51
|
Microdeletions and microduplications linked to severe congenital disorders in infertile men. Sci Rep 2023; 13:574. [PMID: 36631630 PMCID: PMC9834233 DOI: 10.1038/s41598-023-27750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Data on the clinical validity of DNA copy number variants (CNVs) in spermatogenic failure (SPGF) is limited. This study analyzed the genome-wide CNV profile in 215 men with idiopathic SPGF and 62 normozoospermic fertile men, recruited at the Andrology Clinic, Tartu University Hospital, Estonia. A two-fold higher representation of > 1 Mb CNVs was observed in men with SPGF (13%, n = 28) compared to controls (6.5%, n = 4). Seven patients with SPGF were identified as carriers of microdeletions (1q21.1; 2.4 Mb) or microduplications (3p26.3, 1.1 Mb; 7p22.3-p22.2, 1.56 Mb; 10q11.22, 1.42 Mb, three cases; Xp22.33; 2.3 Mb) linked to severe congenital conditions. Large autosomal CNV carriers had oligozoospermia, reduced or low-normal bitesticular volume (22-28 ml). The 7p22.3-p22.2 microduplication carrier presented mild intellectual disability, neuropsychiatric problems, and short stature. The Xp22.33 duplication at the PAR1/non-PAR boundary, previously linked to uterine agenesis, was detected in a patient with non-obstructive azoospermia. A novel recurrent intragenic deletion in testis-specific LRRC69 was significantly overrepresented in patients with SPGF compared to the general population (3.3% vs. 0.85%; χ2 test, OR = 3.9 [95% CI 1.8-8.4], P = 0.0001). Assessment of clinically valid CNVs in patients with SPGF will improve their management and counselling for general and reproductive health, including risk of miscarriage and congenital disorders in future offspring.
Collapse
|
52
|
Kalantari H, Sabbaghian M, Vogiatzi P, Rambhatla A, Agarwal A, Colpi GM, Sadighi Gilani MA. Bridging the Gap between AZF Microdeletions and Karyotype: Twelve Years' Experience of an Infertility Center. World J Mens Health 2023:41.e7. [PMID: 36593709 DOI: 10.5534/wjmh.220089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/13/2022] [Accepted: 08/31/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE Despite all past efforts, the current guidelines are not explicit enough regarding the indications for performing azoospermia factor (AZF) screening and karyotype, burdening clinicians with the decision to assess whether such tests are meaningful for the infertile male patient. These assessments can be costly and it is up to the healthcare practitioner to decide which are necessary and to weigh the benefits against economic/psychological harm. The aim of this study is to address such gaps and provide update on current management options for this group of patients. MATERIALS AND METHODS To address such gaps in male infertility management and to elucidate whether AZF screening is indicated in individuals who concomitantly harbor chromosomal abnormalities we conducted a retrospective cohort analysis of 10,388 consecutive patients with non-obstructive azoospermia (NOA) and severe oligozoospermia. RESULTS Previously, it has been suggested that all NOA cases with chromosomal defects, except males with 46,XY/45,X karyotype, have no indication for AZF screening. Our findings revealed that cases carrying the following chromosomal abnormalities inv(Y)(p11.2q12); idic(Y)(q11.2); 46,XY,r(Y); idic(Y)(p11.2) and der(Y;Autosome) (76/169; 44.9%; 95% CI, 37.7-52.5) should also be referred for AZF deletion screening. Here, we also report the correlation between sperm count and AZF deletions as a secondary outcome. In accordance with previously reported data from North America and Europe, our data revealed that only 1% of cases with >1×106 sperm/mL had Y chromosome microdeletions (YCMs). CONCLUSIONS In the era of assisted reproduction, finding cost-minimization strategies in infertility clinics without affecting the quality of diagnosis is becoming one of the top prioritized topics for future research. From a diagnostic viewpoint, the results reflect a need to reconsider the different karyotype presentations and the sperm count thresholds in male infertility guidelines as indicators for YCM screening during an infertility evaluation.
Collapse
Affiliation(s)
- Hamid Kalantari
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Paraskevi Vogiatzi
- Andromed Health & Reproduction, Reproductive Health Diagnostic Center, Athens, Greece
| | - Amarnath Rambhatla
- Vattikuti Urology Institute, Department of Urology, Henry Ford Hospital, Detroit, MI, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Global Andrology Forum, Moreland Hills, OH, USA
| | - Giovanni M Colpi
- Andrology and IVF Unit, Next Fertility Procrea, Lugano, Switzerland
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
53
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
54
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
55
|
Huang IS, Chen WJ, Li LH, Brannigan RE, Huang WJ. The predictive factors of successful sperm retrieval for men with Y chromosome AZFc microdeletion. J Assist Reprod Genet 2022; 39:2395-2401. [PMID: 36107367 PMCID: PMC9596631 DOI: 10.1007/s10815-022-02601-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To identify key predictors for successful sperm retrieval in men with AZFc microdeletion. METHODS Totally, 71 infertile men with confirmed AZFc microdeletion were studied. For each patient, the endocrine profile including serum follicle stimulating hormone (FSH), luteinizing hormone, total testosterone, prolactin, and estradiol was recorded, along with intratesticular testosterone levels (ITT), age, and testicular size. The factors were further analyzed to determine the key predictors for successful sperm retrieval. RESULTS Of the 71 men with AZFc microdeletion, 52 (73.2%) were classified as having non-obstructive azoospermia (NOA), 7 (9.9%) as having cryptozoospermia, and 12 (15.8%) as having severe oligoasthenoteratozoospermia. Of the 52 men with azoospermia, 47 received microdissection testicular sperm retrieval, and sperm retrieval was successful in 35 of those cases (74.5%). A significantly lower serum FSH (p = 0.03) was found in those patients from whom sperm could be successfully retrieved. The area under the receiving operating characteristic curve for FSH was determined to be 0.721. Using an FSH cutoff point of 12.95 mIU/mL, the model for predicting successful sperm retrieval was found to have 51.4% sensitivity, 83.3% specificity, 90.0% positive predictive value, and 37.0% negative predictive value. ITT levels were obtained from 7 NOA patients, the mean ITT and the mean ITT/serum testosterone ratio was 1932.8 ng/ml and 567.2 in 6 men with successful sperm retrieval, whereas, in a patient with fail sperm retrieval, the levels were 2370 ng/ml and 393.0. CONCLUSION Men exhibiting AZFc microdeletion with discernible spermatogenesis from whom sperm was successfully retrieved by mTESE generally presented with relatively lower FSH levels.
Collapse
Affiliation(s)
- I-Shen Huang
- Department of Urology, Taipei Veterans General Hospital, No 201, Section 2, Shipai Rd, Taipei, Taiwan
- Department of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Department of Urology, College of Medicine, and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Jen Chen
- Department of Urology, Taipei Veterans General Hospital, No 201, Section 2, Shipai Rd, Taipei, Taiwan
- Department of Urology, College of Medicine, and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hua Li
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Program of Medical Biotechnology, Taipei Medical University, Taipei, Taiwan
| | - Robert E Brannigan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William J Huang
- Department of Urology, Taipei Veterans General Hospital, No 201, Section 2, Shipai Rd, Taipei, Taiwan.
- Department of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Department of Urology, College of Medicine, and Shu-Tien Urological Science Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
56
|
Hardy J, Pollock N, Gingrich T, Sweet P, Ramesh A, Kuong J, Basar A, Jiang H, Hwang K, Vukina J, Jaffe T, Olszewska M, Kurpisz M, Yatsenko AN. Genomic testing for copy number and single nucleotide variants in spermatogenic failure. J Assist Reprod Genet 2022; 39:2103-2114. [PMID: 35849255 PMCID: PMC9474750 DOI: 10.1007/s10815-022-02538-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/06/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE To identify clinically significant genomic copy number (CNV) and single nucleotide variants (SNV) in males with unexplained spermatogenic failure (SPGF). MATERIALS AND METHODS Peripheral blood DNA from 97/102 study participants diagnosed with oligozoospermia, severe oligozoospermia, or non-obstructive azoospermia (NOA) was analyzed for CNVs via array comparative genomic hybridization (aCGH) and SNVs using whole-exome sequencing (WES). RESULTS Of the 2544 CNVs identified in individuals with SPGF, > 90% were small, ranging from 0.6 to 75 kb. Thirty, clinically relevant genomic aberrations, were detected in 28 patients (~ 29%). These included likely diagnostic CNVs in 3/41 NOA patients (~ 7%): 1 hemizygous, intragenic TEX11 deletion, 1 hemizygous DDX53 full gene deletion, and 1 homozygous, intragenic STK11 deletion. High-level mosaicism for X chromosome disomy (~ 10% 46,XY and ~ 90% 47,XXY) was also identified in 3 of 41 NOA patients who previously tested normal with conventional karyotyping. The remaining 24 CNVs detected were heterozygous, autosomal recessive carrier variants. Follow-up WES analysis confirmed 8 of 27 (30%) CNVs (X chromosome disomy excluded). WES analysis additionally identified 13 significant SNVs and/or indels in 9 patients (~ 9%) including X-linked AR, KAL1, and NR0B1 variants. CONCLUSION Using a combined genome-wide aCGH/WES approach, we identified pathogenic and likely pathogenic SNVs and CNVs in 15 patients (15%) with unexplained SPGF. This value equals the detection rate of conventional testing for aneuploidies and is considerably higher than the prevalence of Y chromosome microdeletions. Our results underscore the importance of comprehensive genomic analysis in emerging diagnostic testing of complex conditions like male infertility.
