51
|
|
52
|
Adhesive interactions between milk fat globule membrane and Lactobacillus rhamnosus GG inhibit bacterial attachment to Caco-2 TC7 intestinal cell. Colloids Surf B Biointerfaces 2018; 167:44-53. [DOI: 10.1016/j.colsurfb.2018.03.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/07/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
|
53
|
Petrova MI, Macklaim JM, Wuyts S, Verhoeven T, Vanderleyden J, Gloor GB, Lebeer S, Reid G. Comparative Genomic and Phenotypic Analysis of the Vaginal Probiotic Lactobacillus rhamnosus GR-1. Front Microbiol 2018; 9:1278. [PMID: 29963028 PMCID: PMC6013579 DOI: 10.3389/fmicb.2018.01278] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/25/2018] [Indexed: 11/28/2022] Open
Abstract
Lactobacillus represents a versatile bacterial genus, which can adapt to a wide variety of ecological niches, including human body sites such as the intestinal and urogenital tract. In this study, the complete genome sequence of the vaginal probiotic Lactobacillus rhamnosus GR-1 was determined and compared to other L. rhamnosus strains at genomic and phenotypic level. The strain GR-1 was originally isolated from a female urethra, and was assessed with L. rhamnosus GG from a feces sample of a healthy male, and L. rhamnosus LC705 from a dairy product. A key difference is the absence in GR-1 and LC705 of the spaCBA locus required for pili-mediated intestinal epithelial adhesion. In addition, the L. rhamnosus GR-1 genome contains a unique cluster for exopolysaccharide production, which is postulated to synthesize glucose-rich, rhamnose-lacking exopolysaccharide molecules that are different from the galactose-rich extracellular polysaccharide of L. rhamnosus GG. Compared to L. rhamnosus GG, L. rhamnosus GR-1 was also genetically predicted and experimentally shown to better metabolize lactose and maltose, and to better withstand oxidative stress, which is of relevance in the vagina. This study could thus provide a molecular framework for the selection of the optimal probiotic strain for each targeted niche and condition, but further substantiation of niche adaptation mechanisms of lactobacilli is warranted.
Collapse
Affiliation(s)
- Mariya I. Petrova
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Jean M. Macklaim
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Sander Wuyts
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Tine Verhoeven
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Jos Vanderleyden
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Gregory B. Gloor
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Sarah Lebeer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Gregor Reid
- Canadian Research and Development Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, The University of Western Ontario, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Department of Surgery, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
54
|
Coleman OI, Haller D. Bacterial Signaling at the Intestinal Epithelial Interface in Inflammation and Cancer. Front Immunol 2018; 8:1927. [PMID: 29354132 PMCID: PMC5760496 DOI: 10.3389/fimmu.2017.01927] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal (GI) tract provides a compartmentalized interface with an enormous repertoire of immune and metabolic activities, where the multicellular structure of the mucosa has acquired mechanisms to sense luminal factors, such as nutrients, microbes, and a variety of host-derived and microbial metabolites. The GI tract is colonized by a complex ecosystem of microorganisms, which have developed a highly coevolved relationship with the host’s cellular and immune system. Intestinal epithelial pattern recognition receptors (PRRs) substantially contribute to tissue homeostasis and immune surveillance. The role of bacteria-derived signals in intestinal epithelial homeostasis and repair has been addressed in mouse models deficient in PRRs and signaling adaptors. While critical for host physiology and the fortification of barrier function, the intestinal microbiota poses a considerable health challenge. Accumulating evidence indicates that dysbiosis is associated with the pathogenesis of numerous GI tract diseases, including inflammatory bowel diseases (IBD) and colorectal cancer (CRC). Aberrant signal integration at the epithelial cell level contributes to such diseases. An increased understanding of bacterial-specific structure recognition and signaling mechanisms at the intestinal epithelial interface is of great importance in the translation to future treatment strategies. In this review, we summarize the growing understanding of the regulation and function of the intestinal epithelial barrier, and discuss microbial signaling in the dynamic host–microbe mutualism in both health and disease.
Collapse
Affiliation(s)
| | - Dirk Haller
- Technical University of Munich, Munich, Germany.,ZIEL-Institute for Food & Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
55
|
Konstantinov SR. Diet, microbiome, and colorectal cancer. Best Pract Res Clin Gastroenterol 2017; 31:675-681. [PMID: 29566911 DOI: 10.1016/j.bpg.2017.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/03/2017] [Indexed: 01/31/2023]
Abstract
The scientific interests in the colorectal cancer (CRC) associated microbiome have increased significantly in the past decade. Mechanistically, several members of the human microbiome and products thereof have been implicated as inductors of the pathogenic inflammation related to CRC. Conversely, the activities of the human intestinal microbial community influenced by specific diet might confer a protective effect against the CRC risks and progression. As the microbiome is both a key contributor and one of the tools to prevent CRC, the current review gives a summary of the CRC-associated microbiome and the dietary strategies relevant to CRC. As more evidences become available, new microbiome-based treatments and specific diets may emerge to reduce the CRC risk and improve CRC patients' quality of life.
Collapse
Affiliation(s)
- Sergey R Konstantinov
- Department of Gasteroenterology and Hepatology, Erasmus MC - University Medical Center Rotterdam, 's Gravendijkwal 230, NL-3015, CE Rotterdam, The Netherlands.
| |
Collapse
|
56
|
Gao K, Wang C, Liu L, Dou X, Liu J, Yuan L, Zhang W, Wang H. Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 50:700-713. [DOI: 10.1016/j.jmii.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 12/13/2022]
|
57
|
|
58
|
Abstract
The human intestine harbors a dense microbial ecosystem (microbiota) that is different between individuals, dynamic over time, and critical for aspects of health and disease. Dietary polysaccharides directly shape the microbiota because of a gap in human digestive physiology, which is equipped to assimilate only proteins, lipids, simple sugars, and starch, leaving nonstarch polysaccharides as major nutrients reaching the microbiota. A mutualistic role of gut microbes is to digest dietary complex carbohydrates, liberating host-absorbable energy via fermentation products. Emerging data indicate that polysaccharides play extensive roles in host-gut microbiota symbiosis beyond dietary polysaccharide digestion, including microbial interactions with endogenous host glycans and the importance of microbial polysaccharides. In this review, we consider multiple mechanisms through which polysaccharides mediate aspects of host-microbe symbiosis in the gut, including some affecting health. As host and microbial metabolic pathways are intimately connected with diet, we highlight the potential to manipulate this system for health.
Collapse
Affiliation(s)
- Nathan T Porter
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| | - Eric C Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| |
Collapse
|
59
|
Birch J, Harðarson HK, Khan S, Van Calsteren MR, Ipsen R, Garrigues C, Almdal K, Hachem MA, Svensson B. Effect of repeat unit structure and molecular mass of lactic acid bacteria hetero-exopolysaccharides on binding to milk proteins. Carbohydr Polym 2017; 177:406-414. [PMID: 28962786 DOI: 10.1016/j.carbpol.2017.08.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 07/03/2017] [Accepted: 08/10/2017] [Indexed: 01/05/2023]
Abstract
Interactions of exopolysaccharides and proteins are of great importance in food science, but complicated to analyze and quantify at the molecular level. A surface plasmon resonance procedure was established to characterize binding of seven structure-determined, branched hetero-exopolysaccharides (HePSs) of 0.14-4.9MDa from lactic acid bacteria to different milk proteins (β-casein, κ-casein, native and heat-treated β-lactoglobulin) at pH 4.0-5.0. Maximum binding capacity (RUmax) and apparent affinity (KA,app) were HePS- and protein-dependent and varied for example 10- and 600-fold, respectively, in the complexation with native β-lactoglobulin at pH 4.0. Highest RUmax and KA,app were obtained with heat-treated β-lactoglobulin and β-casein, respectively. Overall, RUmax and KA,app decreased 6- and 20-fold, respectively, with increasing pH from 4.0 to 5.0. KA,app was influenced by ionic strength and temperature, indicating that polar interactions stabilize HePS-protein complexes. HePS size as well as oligosaccharide repeat structure, conferring chain flexibility and hydrogen bonding potential, influence the KA,app.
