51
|
Chotani MA, Flavahan NA. Intracellular α(2C)-adrenoceptors: storage depot, stunted development or signaling domain? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1495-503. [PMID: 21605601 DOI: 10.1016/j.bbamcr.2011.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 12/11/2022]
Abstract
G-protein coupled receptors (GPCRs) are generally considered to function as cell surface signaling structures that respond to extracellular mediators, many of which do not readily access the cell's interior. Indeed, most GPCRs are preferentially targeted to the plasma membrane. However, some receptors, including α(2C)-Adrenoceptors, challenge conventional concepts of GPCR activity by being preferentially retained and localized within intracellular organelles. This review will address the issues associated with this unusual GPCR localization and discuss whether it represents a novel sub-cellular niche for GPCR signaling, whether these receptors are being stored for rapid deployment to the cell surface, or whether they represent immature or incomplete receptor systems.
Collapse
Affiliation(s)
- Maqsood A Chotani
- Center for Cardiovascular and Pulmonary Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | |
Collapse
|
52
|
Benito JM, García Fernández JM, Mellet CO. Pharmacological chaperone therapy for Gaucher disease: a patent review. Expert Opin Ther Pat 2011; 21:885-903. [DOI: 10.1517/13543776.2011.569162] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
53
|
Berenguer M, Zhang J, Bruce MC, Martinez L, Gonzalez T, Gurtovenko AA, Xu T, Le Marchand-Brustel Y, Govers R. Dimethyl sulfoxide enhances GLUT4 translocation through a reduction in GLUT4 endocytosis in insulin-stimulated 3T3-L1 adipocytes. Biochimie 2011; 93:697-709. [DOI: 10.1016/j.biochi.2010.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 12/21/2010] [Indexed: 01/14/2023]
|
54
|
Balch WE, Roth DM, Hutt DM. Emergent properties of proteostasis in managing cystic fibrosis. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004499. [PMID: 21421917 DOI: 10.1101/cshperspect.a004499] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cystic fibrosis (CF) is a consequence of defective recognition of the multimembrane spanning protein cystic fibrosis conductance transmembrane regulator (CFTR) by the protein homeostasis or proteostasis network (PN) (Hutt and Balch (2010). Like many variant proteins triggering misfolding diseases, mutant CFTR has a complex folding and membrane trafficking itinerary that is managed by the PN to maintain proteome balance and this balance is disrupted in human disease. The biological pathways dictating the folding and function of CFTR in health and disease are being studied by numerous investigators, providing a unique opportunity to begin to understand and therapeutically address the role of the PN in disease onset, and its progression during aging. We discuss the general concept that therapeutic management of the emergent properties of the PN to control the energetics of CFTR folding biology may provide significant clinical benefit.
Collapse
Affiliation(s)
- William E Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
55
|
Protasevich I, Yang Z, Wang C, Atwell S, Zhao X, Emtage S, Wetmore D, Hunt JF, Brouillette CG. Thermal unfolding studies show the disease causing F508del mutation in CFTR thermodynamically destabilizes nucleotide-binding domain 1. Protein Sci 2011; 19:1917-31. [PMID: 20687133 DOI: 10.1002/pro.479] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Misfolding and degradation of CFTR is the cause of disease in patients with the most prevalent CFTR mutation, an in-frame deletion of phenylalanine (F508del), located in the first nucleotide-binding domain of human CFTR (hNBD1). Studies of (F508del)CFTR cellular folding suggest that both intra- and inter-domain folding is impaired. (F508del)CFTR is a temperature-sensitive mutant, that is, lowering growth temperature, improves both export, and plasma membrane residence times. Yet, paradoxically, F508del does not alter the fold of isolated hNBD1 nor did it seem to perturb its unfolding transition in previous isothermal chemical denaturation studies. We therefore studied the in vitro thermal unfolding of matched hNBD1 constructs ±F508del to shed light on the defective folding mechanism and the basis for the thermal instability of (F508del)CFTR. Using primarily differential scanning calorimetry (DSC) and circular dichroism, we show for all hNBD1 pairs studied, that F508del lowers the unfolding transition temperature (T(m)) by 6-7°C and that unfolding occurs via a kinetically-controlled, irreversible transition in isolated monomers. A thermal unfolding mechanism is derived from nonlinear least squares fitting of comprehensive DSC data sets. All data are consistent with a simple three-state thermal unfolding mechanism for hNBD1 ± F508del: N(±MgATP) <==> I(T)(±MgATP) → A(T) → (A(T))(n). The equilibrium unfolding to intermediate, I(T), is followed by the rate-determining, irreversible formation of a partially folded, aggregation-prone, monomeric state, A(T), for which aggregation to (A(T))(n) and further unfolding occur with no detectable heat change. Fitted parameters indicate that F508del thermodynamically destabilizes the native state, N, and accelerates the formation of A(T).