Collapse
Affiliation(s)
- J Hardy
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - N Pollock
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - T Gingrich
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - P Sweet
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - A Ramesh
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - J Kuong
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - A Basar
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - H Jiang
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA
| | - K Hwang
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Vukina
- Department of Urology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - T Jaffe
- Department of Urology, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - M Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - M Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - A N Yatsenko
- Department of OBGYN and Reproductive Sciences, Magee-Womens Research Institute, School of Medicine, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA, 15213, USA.
- Department of Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States.
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
57
|
Chen SW, Chen CP, Chern SR, Kuo YL, Chiu CL. The significance of karyotyping and azoospermia factor analysis in patients with nonobstructive azoospermia or oligozoospermia. Taiwan J Obstet Gynecol 2022; 61:800-805. [PMID: 36088047 DOI: 10.1016/j.tjog.2022.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE We present our study about the significance of karyotyping and azoospermia factor(AZF) analysis in patients with azoospermia or oligozoospermia. MATERIALS AND METHODS We retrospectively reviewed 141 Taiwanese patients with nonobstructive azoospermia and 45 Taiwanese patients with oligozoospermia at MacKay Memorial Hospital, Taiwan, from 2010 to 2021 to determine the significance of karyotyping and azoospermia factor analysis. The karyotyping was analyzed using the Giemsa banding method. The AZF microdeletions were determined using multiplex polymerase chain reaction using primers specifically flanking the AZF subregions. RESULTS We found that 7.80% of patients with nonobstructive azoospermia had AZF microdeletions and 19.86% of patients with nonobstructive azoospermia had chromosomal anomalies or polymorphic variations. Furthermore, 4.44% of patients with oligozoospermia had AZF microdeletions, and 4.44% of patients with oligozoospermia had chromosomal anomalies or polymorphic variations. CONCLUSION In this study, 25.53% of patients with nonobstructive azoospermia and 8.88% of patients with oligozoospermia had abnormal findings. The significance of karyotyping and azoospermia factor analysis is more critical in patients with nonobstructive azoospermia than patients with oligozoospermia. Both karyotyping and AZF analysis could prevent delayed treatment for male infertility through accurate diagnosis and appropriate treatment. The number of our patients with AZFc microdeletion was also higher than that of patients with AZFa or AZFb. The spermatogenic potential may gradually decline in patients with AZFc microdeletion. The earlier is the diagnosis, the earlier will be the retrieval of testicular spermatozoa.
Collapse
Affiliation(s)
- Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical & Health Science, Asia University, Taichung, Taiwan.
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ling Kuo
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Ling Chiu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
58
|
Xu Y, Pang Q. Repetitive DNA Sequences in the Human Y Chromosome and Male Infertility. Front Cell Dev Biol 2022; 10:831338. [PMID: 35912115 PMCID: PMC9326358 DOI: 10.3389/fcell.2022.831338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The male-specific Y chromosome, which is well known for its diverse and complex repetitive sequences, has different sizes, genome structures, contents and evolutionary trajectories from other chromosomes and is of great significance for testis development and function. The large number of repetitive sequences and palindrome structure of the Y chromosome play an important role in maintaining the stability of male sex determining genes, although they can also cause non-allelic homologous recombination within the chromosome. Deletion of certain Y chromosome sequences will lead to spermatogenesis disorders and male infertility. And Y chromosome genes are also involved in the occurrence of reproductive system cancers and can increase the susceptibility of other tumors. In addition, the Y chromosome has very special value in the personal identification and parentage testing of male-related cases in forensic medicine because of its unique paternal genetic characteristics. In view of the extremely high frequency and complexity of gene rearrangements and the limitations of sequencing technology, the analysis of Y chromosome sequences and the study of Y-gene function still have many unsolved problems. This article will introduce the structure and repetitive sequence of the Y chromosome, summarize the correlation between Y chromosome various sequence deletions and male infertility for understanding the repetitive sequence of Y chromosome more systematically, in order to provide research motivation for further explore of the molecules mechanism of Y-deletion and male infertility and theoretical foundations for the transformation of basic research into applications in clinical medicine and forensic medicine.
Collapse
Affiliation(s)
- Yong Xu
- Department of Emergency Surgery, Jining NO 1 People’s Hospital, Jining, China
| | - Qianqian Pang
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
- *Correspondence: Qianqian Pang,
| |
Collapse
|
59
|
Calvert JK, Fendereski K, Ghaed M, Bearelly P, Patel DP, Hotaling JM. The male infertility evaluation still matters in the era of high efficacy assisted reproductive technology. Fertil Steril 2022; 118:34-46. [PMID: 35725120 DOI: 10.1016/j.fertnstert.2022.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
Abstract
Today's reproductive endocrinology and infertility providers have many tools at their disposal when it comes to achieving pregnancy. In the setting of highly efficacious assisted reproductive technology, it is natural to assume that male factor infertility can be overcome by acquiring sperm and then bypassing the male evaluation. In this review, we go through guideline statements and a stepwise male factor infertility evaluation to propose that a thorough male evaluation remains important to optimize pregnancy and live birth. The foundation of this parallel evaluation is referral to a reproductive urologist for the optimization of the male partner, for advanced diagnostics and interventions, and for the detection of other underlying male pathology. We also discuss what future developments might have an impact on the workup of the infertile male.
Collapse
Affiliation(s)
- Joshua K Calvert
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Mohammadali Ghaed
- Urology Department, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Priyanka Bearelly
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah
| | - Darshan P Patel
- Department of Urology, University of California San Diego Health, San Diego, California
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah.
| |
Collapse
|
60
|
Chernykh VB, Ryzhkova OP, Kuznetsova IA, Kazaryan MS, Sorokina TM, Kurilo LF, Schagina OA, Polyakov AV. Deletions in AZFc Region of Y Chromosome in Russian Fertile Men. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422070043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Huang Y, Tian R, Xu J, Ji Z, Zhang Y, Zhao L, Yang C, Li P, Zhi E, Bai H, Han S, Luo J, Zhao J, Zhang J, Zhou Z, Li Z, Yao C. Novel copy number variations within SYCE1 caused meiotic arrest and non-obstructive azoospermia. BMC Med Genomics 2022; 15:137. [PMID: 35718780 PMCID: PMC9208180 DOI: 10.1186/s12920-022-01288-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/06/2022] [Indexed: 01/26/2023] Open
Abstract
Background Non-obstructive azoospermia (NOA) is the most severe disease in male infertility, but the genetic causes for majority of NOA remain unknown. Methods Two Chinese NOA-affected patients were recruited to identify the genetic causal factor of infertility. Whole-exome sequencing (WES) was conducted in the two patients with NOA. Sanger sequencing and CNV array were used to ascertain the WES results. Hematoxylin and eosin (H&E) staining and immunofluorescence (IF) were carried out to evaluate the stage of spermatogenesis arrested in the affected cases. Results Novel heterozygous deletion (LOH) within SYCE1 (seq[GRCh37] del(10)(10q26.3)chr10:g.135111754_135427143del) and heterozygous loss of function (LoF) variant in SYCE1 (NM_001143763: c.689_690 del:p.F230fs) were identified in one NOA-affected patient. While homozygous deletion within SYCE1 (seq[GRCh37] del(10)(10q26.3)chr10:g.135340247_135379115del) was detected in the other patient with meiotic arrest. H&E and IF staining demonstrated that the spermatogenesis was arrested at pachytene stage in the two patients with NOA, suggesting these two novel CNVs within SYCE1 could lead to meiotic defect and NOA. Conclusions We identified that two novel CNVs within SYCE1 are associated with meiotic arrest and male infertility. Thus, our study expands the knowledge of variants in SYCE1 and provides a new insight to understand the genetic etiologies of NOA. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01288-8.