Collapse
Affiliation(s)
- Johnny Birch
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Elektrovej, building 375, DK-2800 Kgs. Lyngby, Denmark.
| | - Hörður Kári Harðarson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Elektrovej, building 375, DK-2800 Kgs. Lyngby, Denmark.
| | - Sanaullah Khan
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, building 423, DK-2800 Kgs. Lyngby, Denmark.
| | - Marie-Rose Van Calsteren
- Saint-Hyacinthe Research and Development Centre, Agriculture and Agri-Food Canada, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec J2S 8E3, Canada.
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| | | | - Kristoffer Almdal
- Department of Micro- and Nanotechnology, Technical University of Denmark, Produktionstorvet, building 423, DK-2800 Kgs. Lyngby, Denmark.
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Elektrovej, building 375, DK-2800 Kgs. Lyngby, Denmark.
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Elektrovej, building 375, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
60
|
Castro-Bravo N, Hidalgo-Cantabrana C, Rodriguez-Carvajal MA, Ruas-Madiedo P, Margolles A. Gene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis. Front Microbiol 2017; 8:1405. [PMID: 28790996 PMCID: PMC5524739 DOI: 10.3389/fmicb.2017.01405] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
An extracellular layer of exopolysaccharides (EPS) covers the surface of some Bifidobacterium animalis subsp. lactis strains, which could be of relevance for its probiotic performance. In order to understand the functional characteristics of B. animalis subsp. lactis, two isogenic strains that differ in their EPS-producing phenotype, due to a single mutation in the gene Balat_1410, were studied. By means of a double crossover recombination strategy, successfully used for the first time in bifidobacteria, Balat_1410 in the type strain B. animalis subsp. lactis DSM10140 was replaced by a mutated gene containing a non-synonymous mutation previously associated with the appearance of a mucoid-ropy phenotype. Nuclear magnetic resonance and SEC-MALS analyses showed that the novel strain harboring the mutation acquired a ropy phenotype, due to the production of a high molecular weight (HMW)-EPS that is not produced in the wild-type strain. Fluorescence labeling of both strains with two fluorescent proteins, m-Cherry and Green Fluorescent Protein, was achieved by expressing the corresponding genes under the control of a native selected promoter (the elongation factor Tu promoter). Remarkably, qualitative and quantitative fluorescence analyses demonstrated that the ropy strain displays a lower capability to adhere to human intestinal epithelial cells. In addition, the presence of the HMW-EPS reduced the capability of the producing strain to form biofilms upon three different abiotic surfaces. This work also highlights the fact that different EPS confer variable functional characteristics to the bifidobacterial surface, which may be relevant for the performance of B. animalis subsp. lactis as a probiotic. The construction of molecular tools allowing the functional characterization of surface structures in next generation probiotics is still a challenging issue that deserves further attention, given the relevant role that such molecules must play in the interaction with the host.
Collapse
Affiliation(s)
- Nuria Castro-Bravo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Claudio Hidalgo-Cantabrana
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | | | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| |
Collapse
|
61
|
Sungur T, Aslim B, Karaaslan C, Aktas B. Impact of Exopolysaccharides (EPSs) of Lactobacillus gasseri strains isolated from human vagina on cervical tumor cells (HeLa). Anaerobe 2017; 47:137-144. [PMID: 28554813 DOI: 10.1016/j.anaerobe.2017.05.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/03/2017] [Accepted: 05/23/2017] [Indexed: 12/29/2022]
Abstract
Lactobacilli, commonly used as probiotics, have been shown to maintain vaginal health and contribute to host microbiota interaction. Exopolysaccharides (EPSs) produced by lactobacillus have been found to have an important role in probiotic activity; however, there is limited knowledge concerning their impact on cervical cancer and urogenital health. The objective of this study is to investigate and compare EPSs of L. gasseri strains (G10 and H15), isolated from a healthy human vagina, for their capability to inhibit cervical cancer cell (HeLa) growth and modulate immune response. HeLa cells were treated with live culture at ∼108 CFU/ml or increasing concentration of lyophilized EPS (L-EPS) (100, 200, or 400 μg/ml) of L. gasseri strains and their ability to adhere to host cells, inhibit proliferation, and modulate immune response were evaluated. Additionally, monosaccharide composition of the L-EPSs produced by L. gasseri strains was determined by HPLC. The sugar component was the same; however, relative proportions of the individual monosaccharides except mannose were different. Although they both produce similar amount of EPS, the most adhesive strain was G10. Both live and L-EPS of L. gasseri strains were capable of inhibiting the cell proliferation of HeLa cells with the impact of L-EPS being strain specific. L-EPSs of L. gasseri strains induced apoptosis in HeLa cells in a strain dependent manner. The ability to induce apoptosis by G10 associated with an upregulation of Bax and Caspase 3. L. gasseri strains showed an anti-inflammatory impact on HeLa cells by decreasing the production of TNF-α and increasing the IL-10 production. In conclusion, diversity in sugar composition of EPS might contribute to adhesion and proliferation properties. Although our results suggest a relationship between the ability of a strain to induce apoptosis and its sugar composition of EPS, further research is required to determine the probiotic mechanisms of action by which L. gasseri strains result in strain specific anti-proliferative activity.
Collapse
Affiliation(s)
- Tolga Sungur
- Department of Biology, Gazi University, Ankara, Turkey
| | - Belma Aslim
- Department of Biology, Gazi University, Ankara, Turkey
| | | | - Busra Aktas
- Department of Biology, Mehmet Akif Ersoy University, Burdur, Turkey.
| |
Collapse
|
62
|
Arena MP, Capozzi V, Spano G, Fiocco D. The potential of lactic acid bacteria to colonize biotic and abiotic surfaces and the investigation of their interactions and mechanisms. Appl Microbiol Biotechnol 2017; 101:2641-2657. [PMID: 28213732 DOI: 10.1007/s00253-017-8182-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 12/23/2022]
Abstract
Lactic acid bacteria (LAB) are a heterogeneous group of Gram-positive bacteria that comprise several species which have evolved in close association with humans (food and lifestyle). While their use to ferment food dates back to very ancient times, in the last decades, LAB have attracted much attention for their documented beneficial properties and for potential biomedical applications. Some LAB are commensal that colonize, stably or transiently, host mucosal surfaces, inlcuding the gut, where they may contribute to host health. In this review, we present and discuss the main factors enabling LAB adaptation to such lifestyle, including the gene reprogramming accompanying gut colonization, the specific bacterial components involved in adhesion and interaction with host, and how the gut niche has shaped the genome of intestine-adapted species. Moreover, the capacity of LAB to colonize abiotic surfaces by forming structured communities, i.e., biofilms, is briefly discussed, taking into account the main bacterial and environmental factors involved, particularly in relation to food-related environments. The vast spread of LAB surface-associated communities and the ability to control their occurrence hold great potentials for human health and food safety biotechnologies.
Collapse
Affiliation(s)
- Mattia Pia Arena
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, via Napoli 25, 71122, Foggia, Italy.
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| |
Collapse
|
63
|
Salazar N, Gueimonde M, de Los Reyes-Gavilán CG, Ruas-Madiedo P. Exopolysaccharides Produced by Lactic Acid Bacteria and Bifidobacteria as Fermentable Substrates by the Intestinal Microbiota. Crit Rev Food Sci Nutr 2017; 56:1440-53. [PMID: 25675369 DOI: 10.1080/10408398.2013.770728] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functional food market, including products formulated to maintain a "healthy" gut microbiota, i.e. probiotics and prebiotics, has increased enormously since the end of the last century. In order to favor the competitiveness of this sector, as well as to increase our knowledge of the mechanisms of action upon human health, new probiotic strains and prebiotic substrates are being studied. This review discusses the use of exopolysaccharides (EPS), both homopolysaccharides (HoPS) and heteropolysaccharides (HePS), synthesized by lactic acid bacteria and bifidobacteria as potential prebiotics. These extracellular carbohydrate polymers synthesized by some gut inhabitants seem to be resistant to gastrointestinal digestion; these are susceptible as well to biodegradability by the intestinal microbiota depending on both the physicochemical characteristics of EPS and the pool of glycolytic enzymes harbored by microbiota. Therefore, although the chemical composition of these HoPS and HePS is different, both can be fermentable substrates by intestinal inhabitants and good candidates as prebiotic substrates. However, there are limitations for their use as additives in the food industry due to, on the one hand, their low production yield and, on the other hand, a lack of clinical studies demonstrating the functionality of these biopolymers.