Collapse
Affiliation(s)
- Irina Protasevich
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294-4400, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Collawn JF, Fu L, Bebok Z. Targets for cystic fibrosis therapy: proteomic analysis and correction of mutant cystic fibrosis transmembrane conductance regulator. Expert Rev Proteomics 2010; 7:495-506. [PMID: 20653506 DOI: 10.1586/epr.10.45] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proteomic analysis has proved to be an important tool for understanding the complex nature of genetic disorders, such as cystic fibrosis (CF), by defining the cellular protein environment (proteome) associated with wild-type and mutant proteins. Proteomic screens identified the proteome of CF transmembrane conductance regulator (CFTR), and provided fundamental information to studies designed for understanding the crucial components of physiological CFTR function. Simultaneously, high-throughput screens for small-molecular correctors of CFTR mutants provided promising candidates for therapy. The majority of CF cases are caused by nucleotide deletions (DeltaF508 CFTR; >75%), resulting in CFTR misfolding, or insertion of premature termination codons ( approximately 10%), leading to unstable mRNA and reduced levels of truncated dysfunctional CFTR. In this article, we review recent results of proteomic screens, developments in identifying correctors for the most frequent CFTR mutants, and comment on how integration of the knowledge gained from these studies may aid in finding a cure for CF and a number of other genetic disorders.
Collapse
Affiliation(s)
- James F Collawn
- University of Alabama at Birmingham, Department of Cell Biology, Birmingham, AL, USA.
| | | | | |
Collapse
|
57
|
Gomes-Alves P, Penque D. Proteomics uncovering possible key players in F508del-CFTR processing and trafficking. Expert Rev Proteomics 2010; 7:487-94. [PMID: 20653505 DOI: 10.1586/epr.10.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The achievement and maintenance of a protein native conformation is a very complex cellular process involving a multitude of key factors whose contribution to a successful folding remains to be elucidated. On top of this, it is known that correct folding is crucial for proteins to play their normal role and, consequently, for the maintenance of cellular homeostasis or proteostasis. If the folding process is affected, the protein is unable to achieve its native conformation, compromising its life and function, and a pathological condition may arise. Protein-misfolding diseases are characterized by either formation of protein aggregates that are toxic to the cell (gain-of-toxic-function diseases) or by an incorrect processing of proteins, which leads to a deficiency in protein activity (loss-of-function diseases). In this article we have focused on proteomics advances in the molecular knowledge of protein-misfolding diseases with direct impact on possible key players in F508del-CFTR processing and trafficking.
Collapse
Affiliation(s)
- Patrícia Gomes-Alves
- Laboratório de Proteómica, Departamento de Genética, Instituto Nacional de Saúde Dr Ricardo Jorge (INSA, I.P.), Av. Padre Cruz, Lisboa, Portugal
| | | |
Collapse
|
58
|
Luciani A, Villella VR, Esposito S, Brunetti-Pierri N, Medina D, Settembre C, Gavina M, Pulze L, Giardino I, Pettoello-Mantovani M, D'Apolito M, Guido S, Masliah E, Spencer B, Quaratino S, Raia V, Ballabio A, Maiuri L. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol 2010; 12:863-75. [PMID: 20711182 DOI: 10.1038/ncb2090] [Citation(s) in RCA: 365] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/29/2010] [Indexed: 12/13/2022]
Abstract
Accumulation of unwanted/misfolded proteins in aggregates has been observed in airways of patients with cystic fibrosis (CF), a life-threatening genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show how the defective CFTR results in defective autophagy and decreases the clearance of aggresomes. Defective CFTR-induced upregulation of reactive oxygen species (ROS) and tissue transglutaminase (TG2) drive the crosslinking of beclin 1, leading to sequestration of phosphatidylinositol-3-kinase (PI(3)K) complex III and accumulation of p62, which regulates aggresome formation. Both CFTR knockdown and the overexpression of green fluorescent protein (GFP)-tagged-CFTR(F508del) induce beclin 1 downregulation and defective autophagy in non-CF airway epithelia through the ROS-TG2 pathway. Restoration of beclin 1 and autophagy by either beclin 1 overexpression, cystamine or antioxidants rescues the localization of the beclin 1 interactome to the endoplasmic reticulum and reverts the CF airway phenotype in vitro, in vivo in Scnn1b-transgenic and Cftr(F508del) homozygous mice, and in human CF nasal biopsies. Restoring beclin 1 or knocking down p62 rescued the trafficking of CFTR(F508del) to the cell surface. These data link the CFTR defect to autophagy deficiency, leading to the accumulation of protein aggregates and to lung inflammation.