Collapse
Affiliation(s)
- Yuhua Huang
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Ruhui Tian
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Junwei Xu
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Zhiyong Ji
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yuxiang Zhang
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Liangyu Zhao
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chao Yang
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Peng Li
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Erlei Zhi
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Haowei Bai
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Sha Han
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jiaqiang Luo
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jingpeng Zhao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Jing Zhang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510620, China
| | - Zhi Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zheng Li
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China. .,State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Chencheng Yao
- Department of Andrology, Shanghai Key Laboratory of Reproductive Medicine, The Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
62
|
Wyrwoll MJ, Köckerling N, Vockel M, Dicke AK, Rotte N, Pohl E, Emich J, Wöste M, Ruckert C, Wabschke R, Seggewiss J, Ledig S, Tewes AC, Stratis Y, Cremers JF, Wistuba J, Krallmann C, Kliesch S, Röpke A, Stallmeyer B, Friedrich C, Tüttelmann F. Genetic Architecture of Azoospermia-Time to Advance the Standard of Care. Eur Urol 2022; 83:452-462. [PMID: 35690514 DOI: 10.1016/j.eururo.2022.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Crypto- and azoospermia (very few/no sperm in the semen) are main contributors to male factor infertility. Genetic causes for spermatogenic failure (SPGF) include Klinefelter syndrome and Y-chromosomal azoospermia factor microdeletions, and CFTR mutations for obstructive azoospermia (OA). However, the majority of cases remain unexplained because monogenic causes are not analysed. OBJECTIVE To elucidate the monogenic contribution to azoospermia by prospective exome sequencing and strict application of recent clinical guidelines. DESIGN, SETTING, AND PARTICIPANTS Since January 2017, we studied crypto- and azoospermic men without chromosomal aberrations and Y-chromosomal microdeletions attending the Centre of Reproductive Medicine and Andrology, Münster. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We performed exome sequencing in 647 men, analysed 60 genes having at least previous limited clinical validity, and strictly assessed variants according to clinical guidelines. RESULTS AND LIMITATIONS Overall, 55 patients (8.5%) with diagnostic genetic variants were identified. Of these patients, 20 (3.1%) carried mutations in CFTR or ADGRG2, and were diagnosed with OA. In 35 patients (5.4%) with SPGF, mutations in 20 different genes were identified. According to ClinGen criteria, 19 of the SPGF genes now reach at least moderate clinical validity. As limitations, only one transcript per gene was considered, and the list of genes is increasing rapidly so cannot be exhaustive. CONCLUSIONS The number of diagnostic genes in crypto-/azoospermia was almost doubled to 21 using exome-based analyses and clinical guidelines. Application of this procedure in routine diagnostics will significantly improve the diagnostic yield and clinical workup as the results indicate the success rate of testicular sperm extraction. PATIENT SUMMARY When no sperm are found in the semen, a man cannot conceive naturally. The causes are often unknown, but genetics play a major role. We searched for genetic variants in a large group of patients and found causal mutations for one in 12 men; these predict the chances for fatherhood.
Collapse
Affiliation(s)
- Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nils Köckerling
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Matthias Vockel
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Ann-Kristin Dicke
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nadja Rotte
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Eva Pohl
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jana Emich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Marius Wöste
- Institute of Medical Informatics, University Hospital Münster, Münster, Germany
| | - Christian Ruckert
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Rebecca Wabschke
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Jochen Seggewiss
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Susanne Ledig
- Institute of Human Genetics, University of Münster, Münster, Germany
| | | | - Yvonne Stratis
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Jann F Cremers
- Centre of Reproductive Medicine and Andrology (CeRA), University Hospital Münster, Münster, Germany
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology (CeRA), University Hospital Münster, Münster, Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology (CeRA), University Hospital Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology (CeRA), University Hospital Münster, Münster, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany.
| |
Collapse
|
63
|
Ferlin A, Calogero AE, Krausz C, Lombardo F, Paoli D, Rago R, Scarica C, Simoni M, Foresta C, Rochira V, Sbardella E, Francavilla S, Corona G. Management of male factor infertility: position statement from the Italian Society of Andrology and Sexual Medicine (SIAMS) : Endorsing Organization: Italian Society of Embryology, Reproduction, and Research (SIERR). J Endocrinol Invest 2022; 45:1085-1113. [PMID: 35075609 DOI: 10.1007/s40618-022-01741-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Infertility affects 15-20% of couples and male factors are present in about half of the cases. For many aspects related to the diagnostic and therapeutic approach of male factor infertility, there is no general consensus, and the clinical approach is not uniform. METHODS In the present document by the Italian Society of Andrology and Sexual Medicine (SIAMS), endorsed by the Italian Society of Embryology, Reproduction, and Research (SIERR), we propose evidence-based recommendations for the diagnosis, treatment, and management of male factor infertility to improve patient and couple care. RESULTS Components of the initial evaluation should include at minimum medical history, physical examination, and semen analysis. Semen microbiological examination, endocrine assessment, and imaging are suggested in most men and recommended when specific risk factors for infertility exist or first-step analyses showed abnormalities. Full examination including genetic tests, testicular cytology/histology, or additional tests on sperm is clinically oriented and based on the results of previous investigations. For treatment purposes, the identification of the specific cause and the pathogenetic mechanism is advisable. At least, distinguishing pre-testicular, testicular, and post-testicular forms is essential. Treatment should be couple-oriented, including lifestyle modifications, etiologic therapies, empirical treatments, and ART on the basis of best evidence and with a gradual approach. CONCLUSION These Guidelines are based on two principal aspects: they are couple-oriented and place high value in assessing, preventing, and treating risk factors for infertility. These Guidelines also highlighted that male infertility and in particular testicular function might be a mirror of general health of a man.
Collapse
Affiliation(s)
- A Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani 2, 35121, Padua, Italy.
| | - A E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - C Krausz
- Department of Experimental and Clinical Biomedical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - F Lombardo
- Department of Experimental Medicine, Laboratory of Seminology-Sperm Bank "Loredana Gandini", University of Rome "La Sapienza", Rome, Italy
| | - D Paoli
- Department of Experimental Medicine, Laboratory of Seminology-Sperm Bank "Loredana Gandini", University of Rome "La Sapienza", Rome, Italy
| | - R Rago
- Department of Gender, Parenting, Child and Adolescent Medicine, Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Rome, Italy
| | - C Scarica
- European Hospital, Centre for Reproductive Medicine, Rome, Italy
| | - M Simoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - C Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani 2, 35121, Padua, Italy
| | - V Rochira
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - E Sbardella
- Department of Experimental Medicine, University of Rome "La Sapienza", Rome, Italy
| | - S Francavilla
- Department of Life, Health and Environmental Sciences, Unit of Andrology, University of L'Aquila, L'Aquila, Italy
| | - G Corona
- Medical Department, Endocrinology Unit, Maggiore-Bellaria Hospital, Azienda Usl, Bologna, Italy
| |
Collapse
|
64
|
Kadiyska T, Tourtourikov I, Dabchev K, Madzharova D, Tincheva S, Spandidos DA, Zoumpourlis V. Role of testis‑specific serine kinase 1B in undiagnosed male infertility. Mol Med Rep 2022; 25:204. [PMID: 35485285 PMCID: PMC9073834 DOI: 10.3892/mmr.2022.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Male infertility is a global problem affecting a considerable part of the male population. Current guidelines and practices aimed at diagnosing the cause of this problem still have low diagnostic yield. As novel candidate genes for infertility emerge, their functional role needs to be investigated in patient populations. The present study aimed to investigate testis-specific serine kinase 1B (TSSK1B), which was discovered in a previously diagnosed patient. Sanger sequencing of the coding regions and exon borders of TSSK1B was performed in a cohort of 100 male Bulgarian patients with unresolved infertility causes. Missense mutations were discovered in 10% of patients and were associated with clinical data on sperm dysmorphology. Two previously unreported mutations were discovered, p.3D>N and p.52F>L. All mutations were scored via in silico predictors and protein modelling using AlphaFold2. The present findings indicated an association between TSSK1B mutations and asthenoteratozoospermia, with further missense mutations in patients with azoospermia and teratozoospermia. Mutations in TSSK1B may be a cause of undiagnosed cases of male infertility and should be considered when molecular diagnostics are warranted.
