51
|
Chen S, Yang Q, Chen G, Zhang JH. An Update on Inflammation in the Acute Phase of Intracerebral Hemorrhage. Transl Stroke Res 2014; 6:4-8. [DOI: 10.1007/s12975-014-0384-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|
52
|
Zhao XR, Gonzales N, Aronowski J. Pleiotropic role of PPARγ in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-κB. CNS Neurosci Ther 2014; 21:357-66. [PMID: 25430543 DOI: 10.1111/cns.12350] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 10/10/2014] [Accepted: 10/11/2014] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke involving formation of hematoma within brain parenchyma, which accounts for 8-15% of all strokes in Western societies and 20-30% among Asian populations, and has a 1-year mortality rate >50%. The high mortality and severe morbidity make ICH a major public health problem. Only a few evidence-based targeted treatments are used for ICH management, and interventions focus primarily on supportive care and comorbidity prevention. Even in patients who survive the ictus, extravasated blood (including plasma components) and subsequent intrahematoma hemolytic products trigger a series of adverse events within the brain parenchyma, leading to secondary brain injury, edema and severe neurological deficits or death. Although the hematoma in humans gradually resolves within months, full restoration of neurological function can be slow and often incomplete, leaving survivors with devastating neurological deficits. During past years, peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor and its agonists received recognition as important players in regulating not only glucose and lipid metabolism (which underlies its therapeutic effect in type 2 diabetes mellitus), and more recently, as an instrumental pleiotropic regulator of antiinflammation, antioxidative regulation, and phagocyte-mediated cleanup processes. PPARγ agonists have emerged as potential therapeutic target for stroke. The use of PPARγ as a therapeutic target appears to have particularly strong compatibility toward pathogenic components of ICH. In addition to its direct genomic effect, PPARγ may interact with transcription factor, NF-κB, which may underlie many aspects of the antiinflammatory effect of PPARγ. Furthermore, PPARγ appears to regulate expression of Nrf2, another transcription factor and master regulator of detoxification and antioxidative regulation. Finally, the synergistic costimulation of PPARγ and retinoid X receptor, RXR, may play an additional role in the therapeutic modulation of PPARγ function. In this article, we outline the main components of the role of PPARγ in ICH pathogenesis.
Collapse
Affiliation(s)
- Xiu-Rong Zhao
- Department of Neurology, Stroke Research Center, University of Texas Medical School - Houston, Houston, TX, USA
| | | | | |
Collapse
|
53
|
Zhao X, Sun G, Ting SM, Song S, Zhang J, Edwards NJ, Aronowski J. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J Neurochem 2014; 133:144-52. [PMID: 25328080 DOI: 10.1111/jnc.12974] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/07/2014] [Accepted: 10/13/2014] [Indexed: 12/30/2022]
Abstract
As a consequence of intracerebral hemorrhage (ICH), blood components enter brain parenchyma causing progressive damage to the surrounding brain. Unless hematoma is cleared, the reservoirs of blood continue to inflict injury to neurovascular structures and blunt the brain repair processes. Microglia/macrophages (MMΦ) represent the primary phagocytic system that mediates the cleanup of hematoma. Thus, the efficacy of phagocytic function by MMΦ is an essential step in limiting ICH-mediated damage. Using primary microglia to model red blood cell (main component of hematoma) clearance, we studied the role of transcription factor nuclear factor-erythroid 2 p45-related factor 2 (Nrf2), a master-regulator of antioxidative defense, in the hematoma clearance process. We showed that in cultured microglia, activators of Nrf2 (i) induce antioxidative defense components, (ii) reduce peroxide formation, (iii) up-regulate phagocytosis-mediating scavenger receptor CD36, and (iv) enhance red blood cells (RBC) phagocytosis. Through inhibiting Nrf2 or CD36 in microglia, by DNA decoy or neutralizing antibody, we documented the important role of Nrf2 and CD36 in RBC phagocytosis. Using autologous blood injection ICH model to measure hematoma resolution, we showed that Nrf2 activator, sulforaphane, injected to animals after the onset of ICH, induced CD36 expression in ICH-affected brain and improved hematoma clearance in rats and wild-type mice, but expectedly not in Nrf2 knockout (KO) mice. Normal hematoma clearance was impaired in Nrf2-KO mice. Our experiments suggest that Nrf2 in microglia play an important role in augmenting the antioxidative capacity, phagocytosis, and hematoma clearance after ICH.