Collapse
Affiliation(s)
- Alessandro Luciani
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan 20132, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Patino GA, Isom LL. Electrophysiology and beyond: multiple roles of Na+ channel β subunits in development and disease. Neurosci Lett 2010; 486:53-9. [PMID: 20600605 DOI: 10.1016/j.neulet.2010.06.050] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 06/02/2010] [Accepted: 06/16/2010] [Indexed: 12/19/2022]
Abstract
Voltage-gated Na+ channel (VGSC) β Subunits are not "auxiliary." These multi-functional molecules not only modulate Na+ current (I(Na)), but also function as cell adhesion molecules (CAMs)-playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system.
Collapse
Affiliation(s)
- Gustavo A Patino
- Department of Pharmacology and Neuroscience Program, University of Michigan, Ann Arbor, MI 48109, United States
| | | |
Collapse
|
60
|
Aleksandrov AA, Kota P, Aleksandrov LA, He L, Jensen T, Cui L, Gentzsch M, Dokholyan NV, Riordan JR. Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR. J Mol Biol 2010; 401:194-210. [PMID: 20561529 DOI: 10.1016/j.jmb.2010.06.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 10/19/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) epithelial anion channel is a large multidomain membrane protein that matures inefficiently during biosynthesis. Its assembly is further perturbed by the deletion of F508 from the first nucleotide-binding domain (NBD1) responsible for most cystic fibrosis. The mutant polypeptide is recognized by cellular quality control systems and is proteolyzed. CFTR NBD1 contains a 32-residue segment termed the regulatory insertion (RI) not present in other ATP-binding cassette transporters. We report here that RI deletion enabled F508 CFTR to mature and traffic to the cell surface where it mediated regulated anion efflux and exhibited robust single chloride channel activity. Long-term pulse-chase experiments showed that the mature DeltaRI/DeltaF508 had a T(1/2) of approximately 14 h in cells, similar to the wild type. RI deletion restored ATP occlusion by NBD1 of DeltaF508 CFTR and had a strong thermostabilizing influence on the channel with gating up to at least 40 degrees C. None of these effects of RI removal were achieved by deletion of only portions of RI. Discrete molecular dynamics simulations of NBD1 indicated that RI might indirectly influence the interaction of NBD1 with the rest of the protein by attenuating the coupling of the F508-containing loop with the F1-like ATP-binding core subdomain so that RI removal overcame the perturbations caused by F508 deletion. Restriction of RI to a particular conformational state may ameliorate the impact of the disease-causing mutation.
Collapse
Affiliation(s)
- Andrei A Aleksandrov
- Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Robert R, Carlile GW, Liao J, Balghi H, Lesimple P, Liu N, Kus B, Rotin D, Wilke M, de Jonge HR, Scholte BJ, Thomas DY, Hanrahan JW. Correction of the Delta phe508 cystic fibrosis transmembrane conductance regulator trafficking defect by the bioavailable compound glafenine. Mol Pharmacol 2010; 77:922-30. [PMID: 20200141 DOI: 10.1124/mol.109.062679] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes a cAMP-activated anion channel expressed in epithelial cells. The most common mutation Delta Phe508 leads to protein misfolding, retention by the endoplasmic reticulum, and degradation. One promising therapeutic approach is to identify drugs that have been developed for other indications but that also correct the CFTR trafficking defect, thereby exploiting their known safety and bioavailability in humans and reducing the time required for clinical development. We have screened approved, marketed, and off-patent drugs with known safety and bioavailability using a Delta Phe508-CFTR trafficking assay. Among the confirmed hits was glafenine, an anthranilic acid derivative with analgesic properties. Its ability to correct the misprocessing of CFTR was confirmed by in vitro and in vivo studies using a concentration that is achieved clinically in plasma (10 microM). Glafenine increased the surface expression of Delta Phe508-CFTR in baby hamster kidney (BHK) cells to approximately 40% of that observed for wild-type CFTR, comparable with the known CFTR corrector 4-cyclohexyloxy-2-{1-[4-(4-methoxybenzensulfonyl)-piperazin-1-yl]-ethyl}-quinazoline (VRT-325). Partial correction was confirmed by the appearance of mature CFTR in Western blots and by two assays of halide permeability in unpolarized BHK and human embryonic kidney cells. Incubating polarized CFBE41o(-) monolayers and intestines isolated from Delta Phe508-CFTR mice (treated ex vivo) with glafenine increased the short-circuit current (I(sc)) response to forskolin + genistein, and this effect was abolished by 10 microM CFTR(inh)172. In vivo treatment with glafenine also partially restored total salivary secretion. We conclude that the discovery of glafenine as a CFTR corrector validates the approach of investigating existing drugs for the treatment of CF, although localized delivery or further medicinal chemistry may be needed to reduce side effects.
