51
|
Oughlis S, Lessim S, Changotade S, Poirier F, Bollotte F, Peltzer J, Felgueiras H, Migonney V, Lataillade JJ, Lutomski D. The osteogenic differentiation improvement of human mesenchymal stem cells on titanium grafted with polyNaSS bioactive polymer. J Biomed Mater Res A 2012; 101:582-9. [PMID: 22961843 DOI: 10.1002/jbm.a.34336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/25/2012] [Accepted: 06/21/2012] [Indexed: 12/27/2022]
Abstract
Osseointegration of metallic implants used in orthopedic surgery requires that osteoprogenitor cells attach and adhere to the surface, then proliferate, differentiate into osteoblasts, and finally produce mineralized matrix. Because the ability of progenitor cells to attach to a scaffold surface during early stages is important in the development of new tissue structures, we developed in our laboratory, a strategy involving grafting of implants with a polymer of sodium styrene sulfonate (polyNaSS) used as a scaffold which enables human mesenchymal stem cells (hMSCs) interactions. In the present study, we investigated the cellular response of hMSCs to polyNaSS surfaces of titanium (Ti). In particular, cell proliferation, cell viability, cell differentiation, and cell spreading were evaluated. Results showed that cell proliferation and cell viability did not differ with any statistical significance between modified and unmodified Ti surfaces. Interestingly, culture of MSCs on polyNaSS surfaces resulted in a significant increase of cell spreading and cell differentiation compared with the other tested surfaces. These results suggest that titanium surface grafted with polyNaSS is a suitable scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- S Oughlis
- Université Paris 13, Sorbonne Paris Cité, UMR CNRS 7244, CSPBAT-LBPS, UFR SMBH, Bobigny, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Martino MM, Tortelli F, Mochizuki M, Traub S, Ben-David D, Kuhn GA, Müller R, Livne E, Eming SA, Hubbell JA. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing. Sci Transl Med 2012; 3:100ra89. [PMID: 21918106 DOI: 10.1126/scitranslmed.3002614] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although growth factors naturally exert their morphogenetic influences within the context of the extracellular matrix microenvironment, the interactions among growth factors, their receptors, and other extracellular matrix components are typically ignored in clinical delivery of growth factors. We present an approach for engineering the cellular microenvironment to greatly accentuate the effects of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) for skin repair, and of bone morphogenetic protein-2 (BMP-2) and PDGF-BB for bone repair. A multifunctional recombinant fragment of fibronectin (FN) was engineered to comprise (i) a factor XIIIa substrate fibrin-binding sequence, (ii) the 9th to 10th type III FN repeat (FN III9-10) containing the major integrin-binding domain, and (iii) the 12th to 14th type III FN repeat (FN III12-14), which binds growth factors promiscuously, including VEGF-A165, PDGF-BB, and BMP-2. We show potent synergistic signaling and morphogenesis between α5β1 integrin and the growth factor receptors, but only when FN III9-10 and FN III12-14 are proximally presented in the same polypeptide chain (FN III9-10/12-14). The multifunctional FN III9-10/12-14 greatly enhanced the regenerative effects of the growth factors in vivo in a diabetic mouse model of chronic wounds (primarily through an angiogenic mechanism) and in a rat model of critical-size bone defects (through a mesenchymal stem cell recruitment mechanism) at doses where the growth factors delivered within fibrin only had no significant effects.
Collapse
Affiliation(s)
- Mikaël M Martino
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Effect of oligonucleotide mediated immobilization of bone morphogenic proteins on titanium surfaces. Biomaterials 2011; 33:1315-22. [PMID: 22082620 DOI: 10.1016/j.biomaterials.2011.10.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 10/11/2011] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to test the hypothesis that oligonucleotides can be used for anchorage and slow release of osteogenic growth factors such as BMP to enhance the osteogenic activity of a titanium implant surface. Strands of 60-mer non-coding DNA oligonucleotides (ODN) were bound to an acid-etched sandblasted cp Ti-surface by nanomechanical fixation using anodic polarization. RhBMP2 that had been conjugated to complementary strands of DNA oligonucleotides was then bound to the anchored ODN strands by hybridization. Binding studies showed a higher binding capacity compared to non-conjugated BMP2. Long term release experiments demonstrated a continuous release from all surfaces that was lowest for the conjugated BMP2 bound to the ODN anchor strands. Proliferation of human bone marrow stroma cells (hBMSC) was significantly increased on these surfaces. Immunofluorescence showed that hBMSC grown on surfaces coated with specifically bound conjugated BMP2 developed significantly higher numbers of focal adhesion points and exhibited significantly higher levels of transcription of osteogenic markers alkaline phosphatase and osteopontin at early intervals. Biological activity (induction of alkaline phosphatase) of conjugated BMP2 released from the surface was comparable to released non-conjugated BMP2, indicating that conjugation did not negatively affect the activity of the released molecules. In conclusion the present study has shown that BMP2 conjugated to ODN strands and hybridized to complementary ODN strands anchored to a titanium surface has led to slow growth factor release and can enhance the osteogenic activity of the titanium surface.
