a V. cholerae infection alters the resident intestinal microbiome and the role of the type six secretion system (T6SS) in that process. In this study, 16S rRNA gene sequencing was utilized to investigate how strains of V. cholerae both with and without the T6SS alter the aforementioned microbial profiles following an infection. V. cholerae infection induced significant changes in the zebrafish intestinal microbiome, and while not necessary for colonization, the T6SS was important for inducing mucin secretion, a marker for diarrhea. Additional salient differences to the microbiome were observed based on the presence or absence of the T6SS in the V. cholerae utilized for challenging the zebrafish hosts. We conclude that V. cholerae significantly modulates the zebrafish intestinal microbiome to enable colonization and that the T6SS is important for pathogenesis induced by the examined V. cholerae strains. Furthermore, the presence or absence of T6SS differentially and significantly affected the composition and structure of the intestinal microbiome, with an increased abundance of other Vibrio bacteria observed in the absence of V. cholerae T6SS.
Collapse
|
84
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
85
|
Komaniecki G, Lin H. Lysine Fatty Acylation: Regulatory Enzymes, Research Tools, and Biological Function. Front Cell Dev Biol 2021; 9:717503. [PMID: 34368168 PMCID: PMC8339906 DOI: 10.3389/fcell.2021.717503] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
Post-translational acylation of lysine side chains is a common mechanism of protein regulation. Modification by long-chain fatty acyl groups is an understudied form of lysine acylation that has gained increasing attention recently due to the characterization of enzymes that catalyze the addition and removal this modification. In this review we summarize what has been learned about lysine fatty acylation in the approximately 30 years since its initial discovery. We report on what is known about the enzymes that regulate lysine fatty acylation and their physiological functions, including tumorigenesis and bacterial pathogenesis. We also cover the effect of lysine fatty acylation on reported substrates. Generally, lysine fatty acylation increases the affinity of proteins for specific cellular membranes, but the physiological outcome depends greatly on the molecular context. Finally, we will go over the experimental tools that have been used to study lysine fatty acylation. While much has been learned about lysine fatty acylation since its initial discovery, the full scope of its biological function has yet to be realized.
Collapse
Affiliation(s)
- Garrison Komaniecki
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| | - Hening Lin
- Graduate Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY, United States.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States.,Howard Hughes Medical Institute, Cornell University, Ithaca, NY, United States
| |
Collapse
|
86
|
Meningitic Escherichia coli α-hemolysin aggravates blood-brain barrier disruption via targeting TGFβ1-triggered hedgehog signaling. Mol Brain 2021; 14:116. [PMID: 34281571 PMCID: PMC8287823 DOI: 10.1186/s13041-021-00826-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Bacterial meningitis is a life-threatening infectious disease with severe neurological sequelae and a high mortality rate, in which Escherichia coli is one of the primary Gram-negative etiological bacteria. Meningitic E. coli infection is often accompanied by an elevated blood–brain barrier (BBB) permeability. BBB is the structural and functional barrier composed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes, and we have previously shown that astrocytes-derived TGFβ1 physiologically maintained the BBB permeability by triggering a non-canonical hedgehog signaling in brain microvascular endothelial cells (BMECs). Here, we subsequently demonstrated that meningitic E. coli infection could subvert this intercellular communication within BBB by attenuating TGFBRII/Gli2-mediated such signaling. By high-throughput screening, we identified E. coli α-hemolysin as the critical determinant responsible for this attenuation through Sp1-dependent TGFBRII reduction and triggering Ca2+ influx and protein kinase A activation, thus leading to Gli2 suppression. Additionally, the exogenous hedgehog agonist SAG exhibited promising protection against the infection-caused BBB dysfunction. Our work revealed a hedgehog-targeted pathogenic mechanism during meningitic E. coli-caused BBB disruption and suggested that activating hedgehog signaling within BBB could be a potential protective strategy for future therapy of bacterial meningitis.
