51
|
Li Y, Wang K, Zou QY, Zhou C, Magness RR, Zheng J. A possible role of aryl hydrocarbon receptor in spontaneous preterm birth. Med Hypotheses 2015; 84:494-7. [PMID: 25697115 DOI: 10.1016/j.mehy.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 01/03/2023]
Abstract
Preterm birth (PTB) is defined as birth before 37 weeks of gestation and is a leading cause of neonatal mortality and morbidity. To date, the etiology of spontaneous PTB (sPTB) remains unclear; however, intrauterine bacterial infection-induced inflammation is considered to be one of the major triggers. Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor. Upon activation, AhR signaling mediates many biological processes. AhR is abundantly expressed in human placentas, primarily in trophoblasts, and several fetal organs and tissues. The activation of AhR signaling can modulate inflammatory responses via promoting production of pro-inflammatory cytokines by the placenta and fetal membranes. These cytokines could enhance expression and/or activity of cyclooxygenase-2 (COX2) in human trophoblasts and amniotic epithelia, which in turn stimulate synthesis and release of prostaglandins (PGs; e.g., PGE2 and PGF2α). Given the discovery of a number of natural and endogenous AhR ligands in human, we hypothesize that in a subset of patients with high AhR expression in placentas and fetal membranes, repeated exposure to these AhR ligands hyperactivates AhR, inducing hyperactivation of the cytokines/COX2/PGs pathway, resulting in myometrial contractions, ultimately leading to sPTB. We further hypothesize that hyperactivation of this AhR pathway can induce sPTB either directly or in synergy with the bacterial infection. Proof of this hypothesis may provide a novel mechanism underlying sPTB.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, PR China
| | - Qing-Yun Zou
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Chi Zhou
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States
| | - Ronald R Magness
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States; Department of Pediatrics, University of Wisconsin, Madison, WI 53715, United States; Department of Animal Sciences, University of Wisconsin, Madison, WI 53715, United States
| | - Jing Zheng
- Department of Obstetrics and Gynecology, Perinatal Research Laboratories, University of Wisconsin, Madison, WI 53715, United States; Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, Guangdong, PR China.
| |
Collapse
|
52
|
Kesikli SA, Guler N. Chemotherapeutic Agents in Cancer Treatment and Tryptophan Metabolism. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2015:291-333. [DOI: 10.1007/978-3-319-15630-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
53
|
Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3:e957994. [PMID: 25941578 DOI: 10.4161/21624011.2014.957994] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/17/2022] Open
Abstract
Indoleamine 2,3-dioxigenase 1 (IDO1) is the main enzyme that catalyzes the first, rate-limiting step of the so-called "kynurenine pathway", i.e., the metabolic cascade that converts the essential amino acid L-tryptophan (Trp) into L-kynurenine (Kyn). IDO1, which is expressed constitutively by some tissues and in an inducible manner by specific subsets of antigen-presenting cells, has been shown to play a role in the establishment and maintenance of peripheral tolerance. At least in part, this reflects the capacity of IDO1 to restrict the microenvironmental availability of Trp and to favor the accumulation of Kyn and some of its derivatives. Also, several neoplastic lesions express IDO1, providing them with a means to evade anticancer immunosurveillance. This consideration has driven the development of several IDO1 inhibitors, some of which (including 1-methyltryptophan) have nowadays entered clinical evaluation. In animal tumor models, the inhibition of IDO1 by chemical or genetic interventions is indeed associated with the (re)activation of therapeutically relevant anticancer immune responses. This said, several immunotherapeutic regimens exert robust clinical activity in spite of their ability to promote the expression of IDO1. Moreover, 1-methyltryptophan has recently been shown to exert IDO1-independent immunostimulatory effects. Here, we summarize the preclinical and clinical studies testing the antineoplastic activity of IDO1-targeting interventions.