Collapse
Affiliation(s)
- Renaud Robert
- Physiology Department, McGill University, Montreal, Quebec, H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Marlin S, Feldmann D, Nguyen Y, Rouillon I, Loundon N, Jonard L, Bonnet C, Couderc R, Garabedian EN, Petit C, Denoyelle F. Temperature-sensitive auditory neuropathy associated with an otoferlin mutation: Deafening fever! Biochem Biophys Res Commun 2010; 394:737-42. [PMID: 20230791 DOI: 10.1016/j.bbrc.2010.03.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
Abstract
Transient deafness associated with an increase in core body temperature is a rare and puzzling disorder. Temperature-dependent deafness has been previously observed in patients suffering from auditory neuropathy. Auditory neuropathy is a clinical entity of sensorineural deafness characterized by absent auditory brainstem response and normal otoacoustic emissions. Mutations in OTOF, which encodes otoferlin, have been previously reported to cause DFNB9, a non-syndromic form of deafness characterized by severe to profound prelingual hearing impairment and auditory neuropathy. Here we report a novel mutation in OTOF gene in a large family affected by temperature-dependent auditory neuropathy. Three siblings aged 10, 9 and 7 years from a consanguineous family were found to be affected by severe or profound hearing impairment that was only present when they were febrile. The non-febrile patients had only mild if any hearing impairment. Electrophysiological tests revealed auditory neuropathy. Mapping with microsatellite markers revealed a compatible linkage in the DFNB9/OTOF region in the family, prompting us to run a molecular analysis of the 48 exons and of the OTOF intron-exon boundaries. This study revealed a novel mutation p.Glu1804del in exon 44 of OTOF. The mutation was found to be homozygous in the three patients and segregated with the hearing impairment within the family. The deletion affects an amino acid that is conserved in mammalian otoferlin sequences and located in the calcium-binding domain C2F of the protein.
Collapse
Affiliation(s)
- Sandrine Marlin
- AP-HP, Service de Génétique Clinique, Hôpital Armand-Trousseau, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Parenti G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 2010; 1:268-79. [PMID: 20049730 PMCID: PMC3378140 DOI: 10.1002/emmm.200900036] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of genetic disorders due to defects in any aspect of lysosomal biology. During the past two decades, different approaches have been introduced for the treatment of these conditions. Among them, enzyme replacement therapy (ERT) represented a major advance and is used successfully in the treatment of some of these disorders. However, ERT has limitations such as insufficient biodistribution of recombinant enzymes and high costs. An emerging strategy for the treatment of LSDs is pharmacological chaperone therapy (PCT), based on the use of chaperone molecules that assist the folding of mutated enzymes and improve their stability and lysosomal trafficking. After proof-of-concept studies, PCT is now being translated into clinical applications for Fabry, Gaucher and Pompe disease. This approach, however, can only be applied to patients carrying chaperone-responsive mutations. The recent demonstration of a synergistic effect of chaperones and ERT expands the applications of PCT and prompts a re-evaluation of their therapeutic use and potential. This review discusses the strengths and drawbacks of the potential therapies available for LSDs and proposes that future research should be directed towards the development of treatment protocols based on the combination of different therapies to improve the clinical outcome of LSD patients.
