51
|
Shen SY, Fulthorpe R. Seasonal variation of bacterial endophytes in urban trees. Front Microbiol 2015; 6:427. [PMID: 26042095 PMCID: PMC4437045 DOI: 10.3389/fmicb.2015.00427] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/22/2015] [Indexed: 02/01/2023] Open
Abstract
Bacterial endophytes, non-pathogenic bacteria residing within plants, contribute to the growth and development of plants and their ability to adapt to adverse conditions. In order to fully exploit the capabilities of these bacteria, it is necessary to understand the extent to which endophytic communities vary between species and over time. The endophytes of Acer negundo, Ulmus pumila, and Ulmus parvifolia were sampled over three seasons and analyzed using culture dependent and independent methods (culture on two media, terminal restriction fragment length polymorphism, and tagged pyrosequencing of 16S ribosomal amplicons). The majority of culturable endophytes isolated were Actinobacteria, and all the samples harbored Bacillus, Curtobacterium, Frigoribacterium, Methylobacterium, Paenibacilllus, and Sphingomonas species. Regardless of culture medium used, only the culturable communities obtained in the winter for A. negundo could be distinguished from those of Ulmus spp. In contrast, the nonculturable communities were dominated by Proteobacteria and Actinobacteria, particularly Erwinia, Ralstonia, and Sanguibacter spp. The presence and abundance of various bacterial classes and phyla changed with the changing seasons. Multivariate analysis on the culture independent data revealed significant community differences between the endophytic communities of A. negundo and Ulmus spp., but overall season was the main determinant of endophytic community structure. This study suggests studies on endophytic populations of urban trees should expect to find significant seasonal and species-specific community differences and sampling should proceed accordingly.
Collapse
Affiliation(s)
- Shu Yi Shen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough Toronto, ON, Canada
| | - Roberta Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto Scarborough Toronto, ON, Canada
| |
Collapse
|
52
|
Nocardia rhizosphaerae sp. nov., a novel actinomycete isolated from the coastal rhizosphere of Artemisia Linn., China. Antonie van Leeuwenhoek 2015; 108:31-9. [DOI: 10.1007/s10482-015-0460-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/16/2015] [Indexed: 10/23/2022]
|
53
|
Shi Y, TaPa M, Li C, Yang H, Zhang T, Gao Y, Sun J, Zeng J, Lin Q, Cao Z, OuTi K, Li Y, Lou K. Diversity and space-time dynamics of endophytic archaea from sugar beet in the north slope of Tianshan Mountain revealed by 454 pyrosequencing and T-RFLP. World J Microbiol Biotechnol 2015; 31:1031-9. [PMID: 25862354 DOI: 10.1007/s11274-015-1853-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/03/2015] [Indexed: 11/26/2022]
Abstract
Plants harbor complex and variable microbial communities. Using molecular-based techniques targeting the 16S rRNA gene, we studied the developmental stages and geographical location diversity of endophytic archaea in two locations (Shihezi and Changji) and four periods (the seedling growth, rosette formation, tuber growth and sucrose accumulation sampling periods) in the north slope of Tianshan Mountain, China. Community structure of mixed sample from 60 sugar beet plants was examined using PCR-based 454 pyrosequencing and terminal restriction fragment length polymorphism (T-RFLP). In total, 5290 archaea 16S rRNA sequences were obtained from all sugar beet samples. The most abundant archaea groups in all sugar beet were Methanococci, the miscellaneous Crenarchaeotic Group and Thermoplasmata. There was a marked difference in diversity of endophytic archaea in sugar beet for different growth periods. The greatest number of Operational T-RFLP Units (OTUs) was detected during sucrose accumulation (298) and rosette formation (282). Endophytic archaea diversity was reduced during seedling growth (128 OTUs) and tuber growth (55 OTUs). Nine OTUs were common to all four periods of growth. There were more OTUs in Shihezi than in Changji. Clustering analysis and principal component analysis of T-RFLP data revealed distinct shifts in endophytic archaea community profiles that corresponded to plant growth stage rather than geographical location. The dynamics of endophytic archaea communities were influenced by plant growth stage. To our knowledge, this is the first report that archaea has been identified as endophytes associated with sugar beet by the culture-independent approach. The results suggest that the diversity of endophytic archaea is abundant in sugar beet.