Collapse
Key Words
- 1-methyl-D-tryptophan
- AHR, aryl hydrocarbon receptor
- BIN1, bridging integrator 1
- CTLA4, cytotoxic T lymphocyte associated protein 4
- DC, dendritic cell
- FDA, Food and Drug Administration
- GCN2, general control non-derepressible 2
- HCC, hepatocellular carcinoma
- IDO, indoleamine 2,3-dioxigenase
- IFNγ, interferon γ
- INCB024360
- Kyn, L-kynurenine
- NK, natural killer
- NLG919
- ODN, oligodeoxynucleotide
- TDO2, tryptophan 2,3-dioxigenase
- TLR, Toll-like receptor
- Treg, regulatory T cell
- Trp, L-tryptophan
- indoximod
- interferon γ
- peptide-based anticancer vaccines
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris-Sud/Paris XI; Orsay , Paris, France
| | - Fernando Aranda
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France
| | | | - Catherine Sautès-Fridman
- INSERM U1138 ; Paris, France ; Equipe 13; Centre de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM U970 ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France
| | | | - Michael Platten
- Department of Neurooncology; University Hospital Heidelberg and National Center for Tumor Diseases ; Heidelberg, Germany ; German Cancer Consortium (DKTK) Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers ; Paris, France ; ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
54
|
Fukuno K, Hara T, Tsurumi H, Shibata Y, Mabuchi R, Nakamura N, Kitagawa J, Shimizu M, Ito H, Saito K, Moriwaki H. Expression of indoleamine 2,3-dioxygenase in leukemic cells indicates an unfavorable prognosis in acute myeloid leukemia patients with intermediate-risk cytogenetics. Leuk Lymphoma 2014; 56:1398-405. [PMID: 25248875 DOI: 10.3109/10428194.2014.953150] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The immunomodulatory effects of indoleamine 2,3-dioxygenase (IDO) are ascribed to its ability to catalyze breakdown of the essential amino acid L-tryptophan. We applied reverse transcription-polymerase chain reaction (RT-PCR) to examine IDO mRNA expression in acute myeloid leukemia (AML) blasts, and investigated its clinical significance. We enrolled 62 patients with AML between April 2005 and March 2013. Bone marrow-derived mononuclear fractions were separated and extracted mRNA was amplified by PCR. RT-PCR showed that the bone marrow of 23 patients expressed IDO mRNA but not in 39. IDO mRNA expression did not significantly differ among cytogenetic risk profiles. The 3-year overall survival rates for patients with and without IDO mRNA expression were 39% and 74%, respectively (p < 0.005). The rates for patients with intermediate-risk cytogenetics with and without IDO mRNA expression were 16% and 70%, respectively (p < 0.005). The expression of IDO mRNA was associated with a poor prognosis of AML.
Collapse
|
55
|
Rytelewski M, Meilleur CE, Atef Yekta M, Szabo PA, Garg N, Schell TD, Jevnikar AM, Sharif S, Singh B, Haeryfar SMM. Suppression of immunodominant antitumor and antiviral CD8+ T cell responses by indoleamine 2,3-dioxygenase. PLoS One 2014; 9:e90439. [PMID: 24587363 PMCID: PMC3938761 DOI: 10.1371/journal.pone.0090439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme known to suppress antitumor CD8+ T cells (TCD8). The role of IDO in regulation of antiviral TCD8 responses is far less clear. In addition, whether IDO controls both immunodominant and subdominant TCD8 is not fully understood. This is an important question because the dominance status of tumor- and virus-specific TCD8 may determine their significance in protective immunity and in vaccine design. We evaluated the magnitude and breadth of cross-primed TCD8 responses to simian virus 40 (SV40) large T antigen as well as primary and recall TCD8 responses to influenza A virus (IAV) in the absence or presence of IDO. IDO−/− mice and wild-type mice treated with 1-methyl-D-tryptophan, a pharmacological inhibitor of IDO, exhibited augmented responses to immunodominant epitopes encoded by T antigen and IAV. IDO-mediated suppression of these responses was independent of CD4+CD25+FoxP3+ regulatory T cells, which remained numerically and functionally intact in IDO−/− mice. Treatment with L-kynurenine failed to inhibit TCD8 responses, indicating that tryptophan metabolites are not responsible for the suppressive effect of IDO in our models. Immunodominant T antigen-specific TCD8 from IDO−/− mice showed increased Ki-67 expression, suggesting that they may have acquired a more vigorous proliferative capacity in vivo. In conclusion, IDO suppresses immunodominant TCD8 responses to tumor and viral antigens. Our work also demonstrates that systemic primary and recall TCD8 responses to IAV are controlled by IDO. Inhibition of IDO thus represents an attractive adjuvant strategy in boosting anticancer and antiviral TCD8 targeting highly immunogenic antigens.
