51
|
Alterovitz G, Muso T, Ramoni MF. The challenges of informatics in synthetic biology: from biomolecular networks to artificial organisms. Brief Bioinform 2009; 11:80-95. [PMID: 19906839 DOI: 10.1093/bib/bbp054] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The field of synthetic biology holds an inspiring vision for the future; it integrates computational analysis, biological data and the systems engineering paradigm in the design of new biological machines and systems. These biological machines are built from basic biomolecular components analogous to electrical devices, and the information flow among these components requires the augmentation of biological insight with the power of a formal approach to information management. Here we review the informatics challenges in synthetic biology along three dimensions: in silico, in vitro and in vivo. First, we describe state of the art of the in silico support of synthetic biology, from the specific data exchange formats, to the most popular software platforms and algorithms. Next, we cast in vitro synthetic biology in terms of information flow, and discuss genetic fidelity in DNA manipulation, development strategies of biological parts and the regulation of biomolecular networks. Finally, we explore how the engineering chassis can manipulate biological circuitries in vivo to give rise to future artificial organisms.
Collapse
Affiliation(s)
- Gil Alterovitz
- Children's Hospital Informatics Program, Harvard/MITDivision of Health Sciences and Technology, USA
| | | | | |
Collapse
|
52
|
Yamaji K, Kanai T, Nomura SIM, Akiyoshi K, Negishi M, Chen Y, Atomi H, Yoshikawa K, Imanaka T. Protein synthesis in giant liposomes using the in vitro translation system of Thermococcus kodakaraensis. IEEE Trans Nanobioscience 2009; 8:325-31. [PMID: 19884103 DOI: 10.1109/tnb.2009.2035278] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An in vitro translation system, based on cell components of the hyperthermophilic archaeon, Thermococcus kodakaraensis, has previously been developed. The system has been optimized and applied for protein production at high temperatures (60-65 degrees C). In this paper, we have examined the possibilities to utilize this system at a lower temperature range using green fluorescence protein (GFP) as the reporter protein. By optimizing the composition of the reaction mixture, and adding chaperonins from the mesophilic Escherichia coli, the yield of protein production at 40 degrees C was increased by fivefold. For liposome encapsulation of the optimized system, water-in-oil cell-sized emulsions were prepared by adding the translation system/GFP mRNA mixture to mineral oil supplemented with 1,2-dioleoyl-sn -glycero-3-phosphatidylcholine (DOPC). Giant liposomes were formed when these emulsions passed across a water/oil interface occupied with DOPC. The liposomes were incubated at 40 degrees C for 90 min, and fluorescence was examined by laser confocal microscopy. A significant increase in average fluorescence intensity was observed in liposomes with GFP mRNA, but not in those without mRNA. Our results indicate that the T. kodakaraensis in vitro translation system is applicable for protein production within giant liposomes, and these artificial cell models should provide the methodology to reconstitute various cell functions from a constitutional biology approach.
Collapse
Affiliation(s)
- Kazuaki Yamaji
- Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hold C, Panke S. Towards the engineering of in vitro systems. J R Soc Interface 2009; 6 Suppl 4:S507-21. [PMID: 19474076 PMCID: PMC2843965 DOI: 10.1098/rsif.2009.0110.focus] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 04/29/2009] [Indexed: 01/16/2023] Open
Abstract
Synthetic biology aims at rationally implementing biological systems from scratch. Given the complexity of living systems and our current lack of understanding of many aspects of living cells, this is a major undertaking. The design of in vitro systems can be considerably easier, because they can consist of fewer constituents, are quasi time invariant, their parameter space can be better accessed and they can be much more easily perturbed and then analysed chemically and mathematically. However, even for simplified in vitro systems, following a comprehensively rational design procedure is still difficult. When looking at a comparatively simple system, such as a medium-sized enzymatic reaction network as it is represented by glycolysis, major issues such as a lack of comprehensive enzyme kinetics and of suitable knowledge on crucial design parameters remain. Nevertheless, in vitro systems are very suitable to overcome these obstacles and therefore well placed to act as a stepping stone to engineering living systems.
Collapse
Affiliation(s)
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26 4058, Basle, Switzerland
| |
Collapse
|
54
|
Katzen F, Peterson TC, Kudlicki W. Membrane protein expression: no cells required. Trends Biotechnol 2009; 27:455-60. [PMID: 19616329 DOI: 10.1016/j.tibtech.2009.05.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 05/02/2009] [Accepted: 05/06/2009] [Indexed: 01/10/2023]
Abstract
Structural and functional studies of membrane proteins have been severely hampered by difficulties in producing sufficient quantities of properly folded protein products. It is well established that cell-based expression of membrane proteins is generally problematic and frequently results in low yield, cell toxicity, protein aggregation and misfolding. Owing to its inherent open nature, cell-free protein expression has become a highly promising tool for the fast and efficient production of these difficult-to-express proteins. Here we review the most recent advances in this field, underscoring the potentials and weaknesses of the newly developed approaches and place specific emphasis on the use of nanolipoprotein particles (NLPs or nanodiscs).