Collapse
Affiliation(s)
- Nuria Salazar
- a Department of Microbiology and Biochemistry of Dairy Products , Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC) , Villaviciosa , Asturias , Spain
| | - Miguel Gueimonde
- a Department of Microbiology and Biochemistry of Dairy Products , Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC) , Villaviciosa , Asturias , Spain
| | - Clara G de Los Reyes-Gavilán
- a Department of Microbiology and Biochemistry of Dairy Products , Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC) , Villaviciosa , Asturias , Spain
| | - Patricia Ruas-Madiedo
- a Department of Microbiology and Biochemistry of Dairy Products , Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC) , Villaviciosa , Asturias , Spain
| |
Collapse
|
64
|
A Novel Rhamnose-Rich Hetero-exopolysaccharide Isolated from Lactobacillus paracasei DG Activates THP-1 Human Monocytic Cells. Appl Environ Microbiol 2017; 83:AEM.02702-16. [PMID: 27913418 DOI: 10.1128/aem.02702-16] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/06/2016] [Indexed: 12/23/2022] Open
Abstract
Lactobacillus paracasei DG is a bacterial strain with recognized probiotic properties and is used in commercial probiotic products. However, the mechanisms underlying its probiotic properties are mainly unknown. In this study, we tested the hypothesis that the ability of strain DG to interact with the host is at least partly associated with its ability to synthesize a surface-associated exopolysaccharide (EPS). Comparative genomics revealed the presence of putative EPS gene clusters in the DG genome; accordingly, EPS was isolated from the surface of the bacterium. A sample of the pure EPS from strain DG (DG-EPS), upon nuclear magnetic resonance (NMR) and chemical analyses, was shown to be a novel branched hetero-EPS with a repeat unit composed of l-rhamnose, d-galactose, and N-acetyl-d-galactosamine in a ratio of 4:1:1. Subsequently, we demonstrated that DG-EPS displays immunostimulating properties by enhancing the gene expression of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), and particularly that of the chemokines IL-8 and CCL20, in the human monocytic cell line THP-1. In contrast, the expression of the cyclooxygenase enzyme COX-2 was not affected. In conclusion, DG-EPS is a bacterial macromolecule with the ability to boost the immune system either as a secreted molecule released from the bacterium or as a capsular envelope on the bacterial cell wall. This study provides additional information about the mechanisms supporting the cross talk between L. paracasei DG and the host. IMPORTANCE The consumption of food products and supplements called probiotics (i.e., containing live microbial cells) to potentially prevent or treat specific diseases is constantly gaining popularity. The lack of knowledge on the precise mechanisms supporting their potential health-promoting properties, however, greatly limits a more appropriate use of each single probiotic strain. In this context, we studied a well-known probiotic, Lactobacillus paracasei DG, in order to identify the constitutive molecules that can explain the documented health-promoting properties of this bacterium. We found a novel polysaccharide molecule, named DG-EPS, that is secreted by and covers the bacterium. We demonstrated that this molecule, which has a chemical structure never identified before, has immunostimulatory properties and therefore may contribute to the ability of the probiotic L. paracasei DG to interact with the immune system.
Collapse
|
65
|
Chan YK, Brar MS, Kirjavainen PV, Chen Y, Peng J, Li D, Leung FCC, El-Nezami H. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE -/- mice. BMC Microbiol 2016; 16:264. [PMID: 27821063 PMCID: PMC5100306 DOI: 10.1186/s12866-016-0883-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 10/29/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. METHODS Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE-/-) mice. LGG or TLM supplementation to HF diet was studied. RESULTS Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. CONCLUSION LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.
Collapse
Affiliation(s)
- Yee Kwan Chan
- 5S12, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Manreetpal Singh Brar
- 5N01, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
| | - Pirkka V Kirjavainen
- Food and Research Health Centre, University of Eastern Finland, Joensuu, Finland
| | - Yan Chen
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Jiao Peng
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Daxu Li
- L943, Laboratory Block, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Frederick Chi-Ching Leung
- 5N01, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Hani El-Nezami
- 5S12, Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong. .,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland. .,5S13, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
66
|
do Carmo MS, Noronha FMF, Arruda MO, Costa ÊPDS, Bomfim MRQ, Monteiro AS, Ferro TAF, Fernandes ES, Girón JA, Monteiro-Neto V. Lactobacillus fermentum ATCC 23271 Displays In vitro Inhibitory Activities against Candida spp. Front Microbiol 2016; 7:1722. [PMID: 27833605 PMCID: PMC5082230 DOI: 10.3389/fmicb.2016.01722] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/13/2016] [Indexed: 11/13/2022] Open
Abstract
Lactobacilli are involved in the microbial homeostasis in the female genital tract. Due to the high prevalence of many bacterial diseases of the female genital tract and the resistance of microorganisms to various antimicrobial agents, alternative means to control these infections are necessary. Thus, this study aimed to evaluate the probiotic properties of well-characterized Lactobacillus species, including L. acidophilus (ATCC 4356), L. brevis (ATCC 367), L. delbrueckii ssp. delbrueckii (ATCC 9645), L. fermentum (ATCC 23271), L. paracasei (ATCC 335), L. plantarum (ATCC 8014), and L. rhamnosus (ATCC 9595), against Candida albicans (ATCC 18804), Neisseria gonorrhoeae (ATCC 9826), and Streptococcus agalactiae (ATCC 13813). The probiotic potential was investigated by using the following criteria: (i) adhesion to host epithelial cells and mucus, (ii) biofilm formation, (iii) co-aggregation with bacterial pathogens, (iv) inhibition of pathogen adhesion to mucus and HeLa cells, and (v) antimicrobial activity. Tested lactobacilli adhered to mucin, co-aggregated with all genital microorganisms, and displayed antimicrobial activity. With the exception of L. acidophilus and L. paracasei, they adhered to HeLa cells. However, only L. fermentum produced a moderate biofilm and a higher level of co-aggregation and mucin binding. The displacement assay demonstrated that all Lactobacillus strains inhibit C. albicans binding to mucin (p < 0.001), likely due to the production of substances with antimicrobial activity. Clinical isolates belonging to the most common Candida species associated to vaginal candidiasis were inhibited by L. fermentum. Collectively, our data suggest that L. fermentum ATCC 23271 is a potential probiotic candidate, particularly to complement candidiasis treatment, since presented with the best probiotic profile in comparison with the other tested lactobacilli strains.