Collapse
|
87
|
Monzon V, Lafita A, Bateman A. Discovery of fibrillar adhesins across bacterial species. BMC Genomics 2021; 22:550. [PMID: 34275445 PMCID: PMC8286594 DOI: 10.1186/s12864-021-07586-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Fibrillar adhesins are long multidomain proteins that form filamentous structures at the cell surface of bacteria. They are an important yet understudied class of proteins composed of adhesive and stalk domains that mediate interactions of bacteria with their environment. This study aims to characterize fibrillar adhesins in a wide range of bacterial phyla and to identify new fibrillar adhesin-like proteins to improve our understanding of host-bacteria interactions. RESULTS Through careful literature and computational searches, we identified 82 stalk and 27 adhesive domain families in fibrillar adhesins. Based on the presence of these domains in the UniProt Reference Proteomes database, we identified and analysed 3,542 fibrillar adhesin-like proteins across species of the most common bacterial phyla. We further enumerate the adhesive and stalk domain combinations found in nature and demonstrate that fibrillar adhesins have complex and variable domain architectures, which differ across species. By analysing the domain architecture of fibrillar adhesins, we show that in Gram positive bacteria, adhesive domains are mostly positioned at the N-terminus and cell surface anchors at the C-terminus of the protein, while their positions are more variable in Gram negative bacteria. We provide an open repository of fibrillar adhesin-like proteins and domains to enable further studies of this class of bacterial surface proteins. CONCLUSION This study provides a domain-based characterization of fibrillar adhesins and demonstrates that they are widely found in species across the main bacterial phyla. We have discovered numerous novel fibrillar adhesins and improved our understanding of pathogenic adhesion and invasion mechanisms.
Collapse
Affiliation(s)
- Vivian Monzon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
| | - Aleix Lafita
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| |
Collapse
|
88
|
Held NA, Sutherland KM, Webb EA, McIlvin MR, Cohen NR, Devaux AJ, Hutchins DA, Waterbury JB, Hansel CM, Saito MA. Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics. ISME COMMUNICATIONS 2021; 1:35. [PMID: 36739337 PMCID: PMC9723768 DOI: 10.1038/s43705-021-00034-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The keystone marine nitrogen fixer Trichodesmium thrives in high-dust environments. While laboratory investigations have observed that Trichodesmium colonies can access the essential nutrient iron from dust particles, less clear are the biochemical strategies underlying particle-colony interactions in nature. Here we demonstrate that Trichodesmium colonies engage with mineral particles in the wild with distinct molecular responses. We encountered particle-laden Trichodesmium colonies at a sampling location in the Southern Caribbean Sea; microscopy and synchrotron-based imaging then demonstrated heterogeneous associations with iron oxide and iron-silicate minerals. Metaproteomic analysis of individual colonies by a new low-biomass approach revealed responses in biogeochemically relevant proteins including photosynthesis proteins and metalloproteins containing iron, nickel, copper, and zinc. The iron-storage protein ferritin was particularly enriched implying accumulation of mineral-derived iron, and multiple iron acquisition pathways including Fe(II), Fe(III), and Fe-siderophore transporters were engaged. While the particles provided key trace metals such as iron and nickel, there was also evidence that Trichodesmium was altering its strategy to confront increased superoxide production and metal exposure. Chemotaxis regulators also responded to mineral presence suggesting involvement in particle entrainment. These molecular responses are fundamental to Trichodesmium's ecological success and global biogeochemical impact, and may contribute to the leaching of particulate trace metals with implications for global iron and carbon cycling.