Collapse
|
64
|
Koulov AV, LaPointe P, Lu B, Razvi A, Coppinger J, Dong MQ, Matteson J, Laister R, Arrowsmith C, Yates JR, Balch WE. Biological and structural basis for Aha1 regulation of Hsp90 ATPase activity in maintaining proteostasis in the human disease cystic fibrosis. Mol Biol Cell 2010; 21:871-84. [PMID: 20089831 PMCID: PMC2836968 DOI: 10.1091/mbc.e09-12-1017] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We propose a general model for the role of the Hsp90 ATPase cycle in proteostasis in which Aha1 regulates the dwell time of Hsp90 with client by integrating chaperone function and client folding energetics by modulating ATPase sensitive N-terminal dimer structural transitions. The activator of Hsp90 ATPase 1, Aha1, has been shown to participate in the Hsp90 chaperone cycle by stimulating the low intrinsic ATPase activity of Hsp90. To elucidate the structural basis for ATPase stimulation of human Hsp90 by human Aha1, we have developed novel mass spectrometry approaches that demonstrate that the N- and C-terminal domains of Aha1 cooperatively bind across the dimer interface of Hsp90 to modulate the ATP hydrolysis cycle and client activity in vivo. Mutations in both the N- and C-terminal domains of Aha1 impair its ability to bind Hsp90 and stimulate its ATPase activity in vitro and impair in vivo the ability of the Hsp90 system to modulate the folding and trafficking of wild-type and variant (ΔF508) cystic fibrosis transmembrane conductance regulator (CFTR) responsible for the inherited disease cystic fibrosis (CF). We now propose a general model for the role of Aha1 in the Hsp90 ATPase cycle in proteostasis whereby Aha1 regulates the dwell time of Hsp90 with client. We suggest that Aha1 activity integrates chaperone function with client folding energetics by modulating ATPase sensitive N-terminal dimer structural transitions, thereby protecting transient folding intermediates in vivo that could contribute to protein misfolding systems disorders such as CF when destabilized.
Collapse
Affiliation(s)
- Atanas V Koulov
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Hutt DM, Herman D, Rodrigues APC, Noel S, Pilewski JM, Matteson J, Hoch B, Kellner W, Kelly JW, Schmidt A, Thomas PJ, Matsumura Y, Skach WR, Gentzsch M, Riordan JR, Sorscher EJ, Okiyoneda T, Lukacs GL, Frizzell RA, Manning G, Gottesfeld JM, Balch WE. Reduced histone deacetylase 7 activity restores function to misfolded CFTR in cystic fibrosis. Nat Chem Biol 2010; 6:25-33. [PMID: 19966789 PMCID: PMC2901172 DOI: 10.1038/nchembio.275] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/22/2009] [Indexed: 12/20/2022]
Abstract
Chemical modulation of histone deacetylase (HDAC) activity by HDAC inhibitors (HDACi) is an increasingly important approach for modifying the etiology of human disease. Loss-of-function diseases arise as a consequence of protein misfolding and degradation, which lead to system failures. The DeltaF508 mutation in cystic fibrosis transmembrane conductance regulator (CFTR) results in the absence of the cell surface chloride channel and a loss of airway hydration, leading to the premature lung failure and reduced lifespan responsible for cystic fibrosis. We now show that the HDACi suberoylanilide hydroxamic acid (SAHA) restores surface channel activity in human primary airway epithelia to levels that are 28% of those of wild-type CFTR. Biological silencing of all known class I and II HDACs reveals that HDAC7 plays a central role in restoration of DeltaF508 function. We suggest that the tunable capacity of HDACs can be manipulated by chemical biology to counter the onset of cystic fibrosis and other human misfolding disorders.
