51
|
Inanç B, Elçin YM. Stem Cells in Tooth Tissue Regeneration—Challenges and Limitations. Stem Cell Rev Rep 2011; 7:683-92. [DOI: 10.1007/s12015-011-9237-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
52
|
Ramenzoni LL, Saito CPB, McCormick JJ, Line SRP. Transcriptional activity analysis of promoter region of human PAX9 gene under dexamethasone, retinoic acid, and ergocalciferol treatment in MCF-7 and MDPC23. Cell Biochem Funct 2011; 28:555-64. [PMID: 20941745 DOI: 10.1002/cbf.1688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PAX9 gene is a member of the family homeobox of transcription factors and performs important function in development and organogenesis. Mutations in PAX9 coding sequences have been implicated in autosomal dominant oligodontia affecting predominantly permanent molars and second premolars. Previous studies have shown that PAX9 is required for secondary palate development and teratogens have been identified as inducers of a tooth and craniofacial malformations. This work focused on the analysis on the 5'-flanking region of the PAX9 gene studying the influence of retinoic acid, dexamethasone, and vitamin D on the expression of PAX9 by expression constructs that carry the reporter gene luciferase. As results, retinoic acid and dexamethasone showed progressive decrease of PAX9 expression. PAX9-pGL3B1 and PAX9-pGL3B2 promoter was inhibited under the treatment of dexamethasone and ergocalciferol. Retinoic acid and dexamethasone did not alter PAX9-pGL3B3 behavior indicating that sequences present between -1106 and +92 were important for the transcriptional activity of PAX9 promoter. In this study, we characterized the transcriptional activity of specific regions of the PAX9 promoter gene and we demonstrated that retinoic acid and ergocalciferol can modulate the transcriptional activity of PAX9 gene.
Collapse
Affiliation(s)
- Liza L Ramenzoni
- Department of Morphology, Piracicaba Dental School, University of Campinas-Unicamp, Piracicaba, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
53
|
Fukada T, Asada Y, Mishima K, Shimoda S, Saito I. Slc39a13/Zip13: A Crucial Zinc Transporter Involved in Tooth Development and Inherited Disorders. J Oral Biosci 2011. [DOI: 10.1016/s1349-0079(11)80030-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
54
|
Pinho T, Silva-Fernandes A, Bousbaa H, Maciel P. Mutational analysis of MSX1 and PAX9 genes in Portuguese families with maxillary lateral incisor agenesis. Eur J Orthod 2010; 32:582-8. [DOI: 10.1093/ejo/cjp155] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
55
|
Silva ER, Reis-Filho CR, Napimoga MH, Alves JB. Polymorphism in the Msx1 gene associated with hypodontia in a Brazilian family. J Oral Sci 2010; 51:341-5. [PMID: 19776500 DOI: 10.2334/josnusd.51.341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. With the large number of genes involved in the odontogenesis process, the opportunity for mutations to disrupt this process is high. Mutational analysis has revealed genes that are major causes of non-syndromic hypodontia. The most common permanent missing teeth are the third molars, second premolars, and maxillary lateral incisors. Although hypodontia does not represent a serious public health problem, it may cause masticatory and speech dysfunctions and esthetic problems. Msx1 (Muscle Segment Box) is believed to play an important role in tooth development. To further investigate the role of the gene in human hypodontia, we analyzed genotypes in a family with hypodontia using the SSCP assay. Examinations of all affected and unaffected members of the family studied indicated that 5 of the 10 family members had hypodontia, and it was possible to observe polymorphisms/mutation by SSCP as bands with an anomalous migration pattern in individuals with hypodontia. Our data suggest that Msx1 gene polymorphism is associated with hypodontia.