Collapse
Affiliation(s)
- Tanya Kadiyska
- Department of Physiology and Pathophysiology, Medical University, 1413 Sofia, Bulgaria
| | | | | | | | - Savina Tincheva
- Genetic Medico‑Diagnostic Laboratory 'Genica', 1612 Sofia, Bulgaria
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
65
|
Damdinsuren E, Naidansuren P, Gochoo M, Choi BC, Choi MY, Baldandorj B. Prevalence of Y chromosome microdeletions among infertile Mongolian men. Clin Exp Reprod Med 2022; 49:101-109. [PMID: 35698772 PMCID: PMC9184878 DOI: 10.5653/cerm.2021.05099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/06/2022] [Indexed: 11/06/2022] Open
Abstract
Y chromosome microdeletions are the second most common genetic cause of male infertility after Klinefelter syndrome. The aim of this study was to determine the patterns of Y chromosome microdeletions among infertile Mongolian men. A descriptive study was performed on 75 infertile men from February 2017 to December 2018. Y chromosome microdeletions were identified by polymerase chain reaction. Semen parameters, hormonal levels, and testis biopsy samples were examined. Among 75 infertile men, two cases of Y chromosome microdeletions were identified. The first case had an AZFa complete deletion and the other had an AZFc partial deletion. This study found that the proportion of Y chromosome microdeletions among infertile Mongolian men was 2.66%. The findings can be applied to in vitro fertilization and assisted reproductive technology, and our results will help clinicians improve treatment management for infertile Mongolian couples.
Collapse
Affiliation(s)
- Erdenesuvd Damdinsuren
- Department of Obstetrics and Gynecology, Mongolian National University of Medical Sciences School of Medicine, Ulaanbaatar, Mongolia
- Mon-CL Fertility Center, Ulaanbaatar, Mongolia
| | | | - Mendsaikhan Gochoo
- Department of Obstetrics and Gynecology, Mongolian National University of Medical Sciences School of Medicine, Ulaanbaatar, Mongolia
| | - Bum-Chae Choi
- Mon-CL Fertility Center, Ulaanbaatar, Mongolia
- Center for Recurrent Miscarriage and Infertility, Creation and Love Women’s Hospital, Kwangju, Republic of Korea
| | - Min-Youp Choi
- Center for Recurrent Miscarriage and Infertility, Creation and Love Women’s Hospital, Kwangju, Republic of Korea
| | - Bolorchimeg Baldandorj
- Department of Obstetrics and Gynecology, Mongolian National University of Medical Sciences School of Medicine, Ulaanbaatar, Mongolia
- Corresponding author: Bolorchimeg Baldandorj Department of Obstetrics and Gynecology, Mongolian National University of Medical Sciences School of Medicine, Zorig St., Ulaanbaatar-14210, Mongolia Tel: +976-95110525 Fax: +976-11344702 E-mail:
| |
Collapse
|
66
|
Levkova M, Chervenkov T, Hachmeriyan M, Angelova L. Overview Of Current NGS Testing For Male Factor Infertility. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Aim — Infertility is a global health problem. The next-generation sequencing and panel testing are offering new opportunities to further diagnose the reason for male infertility. The aim of this paper is to provide a better insight into the currently available panels for male infertility due to impaired spermatogenesis. Methods — We conducted research in the Genetic testing registry by using the keywords „infertility“, „male infertility“. We also gathered information about the number of tested genes, coverage of the panels, turnaround time, and any additional tests, which could be ordered. Results — As a result there were eleven laboratories, offering panel testing for male infertility, which tested for 230 different genes, but 65 genes (28.26%) from the different panels had an uncertain role for the tested condition. Cystic fibrosis transmembrane conductance regulator was the only gene, suggested by all laboratories. Conclusions — Next-generation sequencing could be extremely helpful in the diagnostic process of male infertility. However, clinicians should be aware that some of the included genes have an uncertain role for male infertility.
Collapse
Affiliation(s)
- Mariya Levkova
- Medical University Varna, Varna, Bulgaria; St. Marina Hospital, Varna, Bulgaria
| | - Trifon Chervenkov
- Medical University Varna, Varna, Bulgaria; St. Marina Hospital, Varna, Bulgaria
| | - Mari Hachmeriyan
- Medical University Varna, Varna, Bulgaria; St. Marina Hospital, Varna, Bulgaria
| | | |
Collapse
|
67
|
Andrabi SW, Makker GC, Makker R, Mishra G, Singh R. Human chorionic gonadotropin therapy in hypogonadic severe-oligozoospermic men and its effect on semen parameters. Clin Exp Reprod Med 2022; 49:57-61. [PMID: 35255659 PMCID: PMC8923634 DOI: 10.5653/cerm.2021.04742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/13/2021] [Indexed: 11/14/2022] Open
Abstract
Objective This study aimed to evaluate whether human chorionic gonadotropin (hCG) therapy is beneficial for improving semen parameters and clinical hypogonadism symptoms in hypogonadic oligozoospermic or severe oligozoospermic men with low or borderline testosterone levels. Methods A weekly dose of 250 μg (equivalent to approximately 6,500 IU) of hCG was administered subcutaneously for 3–6 months to 56 hypogonadic oligozoospermic or severe oligozoospermic men. Semen, biochemical, and genetic analyses were performed before the start of treatment followed by analyzing semen parameters every 3 months after the start of therapy. We grouped participants into responders and non-responders depending on positive changes in semen parameters. Results Out of 56 men, 47 (83.93%) responded, while 9 (16.07%) did not. Upon statistical analysis, it was found that age did not affect the overall outcomes (p=0.292); however, men with higher body mass index (BMI; 28.09±3.48 kg/m2) showed better outcomes than those with low BMI (25.33±3.06 kg/m2) (p=0.042). The duration of therapy (in months) was higher in non-responders than in responders (p=0.020). We found significant improvements in sperm concentration (p=0.006) and count (p=0.005) after 3 months of therapy. Sperm motility and progressive motility were also found to be higher in responders, but did not show statistically significant changes. Conclusion We conclude that hCG therapy can be beneficial in men with hypogonadic oligozoospermia or severe oligozoospermia.
Collapse
Affiliation(s)
| | - Giresh Chandra Makker
- Makker IVF Centre, Lucknow, India
- Corresponding author: Giresh Chandra Makker Makker IVF Centre, 3c, Tilak Marg, Hazratganj, Lucknow, Uttar Pradesh 226001, India Tel: +91-522-4008289, E-mail:
| | | | | | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
68
|
Peces R, Peces C, Mena R, Cuesta E, García-Santiago FA, Ossorio M, Afonso S, Lapunzina P, Nevado J. Rapidly Progressing to ESRD in an Individual with Coexisting ADPKD and Masked Klinefelter and Gitelman Syndromes. Genes (Basel) 2022; 13:genes13030394. [PMID: 35327948 PMCID: PMC8954516 DOI: 10.3390/genes13030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenetic hereditary renal disease, promoting end-stage renal disease (ESRD). Klinefelter syndrome (KS) is a consequence of an extra copy of the X chromosome in males. Main symptoms in KS include hypogonadism, tall stature, azoospermia, and a risk of cardiovascular diseases, among others. Gitelman syndrome (GS) is an autosomal recessive disorder caused by SLC12A3 variants, and is associated with hypokalemia, hypomagnesemia, hypocalciuria, normal or low blood pressure, and salt loss. The three disorders have distinct and well-delineated clinical, biochemical, and genetic findings. We here report a male patient with ADPKD who developed early chronic renal failure leading to ESRD, presenting with an intracranial aneurysm and infertility. NGS identified two de novo PKD1 variants, one known (likely pathogenic), and a previously unreported variant of uncertain significance, together with two SLC12A3 pathogenic variants. In addition, cytogenetic analysis showed a 47, XXY karyotype. We investigated the putative impact of this rare association by analyzing possible clinical, biochemical, and/or genetic interactions and by comparing the evolution of renal size and function in the proband with three age-matched ADPKD (by variants in PKD1) cohorts. We hypothesize that the coexistence of these three genetic disorders may act as modifiers with possible synergistic actions that could lead, in our patient, to a rapid ADPKD progression.