Collapse
Affiliation(s)
- Darren M. Hutt
- Departments of Cell Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - David Herman
- Department of Molecular Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Ana P. C. Rodrigues
- Resave Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, CA, 92037 USA
| | - Sabrina Noel
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jeanne Matteson
- Departments of Cell Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Ben Hoch
- Department of Molecular Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Wendy Kellner
- Departments of Cell Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Jeffery W. Kelly
- Department of Chemistry at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
- Skaggs Institute of Chemical Biology at The Scripps Research Institute at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - Andre Schmidt
- Molecular Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Lane, Dallas, TX 75390
| | - Philip J. Thomas
- Molecular Biophysics, University of Texas Southwestern Medical Center, 6001 Forest Park Lane, Dallas, TX 75390
| | - Yoshihiro Matsumura
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, OR 97239
| | - William R. Skach
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University, Portland, OR 97239
| | - Martina Gentzsch
- Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John R. Riordan
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27510
| | - Eric J. Sorscher
- Department of Cell Biology and Physiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tsukasa Okiyoneda
- Department of Physiology, McGill University, Montreal, QC, H3G1Y6 Canada
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montreal, QC, H3G1Y6 Canada
| | - Raymond A. Frizzell
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Gerard Manning
- Resave Newman Center for Bioinformatics, Salk Institute for Biological Studies, La Jolla, CA, 92037 USA
| | - Joel M. Gottesfeld
- Department of Molecular Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| | - William E. Balch
- Departments of Cell Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
- Department of Molecular Biology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
- Department of Chemical Physiology at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
- The Institute for Childhood and Neglected Diseases at The Scripps Research Institute, 10550 North Torrey Pines Rd, La Jolla, CA, 92037 USA
| |
Collapse
|
66
|
Roy G, Chalfin EM, Saxena A, Wang X. Interplay between ER exit code and domain conformation in CFTR misprocessing and rescue. Mol Biol Cell 2009; 21:597-609. [PMID: 20032308 PMCID: PMC2820424 DOI: 10.1091/mbc.e09-05-0427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Multiple mutations in cystic fibrosis transmembrane conductance regulator (CFTR) impair its exit from the endoplasmic reticulum (ER). We compared two processing mutants: DeltaF508 and the ER exit code mutant DAA. Although both have severe kinetic processing defect, DAA but not DeltaF508 has substantial accumulation in its mature form, leading to higher level of processing at the steady state. DAA has much less profound conformational abnormalities. It has lower Hsp70 association and higher post-ER stability than DeltaF508. The ER exit code is necessary for DeltaF508 residual export and rescue. R555K, a mutation that rescues DeltaF508 misprocessing, improves Sec24 association and enhances its post-ER stability. Using in situ limited proteolysis, we demonstrated a clear change in trypsin sensitivity in DeltaF508 NBD1, which is reversed, together with that of other domains, by low temperature, R555K or both. We observed a conversion of the proteolytic pattern of DAA from the one resembling DeltaF508 to the one similar to wild-type CFTR during its maturation. Low temperature and R555K are additive in improving DeltaF508 conformational maturation and processing. Our data reveal a dual contribution of ER exit code and domain conformation to CFTR misprocessing and underscore the importance of conformational repair in effective rescue of DeltaF508.
Collapse
Affiliation(s)
- Gargi Roy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | | | |
Collapse
|
67
|
van den Berghe PVE, Stapelbroek JM, Krieger E, de Bie P, van de Graaf SFJ, de Groot REA, van Beurden E, Spijker E, Houwen RHJ, Berger R, Klomp LWJ. Reduced expression of ATP7B affected by Wilson disease-causing mutations is rescued by pharmacological folding chaperones 4-phenylbutyrate and curcumin. Hepatology 2009; 50:1783-95. [PMID: 19937698 DOI: 10.1002/hep.23209] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
UNLABELLED Wilson disease (WD) is an autosomal recessive copper overload disorder of the liver and basal ganglia. WD is caused by mutations in the gene encoding ATP7B, a protein localized to the trans-Golgi network that primarily facilitates hepatic copper excretion. Current treatment comprises reduction of circulating copper by zinc supplementation or copper chelation. Despite treatment, a significant number of patients have neurological deterioration. The aim of this study was to investigate the possibility that defects arising from some WD mutations are ameliorated by drug treatment aimed at improvement of protein folding and restoration of protein function. This necessitated systematic characterization of the molecular consequences of distinct ATP7B missense mutations associated with WD. With the exception of p.S1363F, all mutations tested (p.G85V, p.R778L, p.H1069Q, p.C1104F, p.V1262F, p.G1343V, and p.S1363F) resulted in reduced ATP7B protein expression, whereas messenger RNA abundance was unaffected. Retention of mutant ATP7B in the endoplasmic reticulum, increased protein expression, and normalization of localization after culturing cells at 30 degrees C, and homology modeling suggested that these proteins were misfolded. Four distinct mutations exhibited residual copper export capacity, whereas other mutations resulted in complete disruption of copper export by ATP7B. Treatment with pharmacological chaperones 4-phenylbutyrate (4-PBA) and curcumin, a clinically approved compound, partially restored protein expression of most ATP7B mutants. CONCLUSION These findings might enable novel treatment strategies in WD by directly enhancing the protein expression of mutant ATP7B with residual copper export activity. 1795.).