Collapse
Affiliation(s)
- Elisângela R Silva
- Laboratory of Biopathology and Molecular Biology, University of Uberaba, Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
56
|
Dentofacial characteristics of patients with hypodontia. Clin Oral Investig 2009; 14:467-77. [PMID: 19590908 DOI: 10.1007/s00784-009-0308-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
This study aims to identify distinctive dentofacial characteristics of hypodontia patients. For this purpose, 189 young hypodontia patients (cases) were divided into subgroups, based on criteria from literature. Normalised differences between cases and controls were calculated for various parameters of dentofacial form. Subsequently, cluster analysis was applied to disclose subsets of hypodontia patients with distinctive dentofacial features. The ANB angle, interincisal angle and lower anterior face height were consistently significantly different amongst the subsets. Four clusters of patients with an increasing number of missing teeth and distinctive dentofacial characteristics could be identified. Patients in cluster 1 display a high-angle facial pattern. Patients in clusters 2 and 3 exhibit markable dentoalveolar characteristics (a relatively small and a large interincisal angle, respectively). Patients in cluster 4 exhibited notable sagittal-skeletal discriminative features predominantly because of a retrognathic maxilla. The smallest nasolabial angle and lower anterior face height were seen in this cluster. It is concluded that the anterior-posterior relationship between the jaws, the interincisal angle and the lower anterior face height are discriminative parameters of dentofacial form in hypodontia patients. Patients with hypodontia can be clustered in four groups, each with distinctive vertical-skeletal, dentoalveolar and sagittal-skeletal characteristics. This categorisation of patients with hypodontia into meaningful groups may be useful for treatment planning, interdisciplinary communication and as a means of identifying groups of patients that qualify for reimbursement of costs. Other dental factors should be appreciated as well during restorative clinical decision making in patients with hypodontia.
Collapse
|
57
|
Hacking SA, Khademhosseini A. Applications of microscale technologies for regenerative dentistry. J Dent Res 2009; 88:409-21. [PMID: 19493883 DOI: 10.1177/0022034509334774] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
While widespread advances in tissue engineering have occurred over the past decade, many challenges remain in the context of tissue engineering and regeneration of the tooth. For example, although tooth development is the result of repeated temporal and spatial interactions between cells of ectoderm and mesoderm origin, most current tooth engineering systems cannot recreate such developmental processes. In this regard, microscale approaches that spatially pattern and support the development of different cell types in close proximity can be used to regulate the cellular microenvironment and, as such, are promising approaches for tooth development. Microscale technologies also present alternatives to conventional tissue engineering approaches in terms of scaffolds and the ability to direct stem cells. Furthermore, microscale techniques can be used to miniaturize many in vitro techniques and to facilitate high-throughput experimentation. In this review, we discuss the emerging microscale technologies for the in vitro evaluation of dental cells, dental tissue engineering, and tooth regeneration.
Collapse
Affiliation(s)
- S A Hacking
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, PRB, Rm 252, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | |
Collapse
|
58
|
Wang Y, Groppe JC, Wu J, Ogawa T, Mues G, D'Souza RN, Kapadia H. Pathogenic mechanisms of tooth agenesis linked to paired domain mutations in human PAX9. Hum Mol Genet 2009; 18:2863-74. [PMID: 19429910 DOI: 10.1093/hmg/ddp221] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mutations in the paired-domain transcription factor PAX9 are associated with non-syndromic tooth agenesis that preferentially affects posterior dentition. Of the 18 mutations identified to date, eight are phenotypically well-characterized missense mutations within the DNA-binding paired domain. We determined the structural and functional consequences of these paired domain missense mutations and correlated our findings with the associated dental phenotype variations. In vitro testing included subcellular localization, protein-protein interactions between MSX1 and mutant PAX9 proteins, binding of PAX9 mutants to a DNA consensus site and transcriptional activation from the Pax9 effector promoters Bmp4 and Msx1 with and without MSX1 as co-activator. All mutant PAX9 proteins were localized in the nucleus of transfected cells and physically interacted with MSX1 protein. Three of the mutants retained the ability to bind the consensus paired domain recognition sequence; the others were unable or only partly able to interact with this DNA fragment and also showed a similarly impaired capability for activation of transcription from the Msx1 and Bmp4 promoters. For seven of the eight mutants, the degree of loss of DNA-binding and promoter activation correlated quite well with the severity of the tooth agenesis pattern seen in vivo. One of the mutants however showed neither reduction in DNA-binding nor decrease in transactivation; instead, a loss of responsiveness to synergism with MSX1 in target promoter activation and a dominant negative effect when expressed together with wild-type PAX9 could be observed. Our structure-based studies, which modeled DNA binding and subdomain stability, were able to predict functional consequences quite reliably.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomedical Sciences, Texas A&M University Health Science Center, Baylor College of Dentistry, Dallas, TX 75246, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Quantitative Genetics, Pleiotropy, and Morphological Integration in the Dentition of Papio hamadryas. Evol Biol 2009; 36:5-18. [PMID: 22919117 DOI: 10.1007/s11692-008-9048-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Variation in the mammalian dentition is highly informative of adaptations and evolutionary relationships, and consequently has been the focus of considerable research. Much of the current research exploring the genetic underpinnings of dental variation can trace its roots to Olson and Miller's 1958 book Morphological Integration. These authors explored patterns of correlation in the post-canine dentitions of the owl monkey and Hyopsodus, an extinct condylarth from the Eocene. Their results were difficult to interpret, as was even noted by the authors, due to a lack of genetic information through which to view the patterns of correlation. Following in the spirit of Olson and Miller's research, we present a quantitative genetic analysis of dental variation in a pedigreed population of baboons. We identify patterns of genetic correlations that provide insight to the genetic architecture of the baboon dentition. This genetic architecture indicates the presence of at least three modules: an incisor module that is genetically independent of the post-canine dentition, and a premolar module that demonstrates incomplete pleiotropy with the molar module. We then compare this matrix of genetic correlations to matrices of phenotypic correlations between the same measurements made on museum specimens of another baboon subspecies and the Southeast Asian colobine Presbytis. We observe moderate significant correlations between the matrices from these three primate taxa. From these observations we infer similarity in modularity and hypothesize a common pattern of genetic integration across the dental arcade in the Cercopithecoidea.