Collapse
MESH Headings
- Animals
- Antigens, Polyomavirus Transforming/immunology
- Antigens, Viral/immunology
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Immune Tolerance/genetics
- Immunity, Innate
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Influenza A virus/immunology
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/immunology
- Kynurenine/pharmacology
- Lymphocyte Activation
- Mice
- Mice, Knockout
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
Collapse
Affiliation(s)
- Mateusz Rytelewski
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Courtney E. Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Maryam Atef Yekta
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Peter A. Szabo
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Nitan Garg
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Todd D. Schell
- Department of Microbiology and Immunology, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Anthony M. Jevnikar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
56
|
Cavia-Saiz M, Muñiz Rodríguez P, Llorente Ayala B, García-González M, Coma-Del Corral MJ, García Girón C. The role of plasma IDO activity as a diagnostic marker of patients with colorectal cancer. Mol Biol Rep 2014; 41:2275-9. [PMID: 24435977 DOI: 10.1007/s11033-014-3080-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 01/04/2014] [Indexed: 12/23/2022]
Abstract
High levels of indoleamine 2,3-dioxygenase (IDO) are involved in tumour escape mechanisms. The aim of this study is the evaluation of L-kynurenine of plasma as marker of diagnostic and prognostic in patients with colorectal cancer. The study included 78 patients with colorectal cancer, of whom 15 % were in stage I/II, 30 % in stage III, and 55 % in stage IV, and was compared with a control group of 70 healthy subjects. The receiver operating characteristic (ROC) curve analysis showed an area under the curve of 0.917, with a specificity of 100 % and with a sensitivity to detect cancer of the colon of 85.2 %, taking 1.83 μM as a cut-off point. The overall survival analysis also indicated that patients with low levels of L-kynurenine in plasma increased survival rate after 45 months of follow-up (P = 0.032). These results show that the plasma levels of L-kynurenine could be a good biomarker to differentiate individuals with colorectal cancer from healthy individuals.
Collapse
Affiliation(s)
- M Cavia-Saiz
- Research Unit, University Hospital of Burgos, Burgos, Spain,
| | | | | | | | | | | |
Collapse
|
57
|
Berthon C, Fontenay M, Corm S, Briche I, Allorge D, Hennart B, Lhermitte M, Quesnel B. Metabolites of tryptophan catabolism are elevated in sera of patients with myelodysplastic syndromes and inhibit hematopoietic progenitor amplification. Leuk Res 2013; 37:573-9. [DOI: 10.1016/j.leukres.2013.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/21/2012] [Accepted: 02/02/2013] [Indexed: 11/16/2022]
|
58
|
Clinical significance of jejunoileal involvement of non-Hodgkin's lymphoma detected by double-balloon enteroscopy. Int J Hematol 2013; 97:369-81. [PMID: 23378170 DOI: 10.1007/s12185-013-1273-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 01/15/2013] [Accepted: 01/15/2013] [Indexed: 01/30/2023]
Abstract
Jejunoileal involvement of non-Hodgkin's lymphoma (NHL) is an important diagnostic factor in determining optimal treatment strategies. Here, we used double-balloon enteroscopy (DBE) to detect jejunoileal involvement of NHL and studied its clinical significance in a series of patients with NHL. Adults aged between 18 and 85 years with infiltration of the stomach, duodenum, or colon confirmed by gastrointestinal endoscopy or colonoscopy, suspected jejunoileal involvement determined by CT or FDG-PET, or any other gastrointestinal symptoms, were eligible for inclusion in the study. Among 428 patients with histologically confirmed NHL between 2004 and 2011, 83 were eligible for DBE, but 20 patients were excluded due to rejection or poor clinical status. Thus, 63 underwent DBE. The 3-year overall survival rate was significantly lower in patients with (n = 33), than without (n = 30) jejunoileal involvement of NHL confirmed by DBE (49 vs. 92 %, p < 0.005). Four participants developed aspiration pneumonia, but recovered after treatment with antibiotics.