Collapse
|
54
|
Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials 2011; 32:4205-10. [PMID: 21515168 DOI: 10.1016/j.biomaterials.2011.02.029] [Citation(s) in RCA: 512] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 02/12/2011] [Indexed: 12/14/2022]
Abstract
Despite many years of in vitro research confirming the effectiveness of RGD in promoting cell attachment to a wide variety of biomaterials, animal studies evaluating tissue responses to implanted RGD-functionalized substrates have yielded more variable results. The goals of this report are to present some of the reasons why cell culture studies may not always reliably predict in vivo responses, and more importantly, to highlight potential applications that may benefit from the use of RGD peptides.
Collapse
Affiliation(s)
- Susan L Bellis
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
55
|
Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone. Acta Biomater 2011; 7:3222-9. [PMID: 21549863 DOI: 10.1016/j.actbio.2011.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/22/2011] [Accepted: 04/19/2011] [Indexed: 11/23/2022]
Abstract
Immobilization of RGD peptides on titanium (Ti) surfaces enhances implant bone healing by promoting early osteoblastic cell attachment and subsequent differentiation by facilitating integrin binding. Our previous studies have demonstrated the efficacy of RGD peptide immobilization on Ti surfaces through the electrodeposition of poly(ethylene glycol) (PEG) (RGD/PEG/Ti), which exhibited good chemical stability and bonding. The RGD/PEG/Ti surface promoted differentiation and mineralization of pre-osteoblasts. This study investigated the in vivo bone healing capacity of the RGD/PEG/Ti surface for biomedical application as a more osteoconductive implant surface in dentistry. The RGD/PEG/Ti surface was produced on an osteoconductive implant surface, i.e. the grit blasted micro-rough surface of a commercial oral implant. The osteoconductivity of the RGD/PEG/Ti surface was compared by histomorphometric evaluation with an RGD peptide-coated surface obtained by simple adsorption in rabbit cancellous bone after 2 and 4 weeks healing. The RGD/PEG/Ti implants displayed a high degree of direct bone apposition in cancellous bone and achieved greater active bone apposition, even in areas of poor surrounding bone. Significant increases in the bone to implant contact percentage were observed for RGD/PEG/Ti implants compared with RGD-coated Ti implants obtained by simple adsorption both after 2 and 4 weeks healing (P<0.05). These results demonstrate that RGD peptide immobilization on a Ti surface through electrodeposited PEG may be an effective method for enhancing bone healing with commercial micro-rough surface oral implants in cancellous bone by achieving rapid bone apposition on the implant surface.
Collapse
|
56
|
Petrie TA, Raynor JE, Dumbauld DW, Lee TT, Jagtap S, Templeman KL, Collard DM, García AJ. Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci Transl Med 2011; 2:45ra60. [PMID: 20720217 DOI: 10.1126/scitranslmed.3001002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Engineered biointerfaces covered with biomimetic motifs, including short bioadhesive ligands, are a promising material-based strategy for tissue repair in regenerative medicine. Potentially useful coating molecules are ligands for the integrins, major extracellular matrix receptors that require both ligand binding and nanoscale clustering for maximal signaling efficiency. We prepared coatings consisting of well-defined multimer constructs with a precise number of recombinant fragments of fibronectin (monomer, dimer, tetramer, and pentamer) to assess how nanoscale ligand clustering affects integrin binding, stem cell responses, tissue healing, and biomaterial integration. Clinical-grade titanium was grafted with polymer brushes that presented monomers, dimers, trimers, or pentamers of the alpha(5)beta(1) integrin-specific fibronectin III (7 to 10) domain (FNIII(7-10)). Coatings consisting of trimers and pentamers enhanced integrin-mediated adhesion in vitro, osteogenic signaling, and differentiation in human mesenchymal stem cells more than did surfaces presenting monomers and dimers. Furthermore, ligand clustering promoted bone formation and functional integration of the implant into bone in rat tibiae. This study establishes that a material-based strategy in which implants are coated with clustered bioadhesive ligands can promote robust implant-tissue integration.