Collapse
|
60
|
Hepatocyte Growth Factor Exerts Promoting Functions on Murine Dental Papilla Cells. J Endod 2009; 35:382-8. [DOI: 10.1016/j.joen.2008.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 11/20/2008] [Accepted: 11/28/2008] [Indexed: 11/22/2022]
|
61
|
Koussoulakou DS, Margaritis LH, Koussoulakos SL. A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 2009; 5:226-43. [PMID: 19266065 PMCID: PMC2651620 DOI: 10.7150/ijbs.5.226] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/21/2009] [Indexed: 12/28/2022] Open
Abstract
The ancestor of recent vertebrate teeth was a tooth-like structure on the outer body surface of jawless fishes. Over the course of 500,000,000 years of evolution, many of those structures migrated into the mouth cavity. In addition, the total number of teeth per dentition generally decreased and teeth morphological complexity increased. Teeth form mainly on the jaws within the mouth cavity through mutual, delicate interactions between dental epithelium and oral ectomesenchyme. These interactions involve spatially restricted expression of several, teeth-related genes and the secretion of various transcription and signaling factors. Congenital disturbances in tooth formation, acquired dental diseases and odontogenic tumors affect millions of people and rank human oral pathology as the second most frequent clinical problem. On the basis of substantial experimental evidence and advances in bioengineering, many scientists strongly believe that a deep knowledge of the evolutionary relationships and the cellular and molecular mechanisms regulating the morphogenesis of a given tooth in its natural position, in vivo, will be useful in the near future to prevent and treat teeth pathologies and malformations and for in vitro and in vivo teeth tissue regeneration.
Collapse
Affiliation(s)
- Despina S Koussoulakou
- University of Athens, Faculty of Biology, Department of Cell Biology and Biophysics, Athens, Greece
| | | | | |
Collapse
|
62
|
Vieira ALS, de Ocarino NM, Boeloni JN, Serakides R. Congenital oligodontia of the deciduous teeth and anodontia of the permanent teeth in a cat. J Feline Med Surg 2009; 11:156-8. [PMID: 18835802 PMCID: PMC10832779 DOI: 10.1016/j.jfms.2008.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2008] [Indexed: 11/17/2022]
Abstract
This report describes a rare case of congenital oligodontia of the deciduous teeth and anodontia of the permanent teeth in a cat. According to cat's veterinarian, the patient had only two deciduous upper canines and no permanent teeth had ever erupted. Post-mortem evaluation showed a complete absence of teeth in the oral cavity and inflammatory lesions were not found on the gums. Histopathological analysis of serial sections of maxilla and mandible revealed absence of odontogenic epithelium, inflammatory cells and odontoclastic resorptive lesions. Diagnosis was confirmed after both the establishment that there were no remaining dental structures and the exclusion of other relevant diseases that lead to tooth loss, such as periodontal disease, renal fibrous osteodystrophy, odontoclastic resorptive lesions, ectodermal dysplasia and trauma.