Collapse
Affiliation(s)
- Monique S do Carmo
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão São Luís, Brazil
| | | | - Mariana O Arruda
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do Maranhão São Luís, Brazil
| | | | - Maria R Q Bomfim
- Centro de Ciências da Saúde, Universidade CEUMA São Luís, Brazil
| | | | - Thiago A F Ferro
- Centro de Ciências da Saúde, Universidade CEUMA São Luís, Brazil
| | - Elizabeth S Fernandes
- Centro de Ciências da Saúde, Universidade CEUMASão Luís, Brazil; Vascular Biology and Inflammation Section, Cardiovascular Division, King's College LondonLondon, UK
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla Puebla, Mexico
| | - Valério Monteiro-Neto
- Centro de Ciências Biológicas e da Saúde, Universidade Federal do MaranhãoSão Luís, Brazil; Centro de Ciências da Saúde, Universidade CEUMASão Luís, Brazil
| |
Collapse
|
67
|
Sarikaya H, Aslim B, Yuksekdag Z. Assessment of anti-biofilm activity and bifidogenic growth stimulator (BGS) effect of lyophilized exopolysaccharides (l-EPSs) from Lactobacilli strains. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1160923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Halime Sarikaya
- Gazi University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, Ankara, Turkey
| | - Zehranur Yuksekdag
- Gazi University, Faculty of Science, Department of Biology, Ankara, Turkey
| |
Collapse
|
68
|
Górska S, Hermanova P, Ciekot J, Schwarzer M, Srutkova D, Brzozowska E, Kozakova H, Gamian A. Chemical characterization and immunomodulatory properties of polysaccharides isolated from probiotic Lactobacillus casei LOCK 0919. Glycobiology 2016; 26:1014-1024. [PMID: 27102285 PMCID: PMC5045530 DOI: 10.1093/glycob/cww047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023] Open
Abstract
The Lactobacillus casei strain, LOCK 0919, is intended for the dietary management of food allergies and atopic dermatitis (LATOPIC® BIOMED). The use of a probiotic to modulate immune responses is an interesting strategy for solving imbalance problems of gut microflora that may lead to various disorders. However, the exact bacterial signaling mechanisms underlying such modulations are still far from being understood. Here, we investigated variations in the chemical compositions and immunomodulatory properties of the polysaccharides (PS), L919/A and L919/B, which are produced by L. casei LOCK 0919. By virtue of their chemical features, such PS can modulate the immune responses to third-party antigens. Our results revealed that L919/A and L919/B could both modulate the immune response to Lactobacillus planatarum WCFS1, but only L919/B could alter the response of THP-1 cells (in terms of tumor necrosis factor alpha production) to L. planatarum WCFS1 and Escherichia coli Nissle 1917. The comprehensive immunochemical characterization is crucial for the understanding of the biological function as well as of the bacteria-host and bacteria-bacteria cross-talk.
Collapse
Affiliation(s)
- Sabina Górska
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland,
| | - Petra Hermanova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v. v. i., 549 22 Novy Hradek, Czech Republic
| | - Jarosław Ciekot
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v. v. i., 549 22 Novy Hradek, Czech Republic
| | - Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v. v. i., 549 22 Novy Hradek, Czech Republic
| | - Ewa Brzozowska
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology, Academy of Sciences of the Czech Republic, v. v. i., 549 22 Novy Hradek, Czech Republic
| | - Andrzej Gamian
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
69
|
|
70
|
Strain-Specific Features of Extracellular Polysaccharides and Their Impact on Lactobacillus plantarum-Host Interactions. Appl Environ Microbiol 2016; 82:3959-3970. [PMID: 27107126 DOI: 10.1128/aem.00306-16] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/19/2016] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Lactobacilli are found in diverse environments and are widely applied as probiotic, health-promoting food supplements. Polysaccharides are ubiquitously present on the cell surface of lactobacilli and are considered to contribute to the species- and strain-specific probiotic effects that are typically observed. Two Lactobacillus plantarum strains, SF2A35B and Lp90, have an obvious ropy phenotype, implying high extracellular polysaccharide (EPS) production levels. In this work, we set out to identify the genes involved in EPS production in these L. plantarum strains and to demonstrate their role in EPS production by gene deletion analysis. A model L. plantarum strain, WCFS1, and its previously constructed derivative that produced reduced levels of EPS were included as reference strains. The constructed EPS-reduced derivatives were analyzed for the abundance and sugar compositions of their EPS, revealing cps2-like gene clusters in SF2A35B and Lp90 responsible for major EPS production. Moreover, these mutant strains were tested for phenotypic characteristics that are of relevance for their capacity to interact with the host epithelium in the intestinal tract, including bacterial surface properties as well as survival under the stress conditions encountered in the gastrointestinal tract (acid and bile stress). In addition, the Toll-like receptor 2 (TLR2) signaling and immunomodulatory capacities of the EPS-negative derivatives and their respective wild-type strains were compared, revealing strain-specific impacts of EPS on the immunomodulatory properties. Taken together, these experiments illustrate the importance of EPS in L. plantarum strains as a strain-specific determinant in host interaction. IMPORTANCE This study evaluates the role of extracellular polysaccharides that are produced by different strains of Lactobacillus plantarum in the determination of the cell surface properties of these bacteria and their capacity to interact with their environment, including their signaling to human host cells. The results clearly show that the consequences of removal of these polysaccharides are very strain specific, illustrating the diverse and unpredictable roles of these polysaccharides in the environmental interactions of these bacterial strains. In the context of the use of lactobacilli as health-promoting probiotic organisms, this study exemplifies the importance of strain specificity.
Collapse
|
71
|
Hidalgo-Cantabrana C, Algieri F, Rodriguez-Nogales A, Vezza T, Martínez-Camblor P, Margolles A, Ruas-Madiedo P, Gálvez J. Effect of a Ropy Exopolysaccharide-Producing Bifidobacterium animalis subsp. lactis Strain Orally Administered on DSS-Induced Colitis Mice Model. Front Microbiol 2016; 7:868. [PMID: 27375589 PMCID: PMC4900019 DOI: 10.3389/fmicb.2016.00868] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 05/23/2016] [Indexed: 01/26/2023] Open
Abstract
Exopolysaccharide (EPS)-producing bifidobacteria, particularly Bifidobacterium animalis subsp. lactis strains, are used in the functional food industry as promising probiotics with purported beneficial effects. We used three isogenic strains of B. animalis subsp. lactis, with different EPS producing phenotypes (mucoid-ropy and non-ropy), in order to determine their capability to survive the murine gastrointestinal tract transit, as well as to evaluate their role in improving clinical outcomes in a chemically-induced colitis model. The three strains were able to survive in the intestinal tract of C57BL/6J mice during the course of the intervention study. Furthermore, the disease activity index (DAI) of the animal group treated with the ropy strain was significantly lower than of the DAI of the placebo group at the end of the treatment. However, no significant differences were found among the three strains. The analysis of several immune parameters, such as TNFα and IL-10 quantified in blood plasma and lymphocyte populations enumerated in mesenteric nodes, showed some significant variations among the four experimental animal groups. Remarkably, a higher capability of the ropy strain to increase regulatory T-cells in mesenteric lymphoid nodes was demonstrated, suggesting a higher ability of this strain to regulate inflammatory responses at mucosal level. Our data indicate that strains of B. animalis subsp. lactis producing EPS that confer a mucoid-ropy phenotype could represent promising candidates to perform further studies targeting intestinal inflammatory processes.
Collapse
Affiliation(s)
- Claudio Hidalgo-Cantabrana
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Alba Rodriguez-Nogales
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| | - Pablo Martínez-Camblor
- Geisel School of Medicine at DartmouthHanover, NH, USA
- Universidad Autónoma de ChileSantiago, Chile
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias – Consejo Superior de Investigaciones CientíficasVillaviciosa, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, ibs.GRANADA, Center for Biomedical Research, University of GranadaGranada, Spain
| |
Collapse
|
72
|
Broeckx G, Vandenheuvel D, Claes IJ, Lebeer S, Kiekens F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm 2016; 505:303-18. [DOI: 10.1016/j.ijpharm.2016.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
|
73
|
Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system. J Control Release 2016; 230:79-87. [PMID: 27063422 DOI: 10.1016/j.jconrel.2016.04.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023]
Abstract
Probiotics have shown beneficial effects on health and prevention of diseases in humans. However, a concern for application of probiotics is the loss of viability during storage and gastrointestinal transit. The aim of this study was to develop an encapsulation system to preserve viability of probiotics when they are administrated orally and apply Lactobacillus rhamnosus GG (LGG) as a probiotic model to evaluate the effectiveness of this approach using in vitro and in vivo experiments. LGG was encapsulated in hydrogel beads prepared using pectin, a food grade polysaccharide, glucose, and calcium chloride, and lyophilized by freeze-drying. Encapsulated LGG was cultured in vitro under the condition that mimicked the physiological environment of the human gastrointestinal tract. Compared to non-encapsulated LGG, encapsulation increased tolerance of LGG in the acid condition, protected LGG from protease digestion, and improved shelf time when stored at the ambient condition, in regard of survivability and production of p40, a known LGG-derived protein involved in LGG's beneficial effects on intestinal homeostasis. To evaluate the effects of encapsulation on p40 production in vivo and prevention of intestinal inflammation by LGG, mice were gavaged with LGG containing beads and treated with dextran sulphate sodium (DSS) to induce intestinal injury and colitis. Compared to non-encapsulated LGG, encapsulated LGG enhanced more p40 production in mice, and exerted higher levels of effects on prevention of DSS-induced colonic injury and colitis and suppression of pro-inflammatory cytokine production. These data indicated that the encapsulation system developed in this study preserves viability of LGG in vitro and in vivo, leading to longer shelf time and enhancing the functions of LGG in the gastrointestinal tract. Thus, this encapsulation approach may have the potential application for improving efficacy of probiotics.