Collapse
Affiliation(s)
- Noelle A Held
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Kevin M Sutherland
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Matthew R McIlvin
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Natalie R Cohen
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Alexander J Devaux
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John B Waterbury
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Mak A Saito
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
89
|
Jensen S, Frank JA, Arntzen MØ, Duperron S, Vaaje-Kolstad G, Hovland M. Endozoicomonadaceae symbiont in gills of Acesta clam encodes genes for essential nutrients and polysaccharide degradation. FEMS Microbiol Ecol 2021; 97:6275716. [PMID: 33988698 PMCID: PMC8755941 DOI: 10.1093/femsec/fiab070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/12/2021] [Indexed: 01/29/2023] Open
Abstract
Gammaproteobacteria from the family Endozoicomonadaceae have emerged as widespread associates of dense marine animal communities. Their abundance in coral reefs involves symbiotic relationships and possibly host nutrition. We explored functions encoded in the genome of an uncultured Endozoicomonadaceae 'Candidatus Acestibacter aggregatus' that lives inside gill cells of large Acesta excavata clams in deep-water coral reefs off mid-Norway. The dominance and deep branching lineage of this symbiont was confirmed using 16S rRNA gene sequencing and phylogenomic analysis from shotgun sequencing data. The 4.5 Mb genome binned in this study has a low GC content of 35% and is enriched in transposon and chaperone gene annotations indicating ongoing adaptation. Genes encoding functions potentially involved with the symbiosis include ankyrins, repeat in toxins, secretion and nutritional systems. Complete pathways were identified for the synthesis of eleven amino acids and six B-vitamins. A minimal chitinolytic machinery was indicated from a glycosyl hydrolase GH18 and a lytic polysaccharide monooxygenase LPMO10. Expression of the latter was confirmed using proteomics. Signal peptides for secretion were identified for six polysaccharide degrading enzymes, ten proteases and three lipases. Our results suggest a nutritional symbiosis fuelled by enzymatic products from extracellular degradation processes.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Jeremy A Frank
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Magnus Ø Arntzen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Sébastien Duperron
- UMR 7245 Muséum National d'Histoire Naturelle/CNRS Molécules de Communication et Adaptation des Micro-organismes and Institut Universitaire de France, CP39, 12 rue Buffon, F-75231 Paris Cedex 05, France
| | - Gustav Vaaje-Kolstad
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, PO Box 5003, 1432 Ås, Norway
| | - Martin Hovland
- Department of Biology, University of Bergen, PO Box 7803, 5020 Bergen, Norway.,Centre for Geobiology, University of Bergen, PO Box 7803, 5020 Bergen, Norway
| |
Collapse
|
90
|
González Bullón D, Uribe KB, Amuategi J, Martín C, Ostolaza H. Cholesterol stimulates the lytic activity of Adenylate Cyclase Toxin on lipid membranes by promoting toxin oligomerization and formation of pores with a greater effective size. FEBS J 2021; 288:6795-6814. [PMID: 34216517 PMCID: PMC9290974 DOI: 10.1111/febs.16107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/27/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
Several toxins acting on animal cells present different, but specific, interactions with cholesterol. Bordetella pertussis infects the human respiratory tract and causes whooping cough, a highly contagious and resurgent disease. Its virulence factor adenylate cyclase toxin (ACT) plays an important role in the course of infection. ACT is a pore‐forming cytolysin belonging to the Repeats in ToXin (RTX) family of leukotoxins/hemolysins and is capable of permeabilizing several cell types and lipid vesicles. Previously, we observed that in the presence of cholesterol ACT induces greater liposome permeabilization. Similarly, recent reports also implicate cholesterol in the cytotoxicity of an increasing number of pore‐forming RTX toxins. However, the mechanistic details by which this sterol promotes the lytic activity of ACT or of these other RTX toxins remain largely unexplored and poorly understood. Here, we have applied a combination of biophysical techniques to dissect the role of cholesterol in pore formation by ACT. Our results indicate that cholesterol enhances the lytic potency of ACT by promoting toxin oligomerization, a step which is indispensable for ACT to accomplish membrane permeabilization and cell lysis. Since our experimental design eliminates the possibility that this cholesterol effect derives from toxin accumulation due to lateral lipid phase segregation, we hypothesize that cholesterol facilitates lytic pore formation, by favoring a toxin conformation more prone to protein–protein interactions and oligomerization. Our data shed light on the complex relationship between lipid membranes and protein toxins acting on these membranes. Coupling cholesterol binding, increased oligomerization and increased lytic activity is likely pertinent for other RTX cytolysins.