Collapse
Affiliation(s)
- Ramón Peces
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain; (R.P.); (M.O.); (S.A.)
| | - Carlos Peces
- Area de Tecnología de la Información, SESCAM, 45071 Toledo, Spain;
| | - Rocío Mena
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain; (R.M.); (F.A.G.-S.); (P.L.)
| | - Emilio Cuesta
- Servicio de Radiología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain;
| | - Fe Amalia García-Santiago
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain; (R.M.); (F.A.G.-S.); (P.L.)
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain
| | - Marta Ossorio
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain; (R.P.); (M.O.); (S.A.)
| | - Sara Afonso
- Servicio de Nefrología, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain; (R.P.); (M.O.); (S.A.)
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain; (R.M.); (F.A.G.-S.); (P.L.)
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain; (R.M.); (F.A.G.-S.); (P.L.)
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, 28046 Madrid, Spain
- ITHACA, European Reference Network, Hospital Universitario La Paz, IdiPAZ, Universidad Autónoma, 28046 Madrid, Spain
- Correspondence: ; Tel.: +34-917-277-151; Fax: +34-917-277-382
| |
Collapse
|
69
|
Ergun S, Gunes S, Hekim N, Esteves SC. In silico analysis of microRNA genes in azoospermia factor Y-chromosome microdeletions. Int Urol Nephrol 2022; 54:773-780. [DOI: 10.1007/s11255-022-03133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/01/2022]
|
70
|
S Al-Ouqaili MT, Al-Ani SK, Alaany R, Al-Qaisi MN. Detection of partial and/or complete Y chromosome microdeletions of azoospermia factor a (AZFa) sub-region in infertile Iraqi patients with azoospermia and severe oligozoospermia. J Clin Lab Anal 2022; 36:e24272. [PMID: 35122324 PMCID: PMC8906023 DOI: 10.1002/jcla.24272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/08/2022] Open
Abstract
BACKGROUND This study aimed to analyze the incidence of azoospermia factor a (AZFa) microdeletions in the Y chromosome and their association with male infertility in a population with azoospermia and severe oligozoospermia from Iraq. METHODS A total of 75 infertile Iraqi males and 25 healthy controls were included in this study. The semen analysis was performed to determine the azoospermia, severe oligozoospermia, or normal cases. The AZFa microdeletions were investigated using the real-time polymerase chain reaction (real-time PCR). Then, AZFa sub-region deletions were investigated by a conventional PCR. RESULTS In total, 40 men with azoospermia and 35 men with severe oligozoospermia were selected. Out of 75 infertile males, 46 (61.3%) individuals had AZFa microdeletions, of whom 32 (69.6%) had partial deletion, while 14 (30.4%) males had complete deletion using real-time PCR. The frequency of microdeletions was significantly different between the infertile and control group (p-value < 0.00001). The proportion of AZFa microdeletions appeared higher in azoospermia men (72.5%, n = 29/40) than severe oligozoospermia men (48.6%, n = 17/35), but based on the conventional PCR results, only one azoospermia patient (2.2%) was shown to have complete AZFa deletion, while the other 45 patients (97.8%) had partial AZFa deletions. CONCLUSION In this study, the partial AZFa microdeletions were more numerous than complete AZFa deletion. According to our results, the AZFa microdeletions might be associated with male infertility and spermatogenic failure. It is recommended to investigate the AZFa sub-region microdeletions in patients that shown AZFa microdeletions in primary screening.
Collapse
Affiliation(s)
- Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Al-Anbar Governorate, Ramadi, Iraq
| | - Sahar K Al-Ani
- Ministry of Health, Al-Anbar Health Office, Al-Anbar Governorate, Ramadi, Iraq
| | - Rehab Alaany
- Ministry of Health, Al-Anbar Health Office, Al-Anbar Governorate, Ramadi, Iraq
| | - Mohammed N Al-Qaisi
- Ministry of Health, Al-Anbar Health Office, Al-Anbar Governorate, Ramadi, Iraq
| |
Collapse
|
71
|
Cui J, Du Q, Fu W. Application of real-time shear wave elastography in the assessment of male infertility. Quant Imaging Med Surg 2022; 12:1505-1516. [PMID: 35111643 DOI: 10.21037/qims-21-648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/20/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Shear wave elastography (SWE) is recognized as a suitable imaging modality for identifying and characterizing testicular diseases. Recent exploration of SWE has focused on its feasibility in evaluating histopathological changes in the testicular parenchyma, with researchers increasingly focusing on the relationship between testicular stiffness and male fertility. In this study, we aimed to investigate the diagnostic value of SWE for distinguishing the relationship between spermatogenic defects and testicular stiffness in males of reproductive age. METHODS This was a single center, cross-sectional study conducted from July 2017 to December 2019. A total of 1,116 consecutive patients who were voluntarily participating in in-vitro fertilization (IVF)-assisted conception at our hospital were recruited to the study. The cohort included 497 normozoospermia patients (Group I), 335 with normozoospermia and decreased motility and agglutination (Group II), 138 with oligozoospermia (Group III), 105 with non-obstructive azoospermia (Group-NOA), and 41 with obstructive azoospermia (Group-OA). We conducted SWE of each participant's testes and the testicular elastic modulus was calculated. The differences of testicular elastic modulus were compared among groups. Linear regression analysis was conducted to determine the correlation between sperm concentration and either testicular volume or testicular elastic modulus. Receiver operating characteristic (ROC) curves were drawn to evaluate the diagnostic efficiency of the maximum elastic modulus (Emax), mean elastic modulus (Emean), and maximum minus the minimum elastic modulus {E[max-min]}. RESULTS The Emax, Emean, and E[max-min] increased gradually in groups I, II, III, and Group-NOA, with statistical differences between groups (P<0.01). Testicular volume was shown to be positively correlated with sperm concentration (r=0.476; P<0.01), while the Emax, Emean, and E[max-min] were negatively correlated with sperm concentration (r=-0.511, -0.357, and -0.524, respectively; P<0.01). The ROC curves were established based on the Emax, Emean, and E[max-min] and were used to distinguish Group-OA from Group-NOA. The areas under the ROC curve (AUCs) were 0.910, 0.863, and 0.900, respectively. We also used ROC curves to distinguish the severe oligozoospermia subgroup and Group-NOA from other groups, for which the AUCs were 0.877, 0.791, and 0.878, respectively. CONCLUSIONS The SWE is an effective supplement to routine ultrasound examination and can be used to diagnose and differentiate spermatogenetic dysfunction.
Collapse
Affiliation(s)
- Jun Cui
- Second Department of Urology, Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Du
- Andrology Clinic of Reproductive Medical Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Fu
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
72
|
Laan M, Kasak L, Punab M. Translational aspects of novel findings in genetics of male infertility-status quo 2021. Br Med Bull 2021; 140:5-22. [PMID: 34755838 PMCID: PMC8677437 DOI: 10.1093/bmb/ldab025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Male factor infertility concerns 7-10% of men and among these 40-60% remain unexplained. SOURCES OF DATA This review is based on recent published literature regarding the genetic causes of male infertility. AREAS OF AGREEMENT Screening for karyotype abnormalities, biallelic pathogenic variants in the CFTR gene and Y-chromosomal microdeletions have been routine in andrology practice for >20 years, explaining ~10% of infertility cases. Rare specific conditions, such as congenital hypogonadotropic hypogonadism, disorders of sex development and defects of sperm morphology and motility, are caused by pathogenic variants in recurrently affected genes, which facilitate high diagnostic yield (40-60%) of targeted gene panel-based testing. AREAS OF CONTROVERSY Progress in mapping monogenic causes of quantitative spermatogenic failure, the major form of male infertility, has been slower. No 'recurrently' mutated key gene has been identified and worldwide, a few hundred patients in total have been assigned a possible monogenic cause. GROWING POINTS Given the high genetic heterogeneity, an optimal approach to screen for heterogenous genetic causes of spermatogenic failure is sequencing exomes or in perspective, genomes. Clinical guidelines developed by multidisciplinary experts are needed for smooth integration of expanded molecular diagnostics in the routine management of infertile men. AREAS TIMELY FOR DEVELOPING RESEARCH Di-/oligogenic causes, structural and common variants implicated in multifactorial inheritance may explain the 'hidden' genetic factors. It is also critical to understand how the recently identified diverse genetic factors of infertility link to general male health concerns across lifespan and how the clinical assessment could benefit from this knowledge.