Collapse
Affiliation(s)
- Timothy A Petrie
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive, Room 2314 IBB, Atlanta, GA 30332-0363, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Shekaran A, Garcia AJ. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:350-60. [PMID: 20435097 PMCID: PMC2924948 DOI: 10.1016/j.bbagen.2010.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/31/2010] [Accepted: 04/16/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND The goal of tissue engineering is to restore tissue function using biomimetic scaffolds which direct desired cell fates such as attachment, proliferation and differentiation. Cell behavior in vivo is determined by a complex interaction of cells with extracellular biosignals, many of which exist on a nanoscale. Therefore, recent efforts in tissue engineering biomaterial development have focused on incorporating extracellular matrix- (ECM) derived peptides or proteins into biomaterials in order to mimic natural ECM. Concurrent advances in nanotechnology have also made it possible to manipulate protein and peptide presentation on surfaces on a nanoscale level. SCOPE OF REVIEW This review discusses protein and peptide nanopatterning techniques and examples of how nanoscale engineering of bioadhesive materials may enhance outcomes for regenerative medicine. MAJOR CONCLUSIONS Synergy between ECM-mimetic tissue engineering and nanotechnology fields can be found in three major strategies: (1) Mimicking nanoscale orientation of ECM peptide domains to maintain native bioactivity, (2) Presenting adhesive peptides at unnaturally high densities, and (3) Engineering multivalent ECM-derived peptide constructs. GENERAL SIGNIFICANCE Combining bioadhesion and nanopatterning technologies to allow nanoscale control of adhesive motifs on the cell-material interface may result in exciting advances in tissue engineering. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Asha Shekaran
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
58
|
Shekaran A, García AJ. Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 2010; 96:261-72. [PMID: 21105174 DOI: 10.1002/jbm.a.32979] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 01/12/2023]
Abstract
Limited osseointegration of current orthopedic biomaterials contributes to the failure of implants such as arthroplasties, bone screws, and bone grafts, which present a large socioeconomic cost within the United States. These implant failures underscore the need for biomimetic approaches that modulate host cell-implant material responses to enhance implant osseointegration and bone formation. Bioinspired strategies have included functionalizing implants with extracellular matrix (ECM) proteins or ECM-derived peptides or protein fragments, which engage integrins and direct osteoblast adhesion and differentiation. This review discusses (1) bone ECM composition and key integrins implicated in osteogenic differentiation, (2) the use of implants functionalized with ECM-mimetic peptides/protein fragments, and (3) growth factor-derived peptides to promote the mechanical fixation of implants to bone and to enhance bone healing within large defects.
Collapse
Affiliation(s)
- Asha Shekaran
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | |
Collapse
|
59
|
Kaur G, Wang C, Sun J, Wang Q. The synergistic effects of multivalent ligand display and nanotopography on osteogenic differentiation of rat bone marrow stem cells. Biomaterials 2010; 31:5813-24. [DOI: 10.1016/j.biomaterials.2010.04.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/11/2010] [Indexed: 01/15/2023]
|
60
|
Heath MD, Henderson B, Perkin S. Ion-specific effects on the interaction between fibronectin and negatively charged mica surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5304-5308. [PMID: 20345156 DOI: 10.1021/la100678n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Atomic force microscopy (AFM) imaging and subsequent image analysis have been used to measure the ion-specific and ionic strength effects on the adsorption of fibronectin to mica surfaces in buffer solution. Increasing the concentration of monovalent Na(+) salt solutions is shown to cause a transition from tightly aggregated and "string-of-beads" structures on the mica surface to well dispersed single-molecule adsorption. Studying the effect of two divalent salts, Ni(2+) and Ca(2+), reveals a dramatic enhancement of fibronectin adsorption to mica in buffer solutions containing Ni(2+), but not for Ca(2+). The origin of this ion-specific effect is discussed.
Collapse
Affiliation(s)
- Matthew D Heath
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | | | | |
Collapse
|
61
|
Phillips JE, Petrie TA, Creighton FP, García AJ. Human mesenchymal stem cell differentiation on self-assembled monolayers presenting different surface chemistries. Acta Biomater 2010; 6:12-20. [PMID: 19632360 DOI: 10.1016/j.actbio.2009.07.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/26/2009] [Accepted: 07/20/2009] [Indexed: 12/14/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have tremendous potential as a cell source for regenerative medicine due to their capacity for differentiation into a wide range of connective tissue cell types. Although significant progress has been made in the identification of defined growth factor conditions to induce lineage commitment, the effect of underlying biomaterial properties on functional differentiation is far less understood. Here we conduct a systematic assessment of the role for surface chemistry on cell growth, morphology, gene expression and function during hMSC commitment along osteogenic, chondrogenic and adipogenic lineages. Using self-assembled monolayers of omega-functionalized alkanethiols on gold as model substrates, we demonstrate that biomaterial surface chemistry differentially modulates hMSC differentiation in a lineage-dependent manner. These results highlight the importance of initial biomaterial surface chemistry on long-term functional differentiation of adult stem cells, and suggest that surface properties are a critical parameter that must be considered in the design of biomaterials for stem cell-based regenerative medicine strategies.
Collapse
Affiliation(s)
- Jennifer E Phillips
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|