Collapse
Affiliation(s)
- YingWu Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 2015; 6:273. [PMID: 25904906 PMCID: PMC4388002 DOI: 10.3389/fmicb.2015.00273] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Abstract
Microorganisms associated with medicinal plants are of interest as the producers of important bioactive compounds. To date, the diversity of culturable endophytic actinomycetes associated with medicinal plants is in its initial phase of exploration. In this study, 42 endophytic actinomycetes were isolated from different organs of seven selected medicinal plants. The highest number of isolates (n = 22, 52.3%) of actinomycetes was isolated from roots, followed by stems (n = 9, 21.4%), leaves (n = 6, 14.2%), flowers (n = 3, 7.1%), and petioles (n = 2, 4.7%). The genus Streptomyces was the most dominant among the isolates (66.6%) in both the locations (Dampa TRF and Phawngpuii NP, Mizoram, India). From a total of 42 isolates, 22 isolates were selected for further studies based on their ability to inhibit one of the tested human bacterial or fungal pathogen. Selected isolates were identified based on 16S rRNA gene analysis and subsequently the isolates were grouped to four different genera; Streptomyces, Brevibacterium, Microbacterium, and Leifsonia. Antibiotic sensitivity assay was performed to understand the responsible antimicrobials present in the isolates showing the antimicrobial activities and revealed that the isolates were mostly resistant to penicillin G and ampicillin. Further, antimicrobial properties and antibiotic sensitivity assay in combination with the results of amplification of biosynthetic genes polyketide synthase (PKS-I) and non-ribosomal peptide synthetase (NRPS) showed that the endophytic actinomycetes associated with the selected medicinal plants have broad-spectrum antimicrobial activity. This is the first report of the isolation of Brevibacterium sp., Microbacterium sp., and Leifsonia xyli from endophytic environments of medicinal plants, Mirabilis jalapa and Clerodendrum colebrookianum. Our results emphasize that endophytic actinomycetes associated with medicinal plants are an unexplored resource for the discovery of biologically active compounds.
Collapse
Affiliation(s)
- Ajit K Passari
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| | - Vineet K Mishra
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| | - Ratul Saikia
- Biotechnology Division, CSIR-North East Institute of Science and Technology Jorhat, Assam, India
| | - Vijai K Gupta
- Molecular Glyco-biotechnology Group, Department of Biochemistry, National University of Ireland Galway Galway, Ireland
| | - Bhim P Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University Aizawl, India
| |
Collapse
|
55
|
Burbano CS, Grönemeyer JL, Hurek T, Reinhold-Hurek B. Microbial community structure and functional diversity of nitrogen-fixing bacteria associated with Colophospermum mopane. FEMS Microbiol Ecol 2015; 91:fiv030. [PMID: 25873605 DOI: 10.1093/femsec/fiv030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2015] [Indexed: 01/23/2023] Open
Abstract
Colophospermum mopane is an indigenous legume tree that grows in Southern Africa and is one of the predominant trees of the woodland vegetation. In order to increase knowledge about its ecology, especially how C. mopane thrives in the nitrogen-poor soils of the region, we analyzed the root-associated bacteria to assess the active diazotrophic diversity and total microbial diversity by culture-dependent and independent techniques. Root nodules were not detected but in some samples the lateral roots showed an outgrowth-like protuberance, that were not likely to have functions related to legume root nodules. The bacterial isolates recovered were related to Actinobacteria, Firmicutes and Proteobacteria. The total microbial diversity was dominated by Actinobacteria-related phylotypes, while the active diazotrophic diversity showed that the majority of the sequences were related to the order Rhizobiales but also to Spirochaetes, Firmicutes, Bacteroidetes and Deltaproteobacteria. Several isolates showed characteristics of plant growth-promoting bacteria. These findings increase the spectrum of possible phylotypes that can be found in legume trees that are typically nodulated by Alpha- and Betaproteobacteria, and reveal for the first time a surprising diversity of nitrogen-fixing bacteria active in legume tree roots.
Collapse
Affiliation(s)
- Claudia Sofía Burbano
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Jann Lasse Grönemeyer
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Thomas Hurek
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| | - Barbara Reinhold-Hurek
- Department of Microbe-Plant Interactions, Center for Biomolecular Interactions Bremen (CBIB), Faculty of Biology and Chemistry, University of Bremen, PO. Box 330440, D-28334 Bremen, Germany
| |
Collapse
|
56
|
PRIMANITA MONA, TRI WAHYUDI ARIS, LESTARI YULIN. 16S rRNA-based Metagenomic Analysis of Endophytic Actinomycetes Diversity from Tinospora crispa L. Miers. MICROBIOLOGY INDONESIA 2015. [DOI: 10.5454/mi.9.1.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
57
|
Xing K, Qin S, Zhang WD, Cao CL, Ruan JS, Huang Y, Jiang JH. Glycomyces phytohabitans sp. nov., a novel endophytic actinomycete isolated from the coastal halophyte in Jiangsu, East China. J Antibiot (Tokyo) 2014; 67:559-63. [PMID: 24736858 DOI: 10.1038/ja.2014.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/27/2014] [Accepted: 03/12/2014] [Indexed: 11/09/2022]
Abstract
A novel endophytic actinomycete, designated strain KLBMP 1483(T), was isolated from the stem of the coastal plant Dendranthema indicum (Linn.) Des Moul collected from Nantong, in East China. Phylogenetic analysis showed that strain KLBMP 1483(T) was affiliated with the genus Glycomyces within the family Glycomycetaceae and shared the highest 16S rRNA gene sequence similarities with the type strains of Glycomyces arizonensis NRRL B-16153(T) (96.7%) and Glycomyces tenuis IFO 15904(T) (96.2%), and lower similarities (94.1-95.1%) to the other members of the genus Glycomyces, which distinguished KLBMP 1483(T) from representatives of the genus Glycomyces. The whole-cell hydrolysates contained meso-diaminopimelic acid, glucose, xylose and galactose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides, two unknown aminophospholipids, two phosphoglycolipids, two unknown phospholipids and one unknown lipid. MK-10(H4) was the predominant menaquinone. The major fatty acids were iso-C15:0, anteiso-C15:0, iso-C16:0, iso-C16:1 G and anteiso-C17:0. On the basis of the phenotypic and genotypic characteristics presented in this study, strain KLBMP 1483(T) represents a novel species, for which the name Glycomyces phytohabitans sp. nov. is proposed. The type strain is KLBMP 1483(T) (NBRC 109116(T)=DSM 45766(T)).