Collapse
Affiliation(s)
- David González Bullón
- Department of Biochemistry and Molecular Biology, Biofisika Institute, (UPV/EHU, CSIC), University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Kepa B Uribe
- Department of Biochemistry and Molecular Biology, Biofisika Institute, (UPV/EHU, CSIC), University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Jone Amuategi
- Department of Biochemistry and Molecular Biology, Biofisika Institute, (UPV/EHU, CSIC), University of Basque Country (UPV/EHU), Bilbao, Spain
| | - César Martín
- Department of Biochemistry and Molecular Biology, Biofisika Institute, (UPV/EHU, CSIC), University of Basque Country (UPV/EHU), Bilbao, Spain
| | - Helena Ostolaza
- Department of Biochemistry and Molecular Biology, Biofisika Institute, (UPV/EHU, CSIC), University of Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
91
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
92
|
Voegele A, Sadi M, O'Brien DP, Gehan P, Raoux‐Barbot D, Davi M, Hoos S, Brûlé S, Raynal B, Weber P, Mechaly A, Haouz A, Rodriguez N, Vachette P, Durand D, Brier S, Ladant D, Chenal A. A High-Affinity Calmodulin-Binding Site in the CyaA Toxin Translocation Domain is Essential for Invasion of Eukaryotic Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003630. [PMID: 33977052 PMCID: PMC8097335 DOI: 10.1002/advs.202003630] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The molecular mechanisms and forces involved in the translocation of bacterial toxins into host cells are still a matter of intense research. The adenylate cyclase (CyaA) toxin from Bordetella pertussis displays a unique intoxication pathway in which its catalytic domain is directly translocated across target cell membranes. The CyaA translocation region contains a segment, P454 (residues 454-484), which exhibits membrane-active properties related to antimicrobial peptides. Herein, the results show that this peptide is able to translocate across membranes and to interact with calmodulin (CaM). Structural and biophysical analyses reveal the key residues of P454 involved in membrane destabilization and calmodulin binding. Mutational analysis demonstrates that these residues play a crucial role in CyaA translocation into target cells. In addition, calmidazolium, a calmodulin inhibitor, efficiently blocks CyaA internalization. It is proposed that after CyaA binding to target cells, the P454 segment destabilizes the plasma membrane, translocates across the lipid bilayer and binds calmodulin. Trapping of CyaA by the CaM:P454 interaction in the cytosol may assist the entry of the N-terminal catalytic domain by converting the stochastic motion of the polypeptide chain through the membrane into an efficient vectorial chain translocation into host cells.
Collapse
Affiliation(s)
- Alexis Voegele
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
- Université de ParisSorbonne Paris CitéParis75006France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
- Université de ParisSorbonne Paris CitéParis75006France
| | - Darragh Patrick O'Brien
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Pauline Gehan
- Sorbonne UniversitéÉcole normale supérieurePSL UniversityCNRSLaboratoire des biomoléculesLBMParis75005France
| | - Dorothée Raoux‐Barbot
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Sylviane Hoos
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Sébastien Brûlé
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Bertrand Raynal
- Plateforme de Biophysique MoléculaireInstitut PasteurUMR 3528 CNRSParis75015France
| | - Patrick Weber
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Ariel Mechaly
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Ahmed Haouz
- Institut PasteurPlate‐forme de cristallographie‐C2RTUMR‐3528 CNRSParis75015France
| | - Nicolas Rodriguez
- Sorbonne UniversitéÉcole normale supérieurePSL UniversityCNRSLaboratoire des biomoléculesLBMParis75005France
| | - Patrice Vachette
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Dominique Durand
- Université Paris‐SaclayCEACNRSInstitute for Integrative Biology of the Cell (I2BC)Gif‐sur‐Yvette91198France
| | - Sébastien Brier
- Biological NMR Technological PlateformCenter for Technological Resources and ResearchDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions UnitDepartment of Structural Biology and ChemistryInstitut PasteurCNRS UMR3528Paris75015France
| |
Collapse
|
93
|
Computational prediction of secreted proteins in gram-negative bacteria. Comput Struct Biotechnol J 2021; 19:1806-1828. [PMID: 33897982 PMCID: PMC8047123 DOI: 10.1016/j.csbj.2021.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.