Collapse
Affiliation(s)
- Peter V E van den Berghe
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, and the Netherlands Metabolomics Center, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Walker VE, Wong MJH, Atanasiu R, Hantouche C, Young JC, Shrier A. Hsp40 chaperones promote degradation of the HERG potassium channel. J Biol Chem 2009; 285:3319-29. [PMID: 19940115 DOI: 10.1074/jbc.m109.024000] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of function mutations in the hERG (human ether-a-go-go related gene or KCNH2) potassium channel underlie the proarrhythmic cardiac long QT syndrome type 2. Most often this is a consequence of defective trafficking of hERG mutants to the cell surface, with channel retention and degradation at the endoplasmic reticulum. Here, we identify the Hsp40 type 1 chaperones DJA1 (DNAJA1/Hdj2) and DJA2 (DNAJA2) as key modulators of hERG degradation. Overexpression of the DJAs reduces hERG trafficking efficiency, an effect eliminated by the proteasomal inhibitor lactacystin or with DJA mutants lacking their J domains essential for Hsc70/Hsp70 activation. Both DJA1 and DJA2 cause a decrease in the amount of hERG complexed with Hsc70, indicating a preferential degradation of the complex. Similar effects were observed with the E3 ubiquitin ligase CHIP. Both the DJAs and CHIP reduce hERG stability and act differentially on folding intermediates of hERG and the disease-related trafficking mutant G601S. We propose a novel role for the DJA proteins in regulating degradation and suggest that they act at a critical point in secretory pathway quality control.
Collapse
Affiliation(s)
- Valerie E Walker
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | |
Collapse
|
69
|
Loo TW, Bartlett MC, Clarke DM. Correctors enhance maturation of DeltaF508 CFTR by promoting interactions between the two halves of the molecule. Biochemistry 2009; 48:9882-90. [PMID: 19761259 DOI: 10.1021/bi9004842] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deletion of Phe508 in cystic fibrosis transmembrane conductance regulator (DeltaF508 CFTR) causes cystic fibrosis. CFTR consists of two homologous halves with each containing a nucleotide-binding domain (NBD) and a transmembrane domain (TMD). DeltaF508 CFTR appears to be trapped in an incompletely folded state. Small molecules (correctors) promote folding of DeltaF508 CFTR with relatively low efficiency. Understanding the mechanism of repair may lead to the development of more effective correctors. Here we tested the effect of correctors and the DeltaF508 mutation on interactions between the halves of CFTR when expressed as separate polypeptides. Glycosylation of C-half CFTR was defective when expressed alone as a mixture of core and unglycosylated proteins was detected. Coexpression of C-half CFTR with either wild-type N-half or DeltaF508/N-half CFTR, however, increased the amount of core-glycosylated protein, but only coexpression with wild-type N-half promoted maturation of C-half CFTR (Endo H resistant). This suggested that the DeltaF508 mutation inhibited some interactions between N-half and C-half CFTRs. Interaction of A52-tagged wild-type N-half or DeltaF508/N-half CFTR with histidine-tagged C-half CFTR was then followed by nickel-chelate chromatography. Coexpression of A52-tagged wild-type N-half or DeltaF508/N-half CFTR with histidine-tagged C-half CFTR resulted in the wild-type N-half CFTR but not DeltaF508/N-half CFTR protein being retained on the column. Coexpression of DeltaF508/N-half and C-half CFTR in the presence correctors VX-325 and corr-4a, however, restored interactions between the two halves. An interaction that was restored was that between NBD1 and TMD2 as the correctors restored cross-linking of mutant DeltaF508/NBD1(V510C)/TMD2(A1067C). Therefore, correctors promote proper interactions between the two halves of CFTR.
Collapse
Affiliation(s)
- Tip W Loo
- Department of Medicine and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
70
|
Cateni F, Zacchigna M, Pedemonte N, Galietta LJV, Mazzei MT, Fossa P, Giampieri M, Mazzei M. Synthesis of 4-thiophen-2'-yl-1,4-dihydropyridines as potentiators of the CFTR chloride channel. Bioorg Med Chem 2009; 17:7894-903. [PMID: 19880323 DOI: 10.1016/j.bmc.2009.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/14/2009] [Accepted: 10/15/2009] [Indexed: 11/17/2022]
Abstract
The gating of the CFTR chloride channel is altered by a group of mutations that cause cystic fibrosis. This gating defect may be corrected by small molecules called potentiators. Some 1,4-dihydropyridine (DHP) derivatives, bearing a thiophen-2-yl and a furanyl ring at the 4-position of the nucleus, were prepared and tested as CFTR potentiators. In particular, we evaluated the ability of novel DHPs to enhance the activity of the rescued DeltaF508-CFTR as measured with a functional assay based on the halide-sensitive yellow fluorescent protein. Most DHPs showed an effect comparable to or better than that of the reference compound genistein. The potency was instead significantly improved, with some compounds, such as 3g, 3h, 3n, 4a, 4b, and 4d, having a half effective concentration in the submicromolar range. CoMFA analysis gave helpful suggestions to improve the activity of DHPs.