Collapse
Affiliation(s)
- Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Laura Kasak
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Margus Punab
- Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia.,Andrology Centre, Tartu University Hospital, 50406 Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| |
Collapse
|
73
|
Vučić N, Kotarac N, Matijašević S, Radenković L, Vuković I, Budimirović B, Djordjević M, Savić-Pavićević D, Brajušković G. Copy number variants within AZF region of Y chromosome and their association with idiopathic male infertility in Serbian population. Andrologia 2021; 54:e14297. [PMID: 34716599 DOI: 10.1111/and.14297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022] Open
Abstract
Results of numerous studies gave contradictory conclusions when analysing associations between copy number variants (CNVs) within the azoospermia factor (AZF) locus of the Y chromosome and idiopathic male infertility. The aim of this study was to identify the presence and possible association of CNVs in the AZF region of Y chromosome with idiopathic male infertility in the Serbian population. Using the multiplex ligation-dependent probe amplification technique, we were able to detect CNVs in 24 of 105 (22.86%) infertile men and in 11 of 112 (9.82%) fertile controls. The results of Fisher's exact test showed a statistically significant difference between cases and controls after merging g(reen)-r(ed)/g(reen)-r(ed) and b(lue)2/b(lue)3 partial deletions identified in the AZFc region (p = 0.024). At the same time, we observed a trend towards statistical significance for a deletion among gr/gr amplicons (p = 0.053). In addition to these, we identified a novel complex CNV involving inversion of r2/r3 amplicons, followed by b2/b3 duplication and b3/b4 deletion, respectively. Additional analyses on a larger study group would be necessary to draw meaningful conclusions about associations among CNVs that presented with higher frequency in the infertile men than the fertile controls.
Collapse
Affiliation(s)
- Nemanja Vučić
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Nevena Kotarac
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Suzana Matijašević
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Lana Radenković
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Ivan Vuković
- Clinic of Urology, Clinical Center of Serbia, Belgrade, Serbia
| | - Branko Budimirović
- "Academian Vojin Sulović" Centre for In Vitro Fertilisation, General Hospital Valjevo, Valjevo, Serbia
| | - Mirka Djordjević
- "Academian Vojin Sulović" Centre for In Vitro Fertilisation, General Hospital Valjevo, Valjevo, Serbia
| | - Dusanka Savić-Pavićević
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | - Goran Brajušković
- Faculty of Biology, Centre for Human Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
74
|
Andrabi SW, Saini P, Joshi M, Mehta P, Makker GC, Mishra G, Rajender S. HCG therapy in azoospermic men with lower or borderline testosterone levels and the prognostic value of Y-deletion analysis in its outcome. Andrologia 2021; 54:e14251. [PMID: 34617300 DOI: 10.1111/and.14251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/18/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022] Open
Abstract
The purpose of this study was to investigate the efficacy of hCG therapy in hypogonadotropic hypogonadic (HH) azoospermic males along with dissecting the prognostic value of Y-deletion analysis in these patients. Fifty-eight azoospermic infertile males with diminished testosterone levels (≤400 ng/dl) and hypogonadism symptoms were subjected to human chorionic gonadotropin (hCG) therapy, and Y-deletion analysis was undertaken. Post-treatment, 43% (25/58) patients showed improvement in sperm count with 8.6% (5/58) turning severe oligozoospermic, 24.14% (14/58) patients turning oligozoospermic and 10.54% (6/58) turning normozoospermic. Among responders, the mean sperm concentration was 8.47 ± 13.16 million/ml, sperm count was 17.05 ± 26.17 million, sperm motility was 52.59% ± 25.09% and sperm progressive motility was 26.91% ± 20.51%. Seventeen out of 25 (68%) responders and 11/33 (33%) nonresponders showed an improvement in libido post-therapy. A Y-deletion was observed in 8% (2/25) responders and in 39.39% (13 out of 33) nonresponders. The Y-deletions were more often found in nonresponders in comparison with the responders (Fisher's exact probability test, p = .007, one tailed). We conclude that hCG therapy in hypogonadotropic azoospermic males is effective in improving andrological parameters and sperm production and that Y-chromosome deletion analysis has prognostic significance in predicting the success of hCG therapy.
Collapse
Affiliation(s)
| | - Pallavi Saini
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Meghali Joshi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | | | - Singh Rajender
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
75
|
Krausz C, Cioppi F. Genetic Factors of Non-Obstructive Azoospermia: Consequences on Patients' and Offspring Health. J Clin Med 2021; 10:jcm10174009. [PMID: 34501457 PMCID: PMC8432470 DOI: 10.3390/jcm10174009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Non-Obstructive Azoospermia (NOA) affects about 1% of men in the general population and is characterized by clinical heterogeneity implying the involvement of several different acquired and genetic factors. NOA men are at higher risk to be carriers of known genetic anomalies such as karyotype abnormalities and Y-chromosome microdeletions in respect to oligo-normozoospermic men. In recent years, a growing number of novel monogenic causes have been identified through Whole Exome Sequencing (WES). Genetic testing is useful for diagnostic and pre-TESE prognostic purposes as well as for its potential relevance for general health. Several epidemiological observations show a link between azoospermia and higher morbidity and mortality rate, suggesting a common etiology for NOA and some chronic diseases, including cancer. Since on average 50% of NOA patients has a positive TESE outcome, the identification of genetic factors in NOA patients has relevance also to the offspring's health. Although still debated, the observed increased risk of certain neurodevelopmental disorders, as well as impaired cardiometabolic and reproductive health profile in children conceived with ICSI from NOA fathers may indicate the involvement of transmissible genetic factors. This review provides an update on the reproductive and general health consequences of known genetic factors causing NOA, including offspring's health.
Collapse
|
76
|
Dutta S, Paladhi P, Pal S, Bose G, Ghosh P, Chattopadhyay R, Chakravarty B, Ghosh S. Prevalence of Y chromosome microdeletion in azoospermia factor subregions among infertile men from West Bengal, India. Mol Genet Genomic Med 2021; 9:e1769. [PMID: 34427986 PMCID: PMC8580071 DOI: 10.1002/mgg3.1769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/08/2022] Open
Abstract
Background Etiology of male infertility is intriguing and Y chromosome microdeletion within azoospermia factor (AZF) sub‐regions is considered major cause. We conducted a screening for Y chromosome microdeletion in an infertile male cohort from West Bengal, India to characterize Y chromosome microdeletion among infertile men. Methods We recruited case subjects that were categorized on the basis of sperm count as azoospermia (N = 63), severe oligozoospermia (N = 38), and oligozoospermia (N = 17) and compared them with age, demography, and ethnicity matched healthy proven fertile control males (N = 84). Sequence Tagged Site makers and polymerase chain reaction based profiling of Y chromosome was done for AZF region and SRY for cases and controls. Results We scored 16.1% of cases (19 out of 118) that bear one or more microdeletions in the studied loci and none among the controls. The aberrations were more frequent among azoospermic males (17 of 19) than in severe oligozoospermic subjects (2 of 19). Conclusion Our study provides the results of screening of the largest Bengali infertile men sample genotyped with the maximum number of STS markers spanning the entire length of Y chromosome long arm. Y chromosome microdeletion is a significant genetic etiology of infertility among Bengali men.
Collapse
Affiliation(s)
- Saurav Dutta
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Kolkata, India
| | - Pranab Paladhi
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Kolkata, India
| | - Samudra Pal
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Kolkata, India
| | - Gunja Bose
- Institute of Reproductive Medicine (IRM), Kolkata, India
| | - Papiya Ghosh
- Department of Zoology, Bijoy Krishna Girls' College (Affiliated to University of Calcutta), Howrah, India
| | | | | | - Sujay Ghosh
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Kolkata, India
| |
Collapse
|
77
|
Ghieh F, Barbotin AL, Leroy C, Marcelli F, Swierkowsky-Blanchard N, Serazin V, Mandon-Pepin B, Vialard F. Will whole-genome sequencing become the first-line genetic analysis for male infertility in the near future? Basic Clin Androl 2021; 31:21. [PMID: 34407766 PMCID: PMC8375164 DOI: 10.1186/s12610-021-00138-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/03/2021] [Indexed: 01/29/2023] Open
Abstract
Whereas the initially strategy for the genetic analysis of male infertility was based on a candidate gene approach, the development of next-generation sequencing technologies (such as whole-exome sequencing (WES)) provides an opportunity to analyze many genes in a single procedure. In order to recommend WES or whole-genome sequencing (WGS) after genetic counselling, an objective evaluation of the current genetic screening strategy for male infertility is required, even if, at present, we have to take into consideration the complexity of such a procedure, not discussed in this commentary.