Collapse
|
94
|
Oleoresins and naturally occurring compounds of Copaifera genus as antibacterial and antivirulence agents against periodontal pathogens. Sci Rep 2021; 11:4953. [PMID: 33654123 PMCID: PMC7925542 DOI: 10.1038/s41598-021-84480-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Invasion of periodontal tissues by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can be associated with aggressive forms of periodontitis. Oleoresins from different copaifera species and their compounds display various pharmacological properties. The present study evaluates the antibacterial and antivirulence activity of oleoresins obtained from different copaifera species and of ten isolated compounds against two causative agents of periodontitis. The following assays were performed: determination of the minimum inhibitory concentration (MIC), determination of the minimum bactericidal concentration (MBC), and determination of the antibiofilm activity by inhibition of biofilm formation and biofilm eradication tests. The antivirulence activity was assessed by hemagglutination, P. gingivalis Arg-X and Lis-X cysteine protease inhibition assay, and A. actinomycetemcomitans leukotoxin inhibition assay. The MIC and MBC of the oleoresins and isolated compounds 1, 2, and 3 ranged from 1.59 to 50 μg/mL against P. gingivalis (ATCC 33277) and clinical isolates and from 6.25 to 400 μg/mL against A. actinomycetemcomitans (ATCC 43717) and clinical isolates. About the antibiofilm activity, the oleoresins and isolated compounds 1, 2, and 3 inhibited biofilm formation by at least 50% and eradicated pre-formed P. gingivalis and A. actinomycetemcomitans biofilms in the monospecies and multispecies modes. A promising activity concerning cysteine protease and leucotoxin inhibition was also evident. In addition, molecular docking analysis was performed. The investigated oleoresins and their compounds may play an important role in the search for novel sources of agents that can act against periodontal pathogens.
Collapse
|
95
|
Huang X, Jiao N, Zhang R. The genomic content and context of auxiliary metabolic genes in roseophages. Environ Microbiol 2021; 23:3743-3757. [PMID: 33511765 DOI: 10.1111/1462-2920.15412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/24/2021] [Indexed: 11/26/2022]
Abstract
Marine bacteriophages frequently possess auxiliary metabolic genes (AMGs) that accelerate host metabolism during phage infection. The significance of AMGs in phage infecting the ecologically important Roseobacter clade, found predominantly in marine environments, remains to be determined. Here, we analysed the distribution and genomic context of 180 AMGs, annotated into 20 types, across 50 roseophage genomes. Roseophages share seven high-frequency AMGs (trx, grx, RNR, thyX, DCD, phoH, and mazG), most of them involved in the nucleotide biosynthesis pathway that represent conserved intra and inter operational taxonomic units (OTUs), and share ≥97% full-length DNA sequence similarity. Sporadic AMGs (dUTPase, lexA, degS, Que, NAPRT, AHL, pcnB, ctrA, RTX, RNR-nrdA, RNR-nrdE, wclP, and flgJ), present in only one or two OTUs, show high functional diversity. The roseophage AMG repertoire weakly correlates with environmental factors, while host range partially explains the sporadic AMG distribution. Locally co-linear blocks distribution index (LDI) analysis indicated that high-frequency roseopodovirus AMGs are restricted to particular genomic islands, possibly originating from limited historical acquisition events. Low-frequency roseopodovirus AMGs and all roseosiphovirus AMGs have high LDI values, implying multiple historical acquisition events. In summary, roseophages have acquired a range of AMGs through horizontal gene transfer, and the forces shaping the evolution of roseophages are described.