Collapse
Affiliation(s)
- Ana Luiza S. Vieira
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Presidente Antonio Carlos, 6627, 30123–970 Belo Horizonte, Minas Gerais, Brazil
| | - Natalia M. de Ocarino
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Presidente Antonio Carlos, 6627, 30123–970 Belo Horizonte, Minas Gerais, Brazil
| | - Jankerle N. Boeloni
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Presidente Antonio Carlos, 6627, 30123–970 Belo Horizonte, Minas Gerais, Brazil
| | - Rogeria Serakides
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinária da Universidade Federal de Minas Gerais, Avenida Presidente Antonio Carlos, 6627, 30123–970 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
63
|
De Coster PJ, Marks LA, Martens LC, Huysseune A. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2008; 38:1-17. [PMID: 18771513 DOI: 10.1111/j.1600-0714.2008.00699.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dental agenesis is the most common developmental anomaly in humans and is frequently associated with several other oral abnormalities. Whereas the incidence of missing teeth may vary considerably depending on dentition, gender, and demographic or geographic profiles, distinct patterns of agenesis have been detected in the permanent dentition. These frequently involve the last teeth of a class to develop (I2, P2, M3) suggesting a possible link with evolutionary trends. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) involving one (80% of cases), a few (less than 10%) or many teeth (less than 1%), or can be associated with a systemic condition or syndrome (syndromic hypodontia), essentially reflecting the genetically and phenotypically heterogeneity of the condition. Based on our present knowledge of genes and transcription factors that are involved in tooth development, it is assumed that different phenotypic forms are caused by different genes involving different interacting molecular pathways, providing an explanation not only for the wide variety in agenesis patterns but also for associations of dental agenesis with other oral anomalies. At present, the list of genes involved in human non-syndromic hypodontia includes not only those encoding a signaling molecule (TGFA) and transcription factors (MSX1 and PAX9) that play critical roles during early craniofacial development, but also genes coding for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). Our objective was to review the current literature on the molecular mechanisms that are responsible for selective dental agenesis in humans and to present a detailed overview of syndromes with hypodontia and their causative genes. These new perspectives and future challenges in the field of identification of possible candidate genes involved in dental agenesis are discussed.
Collapse
Affiliation(s)
- P J De Coster
- Department of Paediatric Dentistry and Special Care, Paecamed Research, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
64
|
Wang Y, Wu H, Wu J, Zhao H, Zhang X, Mues G, D'Souza RN, Feng H, Kapadia H. Identification and functional analysis of two novel PAX9 mutations. Cells Tissues Organs 2008; 189:80-7. [PMID: 18701815 DOI: 10.1159/000151448] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The paired-domain transcription factor PAX9 plays a critical role in tooth development, as heterozygous mutations in PAX9 have been shown to be associated with human tooth agenesis. In this study, we report 2 novel missense mutations, gly6arg (G6R) and ser43lys (S43K), in the paired domain of PAX9 in Chinese patients with varying degrees of nonsyndromic tooth agenesis. Excluding third molars, the individual with the G6R mutation was missing 2 mandibular incisors and a maxillary premolar, while the phenotype of individuals with the S43K mutation consisted of peg-shaped upper lateral incisors and missing molars, premolars and canines. As these 2 mutations occur at highly conserved amino acids in the PAX gene family and between different species, we further analyzed the effects of the mutations on the function of the resulting proteins. Immunofluorescence and immunoblotting studies showed that the mutations did not alter nuclear localization in mammalian cells. Gel shift and super shift assays indicate that both mutant proteins bound DNA at a lower level than the normal protein, with G6R having a greater affinity for DNA than S43K. Likewise, the G6R protein was able to transcriptionally activate a Bmp4 promoter construct to a greater extent than S43K. Our finding that the severity of tooth agenesis in the patients was correlated to the DNA-binding capacity of the mutated PAX9 9proteins supports the hypothesis that DNA binding is responsible for the genetic defect.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Tex., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Matalova E, Fleischmannova J, Sharpe PT, Tucker AS. Tooth agenesis: from molecular genetics to molecular dentistry. J Dent Res 2008; 87:617-23. [PMID: 18573979 DOI: 10.1177/154405910808700715] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tooth agenesis may originate from either genetic or environmental factors. Genetically determined hypodontic disorders appear as isolated features or as part of a syndrome. Msx1, Pax9, and Axin2 are involved in non-syndromic hypodontia, while genes such as Shh, Pitx2, Irf6, and p63 are considered to participate in syndromic genetic disorders, which include tooth agenesis. In dentistry, artificial tooth implants represent a common solution to tooth loss problems; however, molecular dentistry offers promising solutions for the future. In this paper, the genetic and molecular bases of non-syndromic and syndromic hypodontia are reviewed, and the advantages and disadvantages of tissue engineering in the clinical treatment of tooth agenesis are discussed.
Collapse
Affiliation(s)
- E Matalova
- Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic.
| | | | | | | |
Collapse
|