Collapse
|
74
|
Caggianiello G, Kleerebezem M, Spano G. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 2016; 100:3877-86. [PMID: 27020288 DOI: 10.1007/s00253-016-7471-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/10/2016] [Accepted: 03/14/2016] [Indexed: 02/07/2023]
Abstract
A wide range of lactic acid bacteria (LAB) is able to produce capsular or extracellular polysaccharides, with various chemical compositions and properties. Polysaccharides produced by LAB alter the rheological properties of the matrix in which they are dispersed, leading to typically viscous and "ropy" products. Polysaccharides are involved in several mechanisms such as prebiosis and probiosis, tolerance to stress associated to food process, and technological properties of food. In this paper, we summarize the beneficial properties of exopolysaccharides (EPS) produced by LAB with particular attention to prebiotic properties and to the effect of exopolysaccharides on the LAB-host interaction mechanisms, such as bacterial tolerance to gastrointestinal tract conditions, ability of ESP-producing probiotics to adhere to intestinal epithelium, their immune-modulatory activity, and their role in biofilm formation. The pro-technological aspect of exopolysaccharides is discussed, focusing on advantageous applications of EPS in the food industry, i.e., yogurt and gluten-free bakery products, since it was found that these microbial biopolymers positively affect the texture of foods. Finally, the involvement of EPS in tolerance to stress conditions that are commonly encountered in fermented beverages such as wine is discussed.
Collapse
Affiliation(s)
- Graziano Caggianiello
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1, 6708WD, Wageningen, The Netherlands
| | - Giuseppe Spano
- Department of Agricultural, Food and Environmental Sciences, University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| |
Collapse
|
75
|
Hidalgo-Cantabrana C, López P, Gueimonde M, de Los Reyes-Gavilán CG, Suárez A, Margolles A, Ruas-Madiedo P. Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics Antimicrob Proteins 2016; 4:227-37. [PMID: 26782182 DOI: 10.1007/s12602-012-9110-2] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During recent years, the exopolysaccharides (EPS) produced by some strains of lactic acid bacteria and bifidobacteria have attracted the attention of researchers, mainly due to their potential technological applications. However, more recently, it has been observed that some of these EPS present immunomodulatory properties, which suggest a potential effect on human health. Whereas EPS from lactic acid bacteria have been studied in some detail, those of bifidobacteria largely remain uncharacterized in spite of the ubiquity of EPS genes in Bifidobacterium genomes. In this review, we have analysed the data collected in the literature about the potential immune-modulating capability of EPS produced by lactic acid bacteria and bifidobacteria. From this data analysis, as well as from results obtained in our group, a hypothesis relating the physicochemical characteristics of EPS with their immune modulation capability was highlighted. We propose that EPS having negative charge and/or small size (molecular weight) are able to act as mild stimulators of immune cells, whereas those polymers non-charged and with a large size present a suppressive profile.
Collapse
Affiliation(s)
- Claudio Hidalgo-Cantabrana
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| | - Patricia López
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
- Department of Functional Biology, University of Oviedo, Immunology Area, Oviedo, Asturias, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| | - Ana Suárez
- Department of Functional Biology, University of Oviedo, Immunology Area, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, 33300, Villaviciosa, Asturias, Spain.
| |
Collapse
|
76
|
Burgain J, Scher J, Lebeer S, Vanderleyden J, Corgneau M, Guerin J, Caillet C, Duval JF, Francius G, Gaiani C. Impacts of pH-mediated EPS structure on probiotic bacterial pili–whey proteins interactions. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
77
|
Sidira M, Kourkoutas Y, Kanellaki M, Charalampopoulos D. In vitro study on the cell adhesion ability of immobilized lactobacilli on natural supports. Food Res Int 2015; 76:532-539. [DOI: 10.1016/j.foodres.2015.07.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/18/2015] [Accepted: 07/24/2015] [Indexed: 12/24/2022]
|
78
|
A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics. Appl Environ Microbiol 2015; 81:7960-8. [PMID: 26362981 DOI: 10.1128/aem.02095-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023] Open
Abstract
Exopolysaccharides (EPS) are extracellular carbohydrate polymers synthesized by a large variety of bacteria. Their physiological functions have been extensively studied, but many of their roles have not yet been elucidated. We have sequenced the genomes of two isogenic strains of Bifidobacterium animalis subsp. lactis that differ in their EPS-producing phenotype. The original strain displays a nonmucoid appearance, and the mutant derived thereof has acquired a mucoid phenotype. The sequence analysis of their genomes revealed a nonsynonymous mutation in the gene Balat_1410, putatively involved in the elongation of the EPS chain. By comparing a strain from which this gene had been deleted with strains containing the wild-type and mutated genes, we were able to show that each strain displays different cell surface characteristics. The mucoid EPS synthesized by the strain harboring the mutation in Balat_1410 provided higher resistance to gastrointestinal conditions and increased the capability for adhesion to human enterocytes. In addition, the cytokine profiles of human peripheral blood mononuclear cells and ex vivo colon tissues suggest that the mucoid strain could have higher anti-inflammatory activity. Our findings provide relevant data on the function of Balat_1410 and reveal that the mucoid phenotype is able to alter some of the most relevant functional properties of the cells.
Collapse
|
79
|
Patten D, Laws A. Lactobacillus-produced exopolysaccharides and their potential health benefits: a review. Benef Microbes 2015; 6:457-71. [DOI: 10.3920/bm2014.0117] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lactic acid bacteria, such as those of the Lactobacillus genus, naturally reside within the microbiota of the human body and have long been used as starter cultures and probiotic enhancers in fermented foods, such as fermented drinks, yoghurts and cheeses. Many of the beneficial qualities of these bacteria have traditionally been associated with the bacteria themselves, however, a recent spate of studies have demonstrated a wide variety of biological effects exhibited by lactobacilli-produced exopolysaccharides which could, theoretically, confer a range of local and systemic health benefits upon the host. In this review, we discuss the production of exopolysaccharides within the Lactobacillus genus and explore their potential as beneficial bioactive compounds.
Collapse
Affiliation(s)
- D.A. Patten
- Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, HD1 3DH Huddersfield, United Kingdom
- Centre for Liver Research, School of Immunity and Infection, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - A.P. Laws
- Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, HD1 3DH Huddersfield, United Kingdom
| |
Collapse
|
80
|
An Exopolysaccharide-Deficient Mutant of Lactobacillus rhamnosus GG Efficiently Displays a Protective Llama Antibody Fragment against Rotavirus on Its Surface. Appl Environ Microbiol 2015; 81:5784-93. [PMID: 26092449 DOI: 10.1128/aem.00945-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/10/2015] [Indexed: 11/20/2022] Open
Abstract
Rotavirus is the leading cause of infantile diarrhea in developing countries, where it causes a high number of deaths among infants. Two vaccines are available, being highly effective in developed countries although markedly less efficient in developing countries. As a complementary treatment to the vaccines, a Lactobacillus strain producing an anti-rotavirus antibody fragment in the gastrointestinal tract could potentially be used. In order to develop such an alternative therapy, the effectiveness of Lactobacillus rhamnosus GG to produce and display a VHH antibody fragment (referred to as anti-rotavirus protein 1 [ARP1]) on the surface was investigated. L. rhamnosus GG is one of the best-characterized probiotic bacteria and has intrinsic antirotavirus activity. Among four L. rhamnosus GG strains [GG (CMC), GG (ATCC 53103), GG (NCC 3003), and GG (UT)] originating from different sources, only GG (UT) was able to display ARP1 on the bacterial surface. The genomic analysis of strain GG (UT) showed that the genes welE and welF of the EPS cluster are inactivated, which causes a defect in exopolysaccharide (EPS) production, allowing efficient display of ARP1 on its surface. Finally, GG (UT) seemed to confer a level of protection against rotavirus-induced diarrhea similar to that of wild-type GG (NCC 3003) in a mouse pup model, indicating that the EPS may not be involved in the intrinsic antirotavirus activity. Most important, GG (EM233), a derivative of GG (UT) producing ARP1, was significantly more protective than the control strain L. casei BL23.