Collapse
Affiliation(s)
- Ke Xing
- School of Life Science, Jiangsu Normal University, Jiangsu, PR China
| | - Sheng Qin
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Jiangsu, PR China
| | - Wen-Di Zhang
- 1] School of Life Science, Jiangsu Normal University, Jiangsu, PR China [2] The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Jiangsu, PR China
| | - Cheng-Liang Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Jiangsu, PR China
| | - Ji-Sheng Ruan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Jiangsu, PR China
| |
Collapse
|
58
|
Diversity and novelty of actinobacteria in Arctic marine sediments. Antonie van Leeuwenhoek 2014; 105:743-54. [PMID: 24519808 DOI: 10.1007/s10482-014-0130-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/29/2014] [Indexed: 01/17/2023]
Abstract
The actinobacterial diversity of Arctic marine sediments was investigated using culture-dependent and culture-independent approaches. A total of 152 strains were isolated from seven different media; 18 isolates were selected for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 18 isolates belonged to a potential novel genus and 10 known genera including Actinotalea, Arthrobacter, Brachybacterium, Brevibacterium, Kocuria, Kytococcus, Microbacterium, Micrococcus, Mycobacterium, and Pseudonocardia. Subsequently, 172 rDNA clones were selected by restriction fragment length polymorphism analysis from 692 positive clones within four actinobacteria-specific 16S rDNA libraries of Arctic marine sediments, and then these 172 clones were sequenced. In total, 67 phylotypes were clustered in 11 known genera of actinobacteria including Agrococcus, Cellulomonas, Demequina, Iamia, Ilumatobacter, Janibacter, Kocuria, Microbacterium, Phycicoccus, Propionibacterium, and Pseudonocardia, along with other, unidentified actinobacterial clones. Based on the detection of a substantial number of uncultured phylotypes showing low BLAST identities (<95 %), this study confirms that Arctic marine environments harbour highly diverse actinobacterial communities, many of which appear to be novel, uncultured species.
Collapse
|
59
|
King AJ, Farrer EC, Suding KN, Schmidt SK. Co-occurrence patterns of plants and soil bacteria in the high-alpine subnival zone track environmental harshness. Front Microbiol 2012; 3:347. [PMID: 23087675 PMCID: PMC3469205 DOI: 10.3389/fmicb.2012.00347] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/08/2012] [Indexed: 02/01/2023] Open
Abstract
Plants and soil microorganisms interact to play a central role in ecosystem functioning. To determine the potential importance of biotic interactions in shaping the distributions of these organisms in a high-alpine subnival landscape, we examine co-occurrence patterns between plant species and bulk soil bacteria abundances. In this context, a co-occurrence relationship reflects a combination of several assembly processes: that both parties can disperse to the site, that they can survive the abiotic environmental conditions, and that interactions between the biota either facilitate survival or allow for coexistence. Across the entire landscape, 31% of the bacterial sequences in this dataset were significantly correlated to the abundance distribution of one or more plant species. These sequences fell into 14 clades, 6 of which are related to bacteria that are known to form symbioses with plants in other systems. Abundant plant species were more likely to have significant as well as stronger correlations with bacteria and these patterns were more prevalent in lower altitude sites. Conversely, correlations between plant species abundances and bacterial relative abundances were less frequent in sites near the snowline. Thus, plant-bacteria associations became more common as environmental conditions became less harsh and plants became more abundant. This pattern in co-occurrence strength and frequency across the subnival landscape suggests that plant-bacteria interactions are important for the success of life, both below- and above-ground, in an extreme environment.
Collapse
Affiliation(s)
- Andrew J. King
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research OrganisationActon, ACT, Australia
| | - Emily C. Farrer
- Department of Environmental Science, Policy & Management, University of California at BerkeleyBerkeley, CA, USA
| | - Katharine N. Suding
- Department of Environmental Science, Policy & Management, University of California at BerkeleyBerkeley, CA, USA
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado at BoulderBoulder, CO, USA
| |
Collapse
|