Collapse
|
59
|
Ogawa K, Hara T, Shimizu M, Nagano J, Ohno T, Hoshi M, Ito H, Tsurumi H, Saito K, Seishima M, Moriwaki H. (-)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells. Oncol Lett 2012; 4:546-550. [PMID: 23741252 DOI: 10.3892/ol.2012.761] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 06/08/2012] [Indexed: 11/06/2022] Open
Abstract
Immune escape, the ability of tumor cells to avoid tumor-specific immune responses, occurs during the development and progression of several types of human malignancies, including colorectal cancer (CRC). Indoleamine 2,3-dioxygenase (IDO), the tryptophan catabolic enzyme, plays a significant role in regulating the immune response and provides tumor cells with a potent tool to evade the immune system. In the present study, we examined the effects of (-)-epigallocatechin gallate (EGCG), the major catechin in green tea, on the inhibition of IDO expression induced by interferon (IFN)-γ in human CRC cells. We found that IFN-γ increased the expression levels of IDO protein and mRNA in HT29 and SW837 CRC cell lines. Treatment of SW837 cells with EGCG significantly decreased IFN-γ-induced expression of IDO protein and mRNA in a dose-dependent manner. Enzymatic activity of IDO, determined by the concentration of L-kynurenine in the culture medium, was also significantly inhibited by EGCG treatment. Phosphorylation of signal transducer and activator of transcription 1 (STAT1) induced by IFN-γ was also significantly inhibited by EGCG. Reporter assays indicated that EGCG inhibited the transcriptional activities of IDO promoters, IFN-stimulated response element and IFN-γ activation sequence, activated by STAT1 phosphorylation. These findings suggest that EGCG may exert antitumor effects on CRC, at least in part, by inhibiting the expression and function of IDO through the suppression of STAT1 activation. EGCG may, thus, serve as a potential agent for antitumor immunotherapy and be useful in the chemoprevention and/or treatment of CRC.
Collapse
Affiliation(s)
- Kengo Ogawa
- Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Ogawa K, Hara T, Shimizu M, Ninomiya S, Nagano J, Sakai H, Hoshi M, Ito H, Tsurumi H, Saito K, Seishima M, Tanaka T, Moriwaki H. Suppression of azoxymethane-induced colonic preneoplastic lesions in rats by 1-methyltryptophan, an inhibitor of indoleamine 2,3-dioxygenase. Cancer Sci 2012; 103:951-8. [PMID: 22320717 DOI: 10.1111/j.1349-7006.2012.02237.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 12/16/2022] Open
Abstract
The escape of preneoplastic cells from the immune system, which is caused by immune tolerance, occurs during the development of several types of tumors. Indoleamine 2,3-dioxygenase (IDO) plays a critical role in the induction of immune tolerance. In the present study we investigated the effects of 1-methyltryptophan (1-MT), an IDO inhibitor, and (-)-epigallocatechin gallate (EGCG), the major catechin in green tea, on the development of azoxymethane (AOM)-induced colonic preneoplastic lesions by focusing on the inhibition of IDO. To induce colonic premalignant lesions, male F344 rats were injected with AOM (20 mg/kg body weight, s.c.) once a week for 2 weeks. They also received 0.2% 1-MT or 0.1% EGCG in their drinking water for 4 weeks, starting 1 week before the first dose of AOM. Both 1-MT and EGCG significantly decreased the total number of aberrant crypt foci and β-catenin-accumulated crypts, which overexpressed IDO protein. Treatment with EGCG decreased IDO mRNA expression in both the colonic epithelium and stroma of rats induced by AOM. The AOM-induced increase in cyclooxygenase-2 mRNA expression in the colonic stroma was significantly decreased by EGCG. Furthermore, AOM-induced increases in IDO activity in the serum and stroma were significantly inhibited by 1-MT and EGCG. Inhibition of IDO activity by 1-MT and EGCG was also observed in cell-free assays. These findings suggest that upregulation of IDO activity is observed in the early stages of colon carcinogenesis and that the use of IDO inhibitors, such as 1-MT and EGCG, which suppress the occurrence of colonic preneoplastic lesions, could be a novel strategy for the chemoprevention of colon cancer.