Collapse
|
81
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
82
|
Russo P, Iturria I, Mohedano ML, Caggianiello G, Rainieri S, Fiocco D, Angel Pardo M, López P, Spano G. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl Microbiol Biotechnol 2015; 99:3479-90. [PMID: 25586576 DOI: 10.1007/s00253-014-6351-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/18/2014] [Accepted: 12/21/2014] [Indexed: 12/21/2022]
Abstract
A critical feature of probiotic microorganisms is their ability to colonize the intestine of the host. Although the microbial potential to adhere to the human gut lumen has been investigated in in vitro models, there is still much to discover about their in vivo behaviour. Zebrafish is a vertebrate model that is being widely used to investigate various biological processes shared with humans. In this work, we report on the use of the zebrafish model to investigate the in vivo colonization ability of previously characterized probiotic lactic acid bacteria. Lactobacillus plantarum Lp90, L. plantarum B2 and Lactobacillus fermentum PBCC11.5 were fluorescently tagged by transfer of the pRCR12 plasmid, which encodes the mCherry protein and which was constructed in this work. The recombinant bacteria were used to infect germ-free zebrafish larvae. After removal of bacteria, the colonization ability of the strains was monitored until 3 days post-infection by using a fluorescence stereomicroscope. The results indicated differential adhesion capabilities among the strains. Interestingly, a displacement of bacteria from the medium to the posterior intestinal tract was observed as a function of time that suggested a transient colonization by probiotics. Based on fluorescence observation, L. plantarum strains exhibited a more robust adhesion capability. In conclusion, the use of pRCR12 plasmid for labelling Lactobacillus strains provides a powerful and very efficient tool to monitor the in vivo colonization in zebrafish larvae and to investigate the adhesion ability of probiotic microorganisms.
Collapse
|
83
|
Claes IJJ, Vargas García CE, Lebeer S. Novel opportunities for the exploitation of host–microbiome interactions in the intestine. Curr Opin Biotechnol 2015; 32:28-34. [DOI: 10.1016/j.copbio.2014.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/30/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022]
|
84
|
O' Donnell MM, Harris HMB, Lynch DB, Ross RP, O'Toole PW. Lactobacillus ruminis strains cluster according to their mammalian gut source. BMC Microbiol 2015; 15:80. [PMID: 25879663 PMCID: PMC4393605 DOI: 10.1186/s12866-015-0403-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lactobacillus ruminis is a motile Lactobacillus that is autochthonous to the human gut, and which may also be isolated from other mammals. Detailed characterization of L. ruminis has previously been restricted to strains of human and bovine origin. We therefore sought to expand our bio-bank of strains to identify and characterise isolates of porcine and equine origin by comparative genomics. RESULTS We isolated five strains from the faeces of horses and two strains from pigs, and compared their motility, biochemistry and genetic relatedness to six human isolates and three bovine isolates including the type strain 27780(T). Multilocus sequence typing analysis based on concatenated sequence data for six individual loci separated the 16 L. ruminis strains into three clades concordant with human, bovine or porcine, and equine sources. Sequencing the genomes of four additional strains of human, bovine, equine and porcine origin revealed a high level of genome synteny, independent of the source animal. Analysis of carbohydrate utilization, stress survival and technological robustness in a combined panel of sixteen L. ruminis isolates identified strains with optimal survival characteristics suitable for future investigation as candidate probiotics. Under laboratory conditions, six human isolates of L. ruminis tested were aflagellate and non-motile, whereas all 10 strains of bovine, equine and porcine origin were motile. Interestingly the equine and porcine strains were hyper-flagellated compared to bovine isolates, and this hyper-flagellate phenotype correlated with the ability to swarm on solid medium containing up to 1.8% agar. Analysis by RNA sequencing and qRT-PCR identified genes for the biosynthesis of flagella, genes for carbohydrate metabolism and genes of unknown function that were differentially expressed in swarming cells of an equine isolate of L. ruminis. CONCLUSIONS We suggest that Lactobacillus ruminis isolates have potential to be used in the functional food industry. We have also identified a MLST scheme able to distinguish between strains of L. ruminis of different origin. Genes for non-digestible oligosaccharide metabolism were identified with a putative role in swarming behaviour.
Collapse
Affiliation(s)
- Michelle M O' Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Co., Cork, Ireland. michelle.o'
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland. michelle.o'
| | - Hugh Michael B Harris
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - Denise B Lynch
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
| | - Reynolds Paul Ross
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
- College of Science, Engineering and Food Science (SEFS), University College Cork, Cork, Ireland.
| | - Paul W O'Toole
- School of Microbiology & Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.
- School of Microbiology, Food Science Building, University College Cork, Cork, Ireland.
| |
Collapse
|
85
|
Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M, Pot B, Tsakalidou E. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 2015; 6:58. [PMID: 25741323 PMCID: PMC4330916 DOI: 10.3389/fmicb.2015.00058] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/17/2015] [Indexed: 12/13/2022] Open
Abstract
Over the past decades the food industry has been revolutionized toward the production of functional foods due to an increasing awareness of the consumers on the positive role of food in wellbeing and health. By definition probiotic foods must contain live microorganisms in adequate amounts so as to be beneficial for the consumer’s health. There are numerous probiotic foods marketed today and many probiotic strains are commercially available. However, the question that arises is how to determine the real probiotic potential of microorganisms. This is becoming increasingly important, as even a superficial search of the relevant literature reveals that the number of proclaimed probiotics is growing fast. While the vast majority of probiotic microorganisms are food-related or commensal bacteria that are often regarded as safe, probiotics from other sources are increasingly being reported raising possible regulatory and safety issues. Potential probiotics are selected after in vitro or in vivo assays by evaluating simple traits such as resistance to the acidic conditions of the stomach or bile resistance, or by assessing their impact on complicated host functions such as immune development, metabolic function or gut–brain interaction. While final human clinical trials are considered mandatory for communicating health benefits, rather few strains with positive studies have been able to convince legal authorities with these health claims. Consequently, concern has been raised about the validity of the workflows currently used to characterize probiotics. In this review we will present an overview of the most common assays employed in screening for probiotics, highlighting the potential strengths and limitations of these approaches. Furthermore, we will focus on how the advent of omics technologies has reshaped our understanding of the biology of probiotics, allowing the exploration of novel routes for screening and studying such microorganisms.
Collapse
Affiliation(s)
- Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Georgia Zoumpopoulou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Benoit Foligné
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| | - Bruno Pot
- Bactéries Lactiques et Immunité des Muqueuses, Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, Université Lille Nord de France, CNRS UMR8204, Lille France
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens Greece
| |
Collapse
|
86
|
Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct 2015; 6:679-93. [DOI: 10.1039/c4fo00529e] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions.