Collapse
Affiliation(s)
- Federico Katzen
- Life Technologies, 5791 Van Allen Way, Carlsbad, CA 92008, USA
| | | | | |
Collapse
|
55
|
Nakajima E, Goto Y, Sako Y, Murakami H, Suga H. Ribosomal Synthesis of Peptides with C-Terminal Lactams, Thiolactones, and Alkylamides. Chembiochem 2009; 10:1186-92. [DOI: 10.1002/cbic.200900058] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
56
|
Kitamura K, Yoshida C, Salimullah M, Kinoshita Y, Suzuki M, Nemoto N, Nishigaki K. Rapid In Vitro Synthesis of Pico-mole Quantities of Peptides. CHEM LETT 2008. [DOI: 10.1246/cl.2008.1250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
57
|
Kawakami T, Murakami H, Suga H. Ribosomal Synthesis of Polypeptoids and Peptoid−Peptide Hybrids. J Am Chem Soc 2008; 130:16861-3. [DOI: 10.1021/ja806998v] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Takashi Kawakami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan, and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Murakami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan, and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan, and Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
58
|
Heterologous expression of plasmodial proteins for structural studies and functional annotation. Malar J 2008; 7:197. [PMID: 18828893 PMCID: PMC2567985 DOI: 10.1186/1475-2875-7-197] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 10/01/2008] [Indexed: 11/10/2022] Open
Abstract
Malaria remains the world's most devastating tropical infectious disease with as many as 40% of the world population living in risk areas. The widespread resistance of Plasmodium parasites to the cost-effective chloroquine and antifolates has forced the introduction of more costly drug combinations, such as Coartem®. In the absence of a vaccine in the foreseeable future, one strategy to address the growing malaria problem is to identify and characterize new and durable antimalarial drug targets, the majority of which are parasite proteins. Biochemical and structure-activity analysis of these proteins is ultimately essential in the characterization of such targets but requires large amounts of functional protein. Even though heterologous protein production has now become a relatively routine endeavour for most proteins of diverse origins, the functional expression of soluble plasmodial proteins is highly problematic and slows the progress of antimalarial drug target discovery. Here the status quo of heterologous production of plasmodial proteins is presented, constraints are highlighted and alternative strategies and hosts for functional expression and annotation of plasmodial proteins are reviewed.
Collapse
|
59
|
Nath N, Hurst R, Hook B, Meisenheimer P, Zhao KQ, Nassif N, Bulleit RF, Storts DR. Improving Protein Array Performance: Focus on Washing and Storage Conditions. J Proteome Res 2008; 7:4475-82. [DOI: 10.1021/pr800323j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nidhi Nath
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Robin Hurst
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Brad Hook
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Poncho Meisenheimer
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Kate Q. Zhao
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Nadine Nassif
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Robert F. Bulleit
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| | - Douglas R. Storts
- Research and Development, Promega Corporation, Madison, Wisconsin 53711 and Promega Biosciences Incorporated, 277 Granada Drive, San Luis Obispo, California 93401
| |
Collapse
|
60
|
Abstract
Decades of studies have established translation as a multistep, multicomponent process that requires intricate communication to achieve high levels of speed, accuracy, and regulation. A crucial next step in understanding translation is to reveal the functional significance of the large-scale motions implied by static ribosome structures. This requires determining the trajectories, timescales, forces, and biochemical signals that underlie these dynamic conformational changes. Single-molecule methods have emerged as important tools for the characterization of motion in complex systems, including translation. In this review, we chronicle the key discoveries in this nascent field, which have demonstrated the power and promise of single-molecule techniques in the study of translation.