Collapse
Affiliation(s)
- Kengo Ogawa
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cavia-Saiz M, Muñiz P, De Santiago R, Herreros-Villanueva M, Garcia-Giron C, Lopez AS, Coma-Del Corral MJ. Changes in the levels of thioredoxin and indoleamine-2,3-dioxygenase activity in plasma of patients with colorectal cancer treated with chemotherapy. Biochem Cell Biol 2012; 90:173-8. [PMID: 22257103 DOI: 10.1139/o11-077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Increased oxidative stress and indoleamine-2,3-dioxygenase (IDO) activity have been reported in cancer, but their relationship with chemotherapy remains unknown. The aim of the present study was to examine wether the chemotherapy treatments used in colorectal cancer had an additional effect on oxidative stress and on IDO activity. Plasma samples were collected from 27 colorectal cancer patients on cytostatic treatment, 27 with cytostatic drugs plus monoclonal antibodies (cytostatic-Mabs) and 15 non-treated patients. All patients with colorectal cancer had high plasma malondialdehyde (MDA), thioredoxin (Trx) levels, and elevated IDO activity in plasma (IDOp) and in dendritic cells (IDOc). This study shows that treatment with cytostatics have an effect on oxidative stress by increasing MDA levels and by decreasing Trx levels and IDO activity. However, treatment with cytostatic-Mabs showed no effect on MDA levels but decreased Trx levels, and the IDO activity showed values similar to the healthy group. Significant correlations between plasma IDO activity and the levels of Trx (r = 0.2062, p < 0.05) and MDA (r = 0.2873, p < 0.005) were observed. Furthermore, our study suggests that IDO activity measured as kynurenine levels could be used as a marker of the response to the chemotherapy treatments, although further studies are necessary.
Collapse
Affiliation(s)
- Monica Cavia-Saiz
- Unidad de Investigación, Hospital General Yagüe, Avenida del Cid, 96, Burgos 09005, Spain.
| | | | | | | | | | | | | |
Collapse
|
62
|
Ninomiya S, Hara T, Tsurumi H, Goto N, Saito K, Seishima M, Takami T, Moriwaki H. Indoleamine 2,3-dioxygenase expression and serum kynurenine concentrations in patients with diffuse large B-cell lymphoma. Leuk Lymphoma 2012; 53:1143-5. [PMID: 22112045 DOI: 10.3109/10428194.2011.643472] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Soranobu Ninomiya
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Aït-Aïssa S, Billaudel B, Poulletier de Gannes F, Ruffié G, Duleu S, Hurtier A, Haro E, Taxile M, Athané A, Geffard M, Wu T, Wiart J, Bodet D, Veyret B, Lagroye I. In utero and early-life exposure of rats to a Wi-Fi signal: screening of immune markers in sera and gestational outcome. Bioelectromagnetics 2012; 33:410-20. [PMID: 22228576 DOI: 10.1002/bem.21699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 10/13/2011] [Indexed: 12/13/2022]
Abstract
An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.08, 0.4, and 4 W/kg (with 10, 10, 12, and 9 rats, respectively), while cage control rats were kept in the animal facility (11 rats). Dams were exposed from days 6 to 21 of gestation and then three newborns per litter were further exposed from birth to day 35 postnatal. On day 35 after birth, all pups were sacrificed and sera collected. The screening of sera for antibodies directed against 15 different antigens related to damage and/or pathological markers was conducted using enzyme-linked immunosorbent assay (ELISA). No change in humoral response of young pups was observed, regardless of the types of biomarker and SAR levels. This study also provided some data on gestational outcome following in utero exposure to Wi-Fi signals. Mass evaluation of dams and pups and the number of pups per litter was monitored, and the genital tracts of young rats were observed for abnormalities by measuring anogenital distance. Under these experimental conditions, our observations suggest a lack of adverse effects of Wi-Fi exposure on delivery and general condition of the animals.