Collapse
Affiliation(s)
- P. M. Ryan
- Teagasc Moorepark Food Research Centre
- Cork
- Ireland
- Department of Microbiology
- University College Cork
| | - R. P. Ross
- Alimentary Pharmabiotic Centre
- University College Cork
- Ireland
- College of Science
- Engineering & Food Science
| | - G. F. Fitzgerald
- Alimentary Pharmabiotic Centre
- University College Cork
- Ireland
- Department of Microbiology
- University College Cork
| | | | - C. Stanton
- Teagasc Moorepark Food Research Centre
- Cork
- Ireland
- Alimentary Pharmabiotic Centre
- University College Cork
| |
Collapse
|
87
|
Wu Q, Cheung CK, Shah NP. Towards galactose accumulation in dairy foods fermented by conventional starter cultures: Challenges and strategies. Trends Food Sci Technol 2015. [DOI: 10.1016/j.tifs.2014.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
88
|
Burgain J, Scher J, Lebeer S, Vanderleyden J, Cailliez-Grimal C, Corgneau M, Francius G, Gaiani C. Significance of bacterial surface molecules interactions with milk proteins to enhance microencapsulation of Lactobacillus rhamnosus GG. Food Hydrocoll 2014. [DOI: 10.1016/j.foodhyd.2014.03.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Waki N, Matsumoto M, Fukui Y, Suganuma H. Effects of probiotic Lactobacillus brevis KB290 on incidence of influenza infection among schoolchildren: an open-label pilot study. Lett Appl Microbiol 2014; 59:565-71. [PMID: 25294223 PMCID: PMC4285317 DOI: 10.1111/lam.12340] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/25/2014] [Accepted: 10/06/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED We investigated the efficacy of dietary consumption of Lactobacillus brevis KB290 (KB290) against influenza in humans by a preliminary intervention study on elementary schoolchildren, using a commercially available probiotic drink. Subjects were divided into Groups A and B, and an open-label, parallel-group trial was conducted in two 8-week periods at a 1-month interval in winter 2013/2014. Group A was provided with a bottle of the test drink containing KB290 (about 6 billion colony-forming units) every school day in the first period and had no treatment in the second period, and vice versa for Group B. Epidemic influenza was not observed during the first period and only two of 1783 subjects were diagnosed. In the second period, the incidence of influenza in Groups A (no treatment) and B (provided the test drink) was 23·9 and 15·7%, respectively, and the difference was statistically significant (P < 0·001). The reduction in the incidence of influenza by KB290 consumption was especially remarkable in unvaccinated individuals. This is believed to be the first study to show a probiotic food reducing the incidence of influenza in schoolchildren, although further studies are needed to confirm the effectiveness of the probiotic strain KB290. SIGNIFICANCE AND IMPACT OF THE STUDY We demonstrated a reduction in the incidence of influenza in 1089 schoolchildren by continual intake of a probiotic drink containing Lactobacillus brevis KB290 (KB290), isolated from a traditional Japanese pickle 'Suguki'. The effect was especially evident in subjects not inoculated with influenza vaccine. This is believed to be the first report to show reduced incidence of influenza in schoolchildren taking a probiotic food. Further studies are needed to confirm the effectiveness of the probiotic strain KB290, which may be useful in the development of potential anti-influenza agents derived from common foods.
Collapse
Affiliation(s)
- N Waki
- Research and Development Division, Kagome Co., Ltd., Nasushiobara, Tochigi, Japan
| | | | | | | |
Collapse
|
90
|
Wang L, Gao S, Jiang W, Luo C, Xu M, Bohlin L, Rosendahl M, Huang W. Antioxidative dietary compounds modulate gene expression associated with apoptosis, DNA repair, inhibition of cell proliferation and migration. Int J Mol Sci 2014; 15:16226-45. [PMID: 25226533 PMCID: PMC4200804 DOI: 10.3390/ijms150916226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/21/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Many dietary compounds are known to have health benefits owing to their antioxidative and anti-inflammatory properties. To determine the molecular mechanism of these food-derived compounds, we analyzed their effect on various genes related to cell apoptosis, DNA damage and repair, oxidation and inflammation using in vitro cell culture assays. This review further tests the hypothesis proposed previously that downstream products of COX-2 (cyclooxygenase-2) called electrophilic oxo-derivatives induce antioxidant responsive elements (ARE), which leads to cell proliferation under antioxidative conditions. Our findings support this hypothesis and show that cell proliferation was inhibited when COX-2 was down-regulated by polyphenols and polysaccharides. Flattened macrophage morphology was also observed following the induction of cytokine production by polysaccharides extracted from viili, a traditional Nordic fermented dairy product. Coix lacryma-jobi (coix) polysaccharides were found to reduce mitochondrial membrane potential and induce caspase-3- and 9-mediated apoptosis. In contrast, polyphenols from blueberries were involved in the ultraviolet-activated p53/Gadd45/MDM2 DNA repair system by restoring the cell membrane potential. Inhibition of hypoxia-inducible factor-1 by saponin extracts of ginsenoside (Ginsen) and Gynostemma and inhibition of S100A4 by coix polysaccharides inhibited cancer cell migration and invasion. These observations suggest that antioxidants and changes in cell membrane potential are the major driving forces that transfer signals through the cell membrane into the cytosol and nucleus, triggering gene expression, changes in cell proliferation and the induction of apoptosis or DNA repair.
Collapse
Affiliation(s)
- Likui Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Shijuan Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Cheng Luo
- Department of Biotechnology, University of Tartu, Tartu 51010, Estonia.
| | - Maonian Xu
- Department of Food and Environmental Sciences, Division of Food Chemistry, University of Helsinki, Helsinki F-00014, Finland.
| | - Lars Bohlin
- Division of Pharmacognosy, Department of Medicinal Chemistry, Biomedical Center University of Uppsala, Uppsala 75123, Sweden.
| | | | - Wenlin Huang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
91
|
Ruiz L, Hevia A, Bernardo D, Margolles A, Sánchez B. Extracellular molecular effectors mediating probiotic attributes. FEMS Microbiol Lett 2014; 359:1-11. [DOI: 10.1111/1574-6968.12576] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/04/2014] [Accepted: 08/11/2014] [Indexed: 12/29/2022] Open
Affiliation(s)
- Lorena Ruiz
- Department of Microbiology; University College Cork; Cork Ireland
| | - Arancha Hevia
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Asturias Spain
| | - David Bernardo
- Antigen Presentation Research Group; Imperial College London; Harrow UK
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products; Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC); Asturias Spain
| | - Borja Sánchez
- Nutrition and Bromatology Group; Department of Analytical and Food Chemistry; Food Science and Technology Faculty; University of Vigo; Ourense Spain
| |
Collapse
|
92
|
Abstract
The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.
Collapse
|
93
|
Segers ME, Lebeer S. Towards a better understanding of Lactobacillus rhamnosus GG--host interactions. Microb Cell Fact 2014; 13 Suppl 1:S7. [PMID: 25186587 PMCID: PMC4155824 DOI: 10.1186/1475-2859-13-s1-s7] [Citation(s) in RCA: 286] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains.
Collapse
|
94
|
A comparative pan-genome perspective of niche-adaptable cell-surface protein phenotypes in Lactobacillus rhamnosus. PLoS One 2014; 9:e102762. [PMID: 25032833 PMCID: PMC4102537 DOI: 10.1371/journal.pone.0102762] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/21/2014] [Indexed: 12/12/2022] Open
Abstract
Lactobacillus rhamnosus is a ubiquitously adaptable Gram-positive bacterium and as a typical commensal can be recovered from various microbe-accessible bodily orifices and cavities. Then again, other isolates are food-borne, with some of these having been long associated with naturally fermented cheeses and yogurts. Additionally, because of perceived health benefits to humans and animals, numerous L. rhamnosus strains have been selected for use as so-called probiotics and are often taken in the form of dietary supplements and functional foods. At the genome level, it is anticipated that certain genetic variances will have provided the niche-related phenotypes that augment the flexible adaptiveness of this species, thus enabling its strains to grow and survive in their respective host environments. For this present study, we considered it functionally informative to examine and catalogue the genotype-phenotype variation existing at the cell surface between different L. rhamnosus strains, with the presumption that this might be relatable to habitat preferences and ecological adaptability. Here, we conducted a pan-genomic study involving 13 genomes from L. rhamnosus isolates with various origins. In using a benchmark strain (gut-adapted L. rhamnosus GG) for our pan-genome comparison, we had focused our efforts on a detailed examination and description of gene products for certain functionally relevant surface-exposed proteins, each of which in effect might also play a part in niche adaptability among the other strains. Perhaps most significantly of the surface protein loci we had analyzed, it would appear that the spaCBA operon (known to encode SpaCBA-called pili having a mucoadhesive phenotype) is a genomic rarity and an uncommon occurrence in L. rhamnosus. However, for any of the so-piliated L. rhamnosus strains, they will likely possess an increased niche-specific fitness, which functionally might presumably be manifested by a protracted transient colonization of the gut mucosa or some similar microhabitat.