Collapse
Affiliation(s)
- Xingyu Huang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean & Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
96
|
Li Y, Li Y, Mengist HM, Shi C, Zhang C, Wang B, Li T, Huang Y, Xu Y, Jin T. Structural Basis of the Pore-Forming Toxin/Membrane Interaction. Toxins (Basel) 2021; 13:toxins13020128. [PMID: 33572271 PMCID: PMC7914777 DOI: 10.3390/toxins13020128] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
With the rapid growth of antibiotic-resistant bacteria, it is urgent to develop alternative therapeutic strategies. Pore-forming toxins (PFTs) belong to the largest family of virulence factors of many pathogenic bacteria and constitute the most characterized classes of pore-forming proteins (PFPs). Recent studies revealed the structural basis of several PFTs, both as soluble monomers, and transmembrane oligomers. Upon interacting with host cells, the soluble monomer of bacterial PFTs assembles into transmembrane oligomeric complexes that insert into membranes and affect target cell-membrane permeability, leading to diverse cellular responses and outcomes. Herein we have reviewed the structural basis of pore formation and interaction of PFTs with the host cell membrane, which could add valuable contributions in comprehensive understanding of PFTs and searching for novel therapeutic strategies targeting PFTs and interaction with host receptors in the fight of bacterial antibiotic-resistance.
Collapse
Affiliation(s)
- Yajuan Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Yuelong Li
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Hylemariam Mihiretie Mengist
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Cuixiao Shi
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Caiying Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
| | - Bo Wang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Tingting Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Ying Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
| | - Yuanhong Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; (Y.L.); (C.S.); (B.W.); (T.L.); (Y.H.)
- Correspondence: (Y.X.); (T.J.); Tel.: +86-13505694447 (Y.X.); +86-17605607323 (T.J.)
| | - Tengchuan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China; (Y.L.); (H.M.M.); (C.Z.)
- Correspondence: (Y.X.); (T.J.); Tel.: +86-13505694447 (Y.X.); +86-17605607323 (T.J.)
| |
Collapse
|
97
|
Knuutila A, Barkoff AM, Mertsola J, Osicka R, Sebo P, He Q. Simultaneous Determination of Antibodies to Pertussis Toxin and Adenylate Cyclase Toxin Improves Serological Diagnosis of Pertussis. Diagnostics (Basel) 2021; 11:diagnostics11020180. [PMID: 33513780 PMCID: PMC7912298 DOI: 10.3390/diagnostics11020180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/26/2022] Open
Abstract
Serological diagnosis of pertussis is mainly based on anti-pertussis toxin (PT) IgG antibodies. Since PT is included in all acellular vaccines (ACV), serological assays do not differentiate antibodies induced by ACVs and infection. Adenylate cyclase toxin (ACT) is not included in the ACVs, which makes it a promising candidate for pertussis serology with the specific aim of separating infection- and ACV-induced antibodies. A multiplex lateral flow test with PT and ACT antigens was developed to measure serum antibodies from pertussis-seropositive patients (n = 46), healthy controls (n = 102), and subjects who received a booster dose of ACV containing PT, filamentous hemagglutinin, and pertactin (n = 67) with paired sera collected before and one month after the vaccination. If the diagnosis was solely based on anti-PT antibodies, 98.5–44.8% specificity (before and after vaccination, respectively) and 78.2% sensitivity were achieved, whereas if ACT was used in combination with PT, the sensitivity of the assay increased to 91.3% without compromising specificity. No increase in the level of anti-ACT antibodies was found after vaccination. This exploratory study indicates that the use of ACT for serology would be beneficial in combination with a lower quantitative cutoff for anti-PT antibodies, and particularly in children and adolescents who frequently receive booster vaccinations.
Collapse
Affiliation(s)
- Aapo Knuutila
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (A.K.); (A.-M.B.)
| | - Alex-Mikael Barkoff
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (A.K.); (A.-M.B.)
| | - Jussi Mertsola
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Kiinamyllynkatu 4–8, 20520 Turku, Finland;
| | - Radim Osicka
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (R.O.); (P.S.)
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (R.O.); (P.S.)
| | - Qiushui He
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland; (A.K.); (A.-M.B.)