Collapse
Affiliation(s)
- Farah Ghieh
- UVSQ, INRAE, BREED, Université Paris-Saclay, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - Anne-Laure Barbotin
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, Centre Hospitalier et Universitaire, F -59000, Lille, France
| | - Clara Leroy
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, Centre Hospitalier et Universitaire, F -59000, Lille, France
| | - François Marcelli
- Institut de Biologie de la Reproduction-Spermiologie-CECOS, Hôpital Jeanne de Flandre, Centre Hospitalier et Universitaire, F -59000, Lille, France
| | - Nelly Swierkowsky-Blanchard
- UVSQ, INRAE, BREED, Université Paris-Saclay, F-78350, Jouy-en-Josas, France.,Département de Gynécologie-Obstétrique, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France
| | - Valérie Serazin
- UVSQ, INRAE, BREED, Université Paris-Saclay, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France.,Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France
| | - Béatrice Mandon-Pepin
- UVSQ, INRAE, BREED, Université Paris-Saclay, F-78350, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France
| | - François Vialard
- UVSQ, INRAE, BREED, Université Paris-Saclay, F-78350, Jouy-en-Josas, France. .,Ecole Nationale Vétérinaire d'Alfort, BREED, F-94700, Maisons-Alfort, France. .,Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France.
| |
Collapse
|
78
|
An M, Liu Y, Zhang M, Hu K, Jin Y, Xu S, Wang H, Lu M. Targeted next-generation sequencing panel screening of 668 Chinese patients with non-obstructive azoospermia. J Assist Reprod Genet 2021; 38:1997-2005. [PMID: 33728612 PMCID: PMC8417191 DOI: 10.1007/s10815-021-02154-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We aimed (1) to determine the molecular diagnosis rate and the recurrent causative genes of patients with non-obstructive azoospermia (NOA) using targeted next-generation sequencing (NGS) panel screening and (2) to discuss whether these genes help in the prognosis for microsurgical testicular sperm extraction (micro-TESE). METHODS We used NGS panels to screen 668 Chinese men with NOA. Micro-TESE outcomes for six patients with pathogenic mutations were followed up. Functional assays were performed for two NR5A1 variants identified: p.I224V and p.R281C. RESULTS Targeted NGS panel sequencing could explain 4/189 (2.1% by panel 1) or 10/479 (2.1% by panel 2) of the patients with NOA after exclusion of karyotype abnormalities and Y chromosome microdeletions. Almost all mutations detected were newly described except for NR5A1 p.R281C and TEX11 p.M156V. Two missense NR5A1 mutations-p.R281C and p.I244V-were proved to be deleterious by in vitro functional assays. Mutations in TEX11, TEX14, and NR5A1 genes are recurrent causes of NOA, but each gene explains only a very small percentage (less than 4/668; 0.6%). Only the patient with NR5A1 mutations produced viable spermatozoa through micro-TESE, but other patients with TEX11 and TEX14 had poor micro-TESE prognoses. CONCLUSIONS A targeted NGS panel is a feasible diagnostic method for patients with NOA. Because each gene implicated explains only a small proportion of such cases, more genes should be included to further increase the diagnostic rate. Considering previous reports, we suggest that only a few genes that are directly linked to meiosis can indicate poor micro-TESE prognosis, such as TEX11, TEX14, and SYCE1.
Collapse
Affiliation(s)
- Miao An
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Yidong Liu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Ming Zhang
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Kai Hu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Yan Jin
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Shiran Xu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China
| | - Hongxiang Wang
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China.
| | - Mujun Lu
- Department of Urology and Andrology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200001, People's Republic of China.
| |
Collapse
|
79
|
Kocamanoglu F, Ayas B, Bolat MS, Abur U, Bolat R, Asci R. Endocrine, sexual and reproductive functions in patients with Klinefelter syndrome compared to non-obstructive azoospermic patients. Int J Clin Pract 2021; 75:e14294. [PMID: 33928735 DOI: 10.1111/ijcp.14294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/27/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS We aimed to investigate fertilisation rates, quality of embryo, pregnancy and live birth rates, endocrine, sexual function, psychological status and quality of life of cases diagnosed with Klinefelter syndrome (KS). METHODS Clinical findings, hormone values and semen analyses in patients with nonmosaic KS (Group 1, n = 121) and those with non-genetic nonobstructive azoospermia (NOA) (Group 2, n = 178) were retrospectively analysed. Sperm retrieval outcomes with microdissection testicular sperm extraction (micro-TESE), fertilisation rates and embryo quality, pregnancy, abortion and live birth rates were compared. Sexual functions were assessed using IIEF-15, quality of life was evaluated and psychological status was assessed. RESULTS There was no difference in terms of age between groups. Sperm retrieval rates was 38% and 55.6% in Groups 1 and 2, respectively (P = .012). Sperm retrieval rates were higher in Group 1 before 31.5 years than in Group 2 (AUC = 0.620 and 0.578). Compared to Group 2, the fertilisation rate was low in Group 1, whereas embryo quality was similar. Live birth rates were 12.5% and 23% in Groups 1 and 2, respectively (P = .392). The education level, libido, erectile functions and general health satisfaction were lower in Group 1 than in Group 2 (P < .005). Depression and anxiety levels were higher in Group 2 than Group 1 (P < .001). CONCLUSION Higher sperm retrieval rate has been achieved in Group 1 younger than 31.5 years. Similar embryo quality is provided between groups. Sexual dysfunction and psychiatric problems were higher in Group 1, with lower satisfaction and general health than Group 2. Patients with KS should be monitored not only with their reproductive functions but also with their general health status.
Collapse
Affiliation(s)
| | - Bulent Ayas
- Department of IVF Center, Ondokuz Mayis University, Samsun, Turkey
| | | | - Ummet Abur
- Department of Medical Genetics, Ondokuz Mayis University, Samsun, Turkey
| | - Recep Bolat
- Psychiatry Clinic, Cevdet Aykan Mental Health Hospital, Tokat, Turkey
| | - Ramazan Asci
- Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
80
|
Mokos M, Planinić A, Bilić K, Katušić Bojanac A, Sinčić N, Bulić Jakuš F, Ježek D. Stereological properties of seminiferous tubules in infertile men with chromosomal and genetic abnormalities. Minerva Endocrinol (Torino) 2021; 47:11-22. [PMID: 34328293 DOI: 10.23736/s2724-6507.21.03589-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND Male infertility is caused by genetic anomalies in 15%-30% of cases. This study aimed to determine stereological properties of seminiferous tubules in infertile men with genetic anomalies, including Klinefelter syndrome (KS), Y chromosome microdeletions (MYC) and CFTR gene mutations (CFTR), and to compare them to seminiferous tubules of men with obstructive azoospermia of non-genetic origin (control group). METHODS The study was conducted on 28 human testis biopsy specimens obtained from 14 patients with MYC, 18 samples from 9 patients with KS, and 6 samples from 3 patients with CFTR. Whenever possible, a bilateral biopsy was included in the study. The control group had 33 samples from 18 patients (3 of them with a solitary testis). Qualitative and quantitative (stereological) analysis of seminiferous tubules (including the status of spermatogenesis, volume, surface area, length and number of tubules) were performed in all groups. RESULTS Qualitative histological analysis revealed significant impairment of spermatogenesis in KS and MYC, whereas testicular parenchyma was fully maintained in CFTR and control groups. Spermatogenesis was most seriously impaired in KS. All stereological parameters were significantly lower in KS and MYC, compared to the CFTR and control groups. The total volume, surface and length of seminiferous tubules were significantly lower in KS compared with MYC. CONCLUSIONS Stereological analysis is valuable in evaluating male infertility, whereas qualitative histological analysis can be helpful in assessing sperm presence in testicular tissue of patients with KS or MYK undergoing TESE.