Collapse
Affiliation(s)
- Xiurong Zhao
- Stroke Program - Department of Neurology, University of Texas Health Science Center, Medical School at Houston, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Keep RF, Zhou N, Xiang J, Andjelkovic AV, Hua Y, Xi G. Vascular disruption and blood-brain barrier dysfunction in intracerebral hemorrhage. Fluids Barriers CNS 2014; 11:18. [PMID: 25120903 PMCID: PMC4130123 DOI: 10.1186/2045-8118-11-18] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/07/2014] [Indexed: 12/11/2022] Open
Abstract
This article reviews current knowledge of the mechanisms underlying the initial hemorrhage and secondary blood-brain barrier (BBB) dysfunction in primary spontaneous intracerebral hemorrhage (ICH) in adults. Multiple etiologies are associated with ICH, for example, hypertension, Alzheimer's disease, vascular malformations and coagulopathies (genetic or drug-induced). After the initial bleed, there can be continued bleeding over the first 24 hours, so-called hematoma expansion, which is associated with adverse outcomes. A number of clinical trials are focused on trying to limit such expansion. Significant progress has been made on the causes of BBB dysfunction after ICH at the molecular and cell signaling level. Blood components (e.g. thrombin, hemoglobin, iron) and the inflammatory response to those components play a large role in ICH-induced BBB dysfunction. There are current clinical trials of minimally invasive hematoma removal and iron chelation which may limit such dysfunction. Understanding the mechanisms underlying the initial hemorrhage and secondary BBB dysfunction in ICH is vital for developing methods to prevent and treat this devastating form of stroke.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA ; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Ningna Zhou
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA ; Department of Pharmacology, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
55
|
Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 2014; 115:45-63. [PMID: 24139872 PMCID: PMC3961535 DOI: 10.1016/j.pneurobio.2013.09.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common and often fatal stroke subtype for which specific therapies and treatments remain elusive. To address this, many recent experimental and translational studies of ICH have been conducted, and these have led to several ongoing clinical trials. This review focuses on the progress of translational studies of ICH including those of the underlying causes and natural history of ICH, animal models of the condition, and effects of ICH on the immune and cardiac systems, among others. Current and potential clinical trials also are discussed for both ICH alone and with intraventricular extension.
Collapse
Affiliation(s)
- Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States.
| | - Jennifer Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
56
|
Sonni S, Lioutas VA, Selim MH. New avenues for treatment of intracranial hemorrhage. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2013; 16:277. [PMID: 24366522 DOI: 10.1007/s11936-013-0277-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OPINION STATEMENT The mortality and morbidity from intracerebral hemorrhage (ICH) remain high despite advances in medical, neurologic, and surgical care during the past decade. The lessons learned from previous therapeutic trials in ICH, improved understanding of the pathophysiology of neuronal injury after ICH, and advances in imaging and pre-hospital assessment technologies provide optimism that more effective therapies for ICH are likely to emerge in the coming years. The potential new avenues for the treatment of ICH include a combination of increased utilization of minimally invasive surgical techniques with or without thrombolytic usage to evacuate or reduce the size of the hematoma; utilization of advanced imaging to improve selection of patients who are likely to benefit from reversal of coagulopathy or hemostatic therapy; ultra-early diagnosis and initiation of therapy in the ambulance; and the use of novel drugs to target the secondary injury mechanisms, including the inflammatory cascade, perihematomal edema reduction, and hemoglobin degradation products-mediated toxicity.