Collapse
Affiliation(s)
- R Andrew Marshall
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
61
|
Katzen F, Fletcher JE, Yang JP, Kang D, Peterson TC, Cappuccio JA, Blanchette CD, Sulchek T, Chromy BA, Hoeprich PD, Coleman MA, Kudlicki W. Insertion of Membrane Proteins into Discoidal Membranes Using a Cell-Free Protein Expression Approach. J Proteome Res 2008; 7:3535-42. [DOI: 10.1021/pr800265f] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Federico Katzen
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Julia E. Fletcher
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Jian-Ping Yang
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Douglas Kang
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Todd C. Peterson
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Jenny A. Cappuccio
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Craig D. Blanchette
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Todd Sulchek
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Brett A. Chromy
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Paul D. Hoeprich
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Matthew A. Coleman
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| | - Wieslaw Kudlicki
- Invitrogen Corporation, 5791 Van Allen Way, Carlsbad, California 92008, and Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551
| |
Collapse
|
62
|
Apponyi MA, Ozawa K, Dixon NE, Otting G. Cell-free protein synthesis for analysis by NMR spectroscopy. Methods Mol Biol 2008; 426:257-68. [PMID: 18542869 DOI: 10.1007/978-1-60327-058-8_16] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cell-free protein synthesis offers fast and inexpensive access to selectively isotope labeled proteins that can be measured by NMR spectroscopy in the presence of all the unlabeled proteins in the reaction mixture. No chromatographic purification is required. Using an extract from Escherichia coli in a simple dialysis system, the target protein can be prepared at a typical concentration of about 1 mg/ml, which is sufficient for subsequent analysis by NMR. This chapter describes in detail the protocol used in the authors' laboratory.
Collapse
Affiliation(s)
- Margit A Apponyi
- Research School of Chemistry, Australian National University, Canberra, Australia
| | | | | | | |
Collapse
|
63
|
Nomura SIM, Kondoh S, Asayama W, Asada A, Nishikawa S, Akiyoshi K. Direct preparation of giant proteo-liposomes by in vitro membrane protein synthesis. J Biotechnol 2007; 133:190-5. [PMID: 17900734 DOI: 10.1016/j.jbiotec.2007.08.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 07/22/2007] [Accepted: 08/03/2007] [Indexed: 11/29/2022]
Abstract
We investigated the direct constitution of membrane proteins into giant liposomes in cell-free (in vitro) protein synthesis. Giant liposomes were present in a translation reaction cocktail of a wheat germ cell-free protein translation system. Apo cytochrome b(5) (b5) and its fusion proteins were synthesized and directly localized in the liposomes. After the translation reaction, the proteo-liposomes were isolated by simplified discontinuous density-gradient centrifugation. Apo cytochrome b(5) conjugated dihydrofolate reductase (DHFR) was synthesized in the same procedure and the protein was directly displayed on the liposome surface. b5 acts as a "hydrophobic tag" for recruitment to the liposome surface.
Collapse
Affiliation(s)
- Shin-Ichiro M Nomura
- Institute of Biomaterials & Bioengineering, Tokyo Medical & Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
64
|
McCusker EC, Bane SE, O'Malley MA, Robinson AS. Heterologous GPCR expression: a bottleneck to obtaining crystal structures. Biotechnol Prog 2007; 23:540-7. [PMID: 17397185 DOI: 10.1021/bp060349b] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G protein-coupled receptors (GPCRs) are an important, medically relevant class of integral membrane proteins. Laboratories throughout all disciplines of science devote time and energy into developing practical methods for the discovery, isolation, and characterization of these proteins. Since the crystal structure of rhodopsin was solved 6 years ago, the race to determine high-resolution structures of more GPCRs has gained momentum. Since certain GPCRs are currently produced at sufficient levels for X-ray crystallography trials, it is speculated that heterologous expression of GPCRs may no longer be a bottleneck in obtaining crystal structures. This Review focuses on the current approaches in heterologous expression of GPCRs and explores the problems associated with obtaining crystal structures from GPCRs expressed in different systems. Although milligram amounts of certain GPCRs are attainable, the majority of GPCRs are still either produced at very low levels or not at all. Developing reliable expression techniques for GPCRs is still a major priority for the structural characterization of GPCRs.
Collapse
Affiliation(s)
- Emily C McCusker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | |
Collapse
|
65
|
Spencer KA, Osorio FA, Hiscox JA. Recombinant viral proteins for use in diagnostic ELISAs to detect virus infection. Vaccine 2007; 25:5653-9. [PMID: 17478017 PMCID: PMC7130988 DOI: 10.1016/j.vaccine.2007.02.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 02/15/2007] [Accepted: 02/19/2007] [Indexed: 12/22/2022]
Abstract
ELISAs provide a valuable tool in the detection and diagnosis of virus infection. The ability to produce recombinant viral proteins will ensure that future ELISAs are safe, specific and rapid. This latter point being the most crucial advantage in that even if a virus cannot be cultured, provided gene sequence is available, it is possible to rapidly respond to emerging viruses and new viral strains of existing pathogens. Indeed, ELISAs based on peptides (corresponding to epitopes) also hold great promise, as in this case no cloning or expression of a recombinant protein is required. Both recombinant protein and peptide based systems lend themselves to large scale production and purification. These approaches can also be used to distinguish recombinant vaccines from parental or wild type viruses.
Collapse
Affiliation(s)
- Kelly-Anne Spencer
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, UK
| | | | | |
Collapse
|