Collapse
Affiliation(s)
- Saliha Aït-Aïssa
- IMS Laboratory Bioelectronics Group, Bordeaux University, IPB-ENSCBP, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Ninan MJ, Wadhwa PD, Gupta P. Prognostication of diffuse large B-cell lymphoma in the rituximab era. Leuk Lymphoma 2011; 52:360-73. [DOI: 10.3109/10428194.2010.543716] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
65
|
Ninomiya S, Hara T, Tsurumi H, Hoshi M, Kanemura N, Goto N, Kasahara S, Shimizu M, Ito H, Saito K, Hirose Y, Yamada T, Takahashi T, Seishima M, Takami T, Moriwaki H. Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with R-CHOP. Ann Hematol 2010; 90:409-16. [PMID: 20938662 DOI: 10.1007/s00277-010-1093-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) exerts immunomodulatory effects due to enzymatic activities catalyzing the essential amino acid L-tryptophan. IDO activity might play an important role in regulating immune responses exerted by antigen-presenting cells as a potent tool to help escape from assault by the immune system. In this study, we performed immunohistochemical analysis for IDO expression using mouse anti-human IDO monoclonal antibody in 119 tissue samples of diffuse large B-cell lymphoma (DLBCL) obtained before treatment with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP). Not only the lymphoma cells themselves but also dendritic cells (DCs) expressed IDO. Positive IDO expression in lymphoma cells was found in 38 cases (32%). Complete remission rates in patients with IDO-positive DLBCL and IDO-negative DLBCL were 55.3% and 79.0% (p=0.008), while 3-year overall survival rates were 49.8% and 78.8%, respectively (p=0.0003). IDO activity might thus play an important role in DLBCL and cells that express IDO appear important for determining outcomes after R-CHOP treatment. IDO might represent a candidate therapeutic target for DLBCL patients who show resistance to chemotherapy.
Collapse
Affiliation(s)
- Soranobu Ninomiya
- First Department of Internal Medicine, Gifu University Graduate School of Medicine, and Gifu Municipal Hospital, 1-1 Yanagido, Gifu, 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
T-Cell Traffic Jam in Hodgkin's Lymphoma: Pathogenetic and Therapeutic Implications. Adv Hematol 2010; 2011:501659. [PMID: 20975771 PMCID: PMC2957104 DOI: 10.1155/2011/501659] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/27/2010] [Indexed: 11/17/2022] Open
Abstract
In hematologic malignancies, the microenvironment is often characterized by nonneoplastic cells with peculiar phenotypic and functional features. This is particularly true in Hodgkin's lymphoma (HL), in which T lymphocytes surrounding Hodgkin's Reed-Sternberg cells are essentially polarized towards a memory T-helper type 2 phenotype. In this paper we will first evaluate the main processes modulating T-cell recruitment towards the lymph node microenvironment in HL, especially focusing on the role played by cytokines. We will then consider the most relevant mechanisms of immune escape exerted by neoplastic cells in order to evade antitumor immunity. The potential pathogenetic and prognostic impact of regulatory T cells in such a context will be also described. We will finally overview some of the strategies of cellular immunotherapy applied in patients with HL.
Collapse
|
67
|
Muller AJ, DuHadaway JB, Chang MY, Ramalingam A, Sutanto-Ward E, Boulden J, Soler AP, Mandik-Nayak L, Gilmour SK, Prendergast GC. Non-hematopoietic expression of IDO is integrally required for inflammatory tumor promotion. Cancer Immunol Immunother 2010; 59:1655-63. [PMID: 20640572 DOI: 10.1007/s00262-010-0891-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/28/2010] [Indexed: 12/11/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is generally considered to be immunosuppressive but recent findings suggest this characterization oversimplifies its role in disease pathogenesis. Recently, we showed that IDO is essential for tumor outgrowth in the classical two-stage model of inflammatory skin carcinogenesis. Here, we report that IDO loss did not exacerbate classical inflammatory responses. Rather, IDO induction could be elicited by environmental signals and tumor promoters as an integral component of the inflammatory tissue microenvironment even in the absence of cancer. IDO loss had limited impact on tumor outgrowth in carcinogenesis models that lacked an explicit inflammatory tumor promoter. In the context of inflammatory carcinogenesis where IDO was critical to tumor development, the most important source of IDO was radiation-resistant non-hematopoietic cells, consistent with evidence that loss of the IDO regulatory tumor suppressor gene Bin1 in transformed skin cells facilitates IDO-mediated immune escape by a cell autonomous mechanism. Taken together, our results identify IDO as an integral component of 'cancer-associated' inflammation that tilts the immune system toward tumor support. More generally, they promote the concept that mediators of immune escape and cancer-associated inflammation may be genetically synonymous.
Collapse
|