Collapse
Affiliation(s)
- Shruti Sonni
- Department of Neurology, Cambridge Hospital, 1493 Cambridge Street, Cambridge, MA, 02139, USA,
| | | | | |
Collapse
|
57
|
Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol 2013; 115:25-44. [PMID: 24291544 DOI: 10.1016/j.pneurobio.2013.11.003] [Citation(s) in RCA: 459] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023]
Abstract
Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes and is associated with high mortality and morbidity. Currently, no effective medical treatment is available to improve functional outcomes in patients with ICH. Potential therapies targeting secondary brain injury are arousing a great deal of interest in translational studies. Increasing evidence has shown that inflammation is the key contributor of ICH-induced secondary brain injury. Inflammation progresses in response to various stimuli produced after ICH. Hematoma components initiate inflammatory signaling via activation of microglia, subsequently releasing proinflammatory cytokines and chemokines to attract peripheral inflammatory infiltration. Hemoglobin (Hb), heme, and iron released after red blood cell lysis aggravate ICH-induced inflammatory injury. Danger associated molecular patterns such as high mobility group box 1 protein, released from damaged or dead cells, trigger inflammation in the late stage of ICH. Preclinical studies have identified inflammatory signaling pathways that are involved in microglial activation, leukocyte infiltration, toll-like receptor (TLR) activation, and danger associated molecular pattern regulation in ICH. Recent advances in understanding the pathogenesis of ICH-induced inflammatory injury have facilitated the identification of several novel therapeutic targets for the treatment of ICH. This review summarizes recent progress concerning the mechanisms underlying ICH-induced inflammation. We focus on the inflammatory signaling pathways involved in microglial activation and TLR signaling, and explore potential therapeutic interventions by targeting the removal of hematoma components and inhibition of TLR signaling.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Yanchun Wang
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - Jian Wang
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | - R Anne Stetler
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
58
|
Affiliation(s)
- Daniel F Hanley
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, 1550 Orleans Street, Baltimore, MD 21231, USA.
| | | | | | | | | |
Collapse
|
59
|
Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 2012; 11:720-31. [PMID: 22698888 DOI: 10.1016/s1474-4422(12)70104-7] [Citation(s) in RCA: 950] [Impact Index Per Article: 73.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intracerebral haemorrhage accounts for about 10-15% of all strokes and is associated with high mortality and morbidity. No successful phase 3 clinical trials for this disorder have been completed. In the past 6 years, the number of preclinical and clinical studies focused on intracerebral haemorrhage has risen. Important advances have been made in animal models of this disorder and in our understanding of mechanisms underlying brain injury after haemorrhage. Several therapeutic targets have subsequently been identified that are now being pursued in clinical trials. Many clinical trials have been based on limited preclinical data, and guidelines to justify taking preclinical results to the clinic are needed.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
60
|
Rincon F, Mayer SA. Intracerebral hemorrhage: clinical overview and pathophysiologic concepts. Transl Stroke Res 2012; 3:10-24. [PMID: 24323860 DOI: 10.1007/s12975-012-0175-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 10/28/2022]
Abstract
Intracerebral hemorrhage is by far the most destructive form of stroke. Apart from the management in a specialized stroke or neurological intensive care unit (NICU), no specific therapies have been shown to consistently improve outcomes after ICH. Current guidelines endorse early aggressive optimization of physiologic derangements with ventilatory support when indicated, blood pressure control, reversal of any preexisting coagulopathy, intracranial pressure monitoring for certain cases, osmotherapy, temperature modulation, seizure prophylaxis, treatment of hyerglycemia, and nutritional support in the stroke unit or NICU. Ventriculostomy is the cornerstone of therapy for control of intracranial pressure patients with intraventricular hemorrhage. Surgical hematoma evacuation does not improve outcome for more patients, but is a reasonable option for patients with early worsening due to mass effect due to large cerebellar or lobar hemorrhages. Promising experimental treatments currently include ultra-early hemostatic therapy, intraventricular clot lysis with thrombolytics, pioglitazone, temperature modulation, and deferoxamine to reduce iron-mediated perihematomal inflammation and tissue injury.
Collapse
Affiliation(s)
- Fred Rincon
- Department of Neurology and Neurosurgery, Division of Critical Care and Neurotrauma, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
61
|
Abstract
Intracerebral hemorrhage (ICH) imparts a higher mortality and morbidity than ischemic stroke. The therapeutic interventions that are currently available focus mainly on supportive care and secondary prevention. There is a paucity of evidence to support any one acute intervention that improves functional outcome. This chapter highlights current treatment targets for ICH based on the pathophysiology of the disease.
Collapse
Affiliation(s)
- Navdeep Sangha
- Department of Neurology, University of Texas Medical School-UT Health, 6431 Fannin, MSB 7.118, Houston, TX 77030 USA
| | - Nicole R. Gonzales
- Department of Neurology, University of Texas Medical School-UT Health, 6431 Fannin, MSB 7.118, Houston, TX 77030 USA
| |
Collapse
|