- Department of Medical Microbiology, Capital Medical University, No. 10 Xi Tou Tiao, You’an Men Wai, Feng Tai District, Beijing 100069, China
- Research Center for Infections and Immunity, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- Correspondence: ; Tel.: +358-504-722-255
| |
Collapse
|
98
|
Bioengineering of Bordetella pertussis Adenylate Cyclase Toxin for Vaccine Development and Other Biotechnological Purposes. Toxins (Basel) 2021; 13:toxins13020083. [PMID: 33499260 PMCID: PMC7911819 DOI: 10.3390/toxins13020083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
The adenylate cyclase toxin, CyaA, is one of the key virulent factors produced by Bordetella pertussis, the causative agent of whooping cough. This toxin primarily targets innate immunity to facilitate bacterial colonization of the respiratory tract. CyaA exhibits several remarkable characteristics that have been exploited for various applications in vaccinology and other biotechnological purposes. CyaA has been engineered as a potent vaccine vehicle to deliver antigens into antigen-presenting cells, while the adenylate cyclase catalytic domain has been used to design a robust genetic assay for monitoring protein-protein interactions in bacteria. These two biotechnological applications are briefly summarized in this chapter.
Collapse
|
99
|
Growth by Insertion: The Family of Bacterial DDxP Proteins. Int J Mol Sci 2020; 21:ijms21239184. [PMID: 33276454 PMCID: PMC7730722 DOI: 10.3390/ijms21239184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
We have identified a variety of proteins in species of the Legionella, Aeromonas, Pseudomonas, Vibrio, Nitrosomonas, Nitrosospira, Variovorax, Halomonas, and Rhizobia genera, which feature repetitive modules of different length and composition, invariably ending at the COOH side with Asp-Asp-x-Pro (DDxP) motifs. DDxP proteins range in size from 900 to 6200 aa (amino acids), and contain 1 to 5 different module types, present in one or multiple copies. We hypothesize that DDxP proteins were modeled by the action of specific endonucleases inserting DNA segments into genes encoding DDxP motifs. Target site duplications (TSDs) formed upon repair of staggered ends generated by endonuclease cleavage would explain the DDxP motifs at repeat ends. TSDs acted eventually as targets for the insertion of more modules of the same or different types. Repeat clusters plausibly resulted from amplification of both repeat and flanking TSDs. The proposed growth shown by the insertion model is supported by the identification of homologous proteins lacking repeats in Pseudomonas and Rhizobium. The 85 DDxP repeats identified in this work vary in length, and can be sorted into short (136-215 aa) and long (243-304 aa) types. Conserved Asp-Gly-Asp-Gly-Asp motifs are located 11-19 aa from the terminal DDxP motifs in all repeats, and far upstream in most long repeats.
Collapse
|
100
|
Zu Y, Hong S, Xu C, Li W, Chen S, Li J. Cell wall surface layer (S-layer) promotes colony formation in Microcystis: comparison of S-layer characteristics between colonial and unicellular forms of Microcystis and function conformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42254-42263. [PMID: 32222924 DOI: 10.1007/s11356-020-08254-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Colony is a key to Microcystis becoming a dominant population and forming blooms. To find the mechanism of colony formation, we investigated cell wall structures of colonial and unicellular strains. Results showed that colonial strains had significant surface layer protein (S-layer) on the surface of cells than unicellular strains by transmission electron microscopy. Western blot showed colonial strains had more S-layer than the unicellular strains. When the S-layer gene (GenBank accession number CAO89090.1) of Microcystis aeruginosa PCC7806 was expressed in Synechocystis sp. PCC6803, PCC6803 aggregated into colonial morphology. The results indicated that the S-layer could promote colony formation in Microcystis. Based on the S-layer sequences of PCC6803 and PCC7806, nine S-layer genes in other Microcystis strains were screened from the GenBank. Sequence comparing showed that the S-layers conserved regions were all located in N-terminal. The S-layers contain repeats-in-toxin (RTX) sequences with Ca2+-binding site, and their amino acid composition, hydrophobicity, isoelectric point, etc. were consistent with the characteristics of RTX-type S-layer in bacteria.
Collapse
Affiliation(s)
- Yao Zu
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Sujuan Hong
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Chongxin Xu
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Weiwei Li
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Siyu Chen
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Jianhong Li
- School of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|