Collapse
Affiliation(s)
- Francesca Cateni
- Department of Pharmaceutical Sciences, Piazzale Europa 1, 34127 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Jurkuvenaite A, Chen L, Bartoszewski R, Goldstein R, Bebok Z, Matalon S, Collawn JF. Functional stability of rescued delta F508 cystic fibrosis transmembrane conductance regulator in airway epithelial cells. Am J Respir Cell Mol Biol 2009; 42:363-72. [PMID: 19502384 DOI: 10.1165/rcmb.2008-0434oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The most common mutation in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene, Delta F508, results in the production of a misfolded protein that is rapidly degraded. The mutant protein is temperature sensitive, and prior studies indicate that the low-temperature-rescued channel is poorly responsive to physiological stimuli, and is rapidly degraded from the cell surface at 37 degrees C. In the present studies, we tested the effect of a recently characterized pharmacological corrector, 2-(5-chloro-2-methoxy-phenylamino)-4'-methyl-[4,5'bithiazolyl-2'-yl]-phenyl-methanone (corr-4a), on cell surface stability and function of the low-temperature-rescued Delta F508 CFTR. We demonstrate that corr-4a significantly enhanced the protein stability of rescued Delta F508 CFTR for up to 12 hours at 37 degrees C (P < 0.05). Using firefly luciferase-based reporters to investigate the mechanisms by which low temperature and corr-4a enhance rescue, we found that low-temperature treatment inhibited proteasomal function, whereas corr-4a treatment inhibited the E1-E3 ubiquitination pathway. Ussing chamber studies indicated that corr-4a increased the cAMP-mediated Delta F508 CFTR response by 61% at 6 hours (P < 0.05), but not at later time points. However, addition of the CFTR channel activator, 4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)-phenol, significantly augmented cAMP-stimulated currents, revealing that the biochemically detectable cell surface Delta F508 CFTR could be stimulated under the right conditions. Our studies demonstrate that stabilizing rescued Delta F508 CFTR was not sufficient to obtain maximal Delta F508 CFTR function in airway epithelial cells. These results strongly support the idea that maximal correction of Delta F508 CFTR requires a chemical corrector that: (1) promotes folding and exit from the endoplasmic reticulum; (2) enhances surface stability; and (3) improves channel activity.
Collapse
Affiliation(s)
- Asta Jurkuvenaite
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
White E, McKenna J, Cavanaugh A, Breitwieser GE. Pharmacochaperone-mediated rescue of calcium-sensing receptor loss-of-function mutants. Mol Endocrinol 2009; 23:1115-23. [PMID: 19389809 DOI: 10.1210/me.2009-0041] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The calcium sensing receptor (CaSR) is a Family C/3 G protein-coupled receptor that translates changes in extracellular Ca(2+) into diverse intracellular signals. Loss-of-function mutations in human CaSR cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. CaSR must navigate a number of endoplasmic reticulum quality control checkpoints during biosynthesis, including a conformational/functional checkpoint. Here we examine the biosynthesis of 25 CaSR mutations causing familial hypocalciuric hypercalcemia /neonatal severe hyperparathyroidism using immunoprecipitation, biotinylation, and functional assays. We define classes of CaSR mutants based on their biosynthetic profile. Class I CaSR mutants are not rescued to the plasma membrane. To dissect the organellar compartments that class I mutants can access, we engineered a cleavage site for the proprotein convertase furin into the extracellular domain of wild-type CaSR and class I mutants. Based on absence or presence of cleavage fragments, we find most mutants are degraded from the endoplasmic reticulum (no furin-mediated cleavage), whereas others access the Golgi (furin-mediated cleavage) before degradation. Class II CaSR mutants show increased expression and/or enhanced plasma membrane localization upon treatment with MG132 or the pharmacochaperone NPS R-568, permitting assay of functional activity. Of the 10 CaSR mutants that exhibit plasma membrane localization, only two did not show enhanced functional activity after rescue with NPS R-568. The established approaches can be used with current and newly identified CaSR mutations to identify the location of biosynthetic block and to determine the likelihood of rescue by allosteric agonists.
Collapse
Affiliation(s)
- Elissa White
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2604, USA
| | | | | | | |
Collapse
|