Collapse
|
95
|
London L, Price N, Ryan P, Wang L, Auty M, Fitzgerald G, Stanton C, Ross R. Characterization of a bovine isolate Lactobacillus mucosae
DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues. J Appl Microbiol 2014; 117:509-17. [DOI: 10.1111/jam.12542] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022]
Affiliation(s)
- L.E.E. London
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
- Alimentary Pharmabiotic Centre; University College Cork; Cork Ireland
| | - N.P.J. Price
- Bioproducts and Biocatalysis Research Unit; USDA-ARS-NCAUR; Peoria IL USA
| | - P. Ryan
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
- Department of Microbiology; University College Cork; Cork Ireland
| | - L. Wang
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
| | - M.A.E. Auty
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
| | - G.F. Fitzgerald
- Alimentary Pharmabiotic Centre; University College Cork; Cork Ireland
- Department of Microbiology; University College Cork; Cork Ireland
| | - C. Stanton
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
- Alimentary Pharmabiotic Centre; University College Cork; Cork Ireland
| | - R.P. Ross
- Teagasc; Moorepark Food Research Centre; Fermoy Cork Ireland
- Alimentary Pharmabiotic Centre; University College Cork; Cork Ireland
| |
Collapse
|
96
|
Liu L, Zhang J, Li M, Zhang X, Zhang J, Li Z, Wang L, Wu J, Luo C. Inhibition of HepG2 cell proliferation by ursolic acid and polysaccharides via the downregulation of cyclooxygenase-2. Mol Med Rep 2014; 9:2505-11. [PMID: 24638056 DOI: 10.3892/mmr.2014.2059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 12/17/2013] [Indexed: 11/05/2022] Open
Abstract
Cyclooxygenase (COX)-2, a multi-functional molecule, is overexpressed in hepatocellular carcinomas. In order to understand cell proliferation and its association with COX-2 in HepG2 cells in the presence of ursolic acid (UA), viili exopolysaccharides (VEPS) and Astragalus polysaccharides (APS), the cell proliferation, superoxide dismutase (SOD) and metabolic malondialdehyde (MDA) of fatty acids, COX-2, prostaglandin E2 (PGE2), as well as apoptotic morphology and rate were investigated. The results revealed that the activities of SOD, COX-2 and PGE2 were reduced, MDA was markedly decreased, apoptotic blebs were induced, and HepG2 cells were accumulated in the G1 and sub G1/apoptotic phases in test groups. The results indicated that UA, VEPS, APS and any combination of these possess anticancer properties, particularly by downregulating COX-2 expression, which may have increased internal oxidation and triggered apoptosis together with a change in internal antioxidant response elements, leading to a reduction in cell proliferation.
Collapse
Affiliation(s)
- Ling Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Jingkai Zhang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Meiling Li
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Xiaohong Zhang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Jinlu Zhang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Zhenjing Li
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| | - Likui Wang
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Jihui Wu
- School of Life Science, Chinese University of Science and Technology, Hefei, Anhui 230026, P.R. China
| | - Cheng Luo
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, School of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P.R. China
| |
Collapse
|
97
|
Chapot-Chartier MP. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages. Front Microbiol 2014; 5:236. [PMID: 24904550 PMCID: PMC4033162 DOI: 10.3389/fmicb.2014.00236] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan (PG) to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze PG and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle.
Collapse
|
98
|
Sánchez-Rodríguez A, Tytgat HLP, Winderickx J, Vanderleyden J, Lebeer S, Marchal K. A network-based approach to identify substrate classes of bacterial glycosyltransferases. BMC Genomics 2014; 15:349. [PMID: 24885406 PMCID: PMC4039749 DOI: 10.1186/1471-2164-15-349] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/16/2014] [Indexed: 01/03/2023] Open
Abstract
Background Bacterial interactions with the environment- and/or host largely depend on the bacterial glycome. The specificities of a bacterial glycome are largely determined by glycosyltransferases (GTs), the enzymes involved in transferring sugar moieties from an activated donor to a specific substrate. Of these GTs their coding regions, but mainly also their substrate specificity are still largely unannotated as most sequence-based annotation flows suffer from the lack of characterized sequence motifs that can aid in the prediction of the substrate specificity. Results In this work, we developed an analysis flow that uses sequence-based strategies to predict novel GTs, but also exploits a network-based approach to infer the putative substrate classes of these predicted GTs. Our analysis flow was benchmarked with the well-documented GT-repertoire of Campylobacter jejuni NCTC 11168 and applied to the probiotic model Lactobacillus rhamnosus GG to expand our insights in the glycosylation potential of this bacterium. In L. rhamnosus GG we could predict 48 GTs of which eight were not previously reported. For at least 20 of these GTs a substrate relation was inferred. Conclusions We confirmed through experimental validation our prediction of WelI acting upstream of WelE in the biosynthesis of exopolysaccharides. We further hypothesize to have identified in L. rhamnosus GG the yet undiscovered genes involved in the biosynthesis of glucose-rich glycans and novel GTs involved in the glycosylation of proteins. Interestingly, we also predict GTs with well-known functions in peptidoglycan synthesis to also play a role in protein glycosylation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-349) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Sarah Lebeer
- Department of Microbial and Molecular Systems, KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 2460, Leuven B-3001, Belgium.
| | | |
Collapse
|
99
|
Turroni F, Ventura M, Buttó LF, Duranti S, O’Toole PW, Motherway MO, van Sinderen D. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 2014; 71:183-203. [PMID: 23516017 PMCID: PMC11113728 DOI: 10.1007/s00018-013-1318-0] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/13/2013] [Accepted: 03/04/2013] [Indexed: 02/06/2023]
Abstract
The human gut represents a highly complex ecosystem, which is densely colonized by a myriad of microorganisms that influence the physiology, immune function and health status of the host. Among the many members of the human gut microbiota, there are microorganisms that have co-evolved with their host and that are believed to exert health-promoting or probiotic effects. Probiotic bacteria isolated from the gut and other environments are commercially exploited, and although there is a growing list of health benefits provided by the consumption of such probiotics, their precise mechanisms of action have essentially remained elusive. Genomics approaches have provided exciting new opportunities for the identification of probiotic effector molecules that elicit specific responses to influence the physiology and immune function of their human host. In this review, we describe the current understanding of the intriguing relationships that exist between the human gut and key members of the gut microbiota such as bifidobacteria and lactobacilli, discussed here as prototypical groups of probiotic microorganisms.
Collapse
Affiliation(s)
- Francesca Turroni
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | - Ludovica F. Buttó
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | - Paul W. O’Toole
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Mary O’Connell Motherway
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre, Department of Microbiology Biosciences Institute, University College Cork, National University of Ireland, Western Road, Cork, Ireland
| |
Collapse
|
100
|
Konstantinov SR, Kuipers EJ, Peppelenbosch MP. Functional genomic analyses of the gut microbiota for CRC screening. Nat Rev Gastroenterol Hepatol 2013; 10:741-5. [PMID: 24042452 DOI: 10.1038/nrgastro.2013.178] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The evidence for a strong correlation between the gut microbiota and colorectal carcinogenesis is quickly gathering pace. This correlation raises important questions, such as whether analysis of the microbiota can be used for screening purposes, and whether targeted intervention can influence the risk of development and progression of neoplasia. The recovery of several pathobionts-such as members of the different bacterial phyla Proteobacteria, Bacteroidetes and Fusobacteria-from the tumour microenvironment of patients with colorectal cancer (CRC) now provides a link between specific microbial colonization and cancer. However, other intestinal bacteria belonging to another major intestinal phylum, Firmicutes, might be effective in the treatment of pathogenic inflammation related to CRC. Future approaches based on the analysis of the gut microbiota of patients with CRC combined with large human cohort studies might open up new possibilities for further prophylactic, screening and treatment strategies.
Collapse
Affiliation(s)
- Sergey R Konstantinov
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Gravendijkwal 230, NL3015 CE Rotterdam, Netherlands
| | | | | |
Collapse
|