Collapse
Affiliation(s)
- Mislav Mokos
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Planinić
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Bilić
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Katušić Bojanac
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sinčić
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Florijana Bulić Jakuš
- Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia.,Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Ježek
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia - .,Centre of Excellence for Reproductive and Regenerative Medicine, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
81
|
Andrade DL, Viana MC, Esteves SC. Differential Diagnosis of Azoospermia in Men with Infertility. J Clin Med 2021; 10:3144. [PMID: 34300309 PMCID: PMC8304267 DOI: 10.3390/jcm10143144] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
The differential diagnosis between obstructive and nonobstructive azoospermia is the first step in the clinical management of azoospermic patients with infertility. It includes a detailed medical history and physical examination, semen analysis, hormonal assessment, genetic tests, and imaging studies. A testicular biopsy is reserved for the cases of doubt, mainly in patients whose history, physical examination, and endocrine analysis are inconclusive. The latter should be combined with sperm extraction for possible sperm cryopreservation. We present a detailed analysis on how to make the azoospermia differential diagnosis and discuss three clinical cases where the differential diagnosis was challenging. A coordinated effort involving reproductive urologists/andrologists, geneticists, pathologists, and embryologists will offer the best diagnostic path for men with azoospermia.
Collapse
Affiliation(s)
- Danilo L Andrade
- Department of Medical Physiopathology (Postgraduate Program), State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Marina C Viana
- Department of Surgery (Residency Program), Division of Urology, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| | - Sandro C Esteves
- ANDROFERT, Andrology & Human Reproduction Clinic, Campinas 13075-460, SP, Brazil
- Department of Surgery, Division of Urology, State University of Campinas (UNICAMP), Campinas 13083-887, SP, Brazil
| |
Collapse
|
82
|
Uzay E, Kızılay F, Altay B, Akın H, Durmaz MB. Investigation of genotype-phenotype correlation in patients with AZF microdeletion in a single-reference centre. Andrologia 2021; 53:e14188. [PMID: 34247421 DOI: 10.1111/and.14188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 11/27/2022] Open
Abstract
In this study, we aimed to elucidate the relationship between AZF deletion type and clinical information of azoospermic patients with AZF microdeletion in the Turkish population. Azoospermic patients with normal karyotype and AZF microdeletion were analysed retrospectively by collecting clinical data including hormone profile, demographic characteristics and micro-TESE results. As a result of the AZF microdeletion tests of 42 cases with 46 XY karyotype, AZFa deletion was detected in 3 cases, AZFb deletion in 2 cases, AZFc deletion in 31 cases, AZFb + AZFc deletion in 4 cases and AZFa + AZFb + AZFc deletion in 2 cases respectively. Spermatozoon was obtained in 16 cases with AZFc microdeletion with micro-TESE. Pregnancy was achieved in 2 cases. There was no statistically significant difference between the type of deletion and age, height, weight, body mass index, hormone profile and testicular volume. When AZF is evaluated according to the type of microdeletion, it will be appropriate to plan the medical and surgical options more carefully in a multidisciplinary manner in cases with deletions including AZFa, AZFb or their combinations. Also, genotype-phenotype correlation was found to be consistent with the literature; particularly patients having AZFc deletions were found to have a chance for pregnancy.
Collapse
Affiliation(s)
- Elif Uzay
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey
| | - Fuat Kızılay
- Department of Urology, Ege University Hospital, Izmir, Turkey
| | - Barış Altay
- Department of Urology, Ege University Hospital, Izmir, Turkey
| | - Haluk Akın
- Department of Medical Genetics, Ege University Hospital, Izmir, Turkey
| | | |
Collapse
|
83
|
Iijima M, Shigehara K, Igarashi H, Kyono K, Suzuki Y, Tsuji Y, Kobori Y, Kobayashi H, Mizokami A. Y chromosome microdeletion screening using a new molecular diagnostic method in 1030 Japanese males with infertility. Asian J Androl 2021; 22:368-371. [PMID: 31603142 PMCID: PMC7406102 DOI: 10.4103/aja.aja_97_19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The azoospermia factor (AZF) region is important for spermatogenesis, and deletions within these regions are a common cause of oligozoospermia and azoospermia. Although several studies have reported this cause, the present research, to the best of our knowledge, is the first large-scale study assessing this factor in Japan. In this study, 1030 male patients with infertility who were examined for Y chromosome microdeletion using the polymerase chain reaction-reverse sequence-specific oligonucleotide (PCR-rSSO) method, a newly developed method for Y chromosome microdeletion screening, were included. The study enrolled 250 patients with severe oligospermia and 717 patients with azoospermia. Among the 1030 patients, 4, 4, 10, and 52 had AZFa, AZFb, AZFb+c, and AZFc deletions, respectively. The sperm recovery rate (SRR) of microdissection testicular sperm extraction in patients with AZFc deletions was significantly higher than that in those without AZF deletions (60.0% vs 28.7%, P = 0.04). In patients with gr/gr deletion, SRR was 18.7%, which was lower than that in those without gr/gr deletion, but was not statistically significant. In conclusion, our study showed that the frequency of Y chromosome microdeletion in male patients in Japan was similar to that reported in patients from other countries, and SRR was higher in patients with AZFc deletion.
Collapse
Affiliation(s)
- Masashi Iijima
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| | | | - Koichi Kyono
- Kyono ART Clinic, Takanawa, Tokyo 108-0074, Japan
| | - Yasuo Suzuki
- Suzuki Lady's Hospital, Kanazawa 921-8033, Japan
| | - Yuji Tsuji
- Ebisu Tsuji Clinic, Tokyo 150-0021, Japan.,Tenjin Tsuji Clinic, Fukuoka 810-0001, Japan
| | - Yoshitomo Kobori
- Dokkyo Medical University Koshigaya Hospital, Saitama 343-8555, Japan
| | - Hideyuki Kobayashi
- Department of Urology, Faculty of Medicine, Toho University, Tokyo 143-8541, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa 920-8641, Japan
| |
Collapse
|
84
|
Unraveling the Balance between Genes, Microbes, Lifestyle and the Environment to Improve Healthy Reproduction. Genes (Basel) 2021; 12:genes12040605. [PMID: 33924000 PMCID: PMC8073673 DOI: 10.3390/genes12040605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Humans’ health is the result of a complex and balanced interplay between genetic factors, environmental stimuli, lifestyle habits, and the microbiota composition. The knowledge about their single contributions, as well as the complex network linking each to the others, is pivotal to understand the mechanisms underlying the onset of many diseases and can provide key information for their prevention, diagnosis and therapy. This applies also to reproduction. Reproduction, involving almost 10% of our genetic code, is one of the most critical human’s functions and is a key element to assess the well-being of a population. The last decades revealed a progressive decline of reproductive outcomes worldwide. As a consequence, there is a growing interest in unveiling the role of the different factors involved in human reproduction and great efforts have been carried out to improve its outcomes. As for many other diseases, it is now clear that the interplay between the underlying genetics, our commensal microbiome, the lifestyle habits and the environment we live in can either exacerbate the outcome or mitigate the adverse effects. Here, we aim to analyze how each of these factors contribute to reproduction highlighting their individual contribution and providing supporting evidence of how to modify their impact and overall contribution to a healthy reproductive status.
Collapse
|
85
|
Katagiri Y, Tamaki Y. Genetic counseling prior to assisted reproductive technology. Reprod Med Biol 2021; 20:133-143. [PMID: 33850446 PMCID: PMC8022097 DOI: 10.1002/rmb2.12361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Reproductive medicine deals with fertility and is closely related to heredity. In reproductive medicine, it is necessary to provide genetic information for the patients prior to assisted reproductive technology (ART). Japan Society for Reproductive Medicine (JSRM) requires doctors involved in reproductive medicine to have standard knowledge of reproductive genetics and knowledge of reproductive medicine, which is covered in their publication, "required knowledge of reproductive medicine." METHODS With the aim of providing straightforward explanations to patients in the clinical situation at pre-ART counseling, we provide the following five topics, such as (a) risk of birth defects in children born with ART, (b) chromosomal abnormalities, (c) Y chromosome microdeletions (YCMs), (d) possible chromosomal abnormal pregnancy in oligospermatozoa requiring ICSI (intracytoplasmic sperm injection), and (e) epigenetic alterations. MAIN FINDINGS The frequency of chromosome abnormalities in infertile patients is 0.595%-0.64%. YCMs are observed in 2%-10% of severe oligospermic men. High incidence of spermatozoa with chromosomal abnormalities has been reported in advanced oligospermia and asthenozoospermia that require ICSI. Some epigenetic alterations were reported in the children born with ART. CONCLUSION Certain genetic knowledge is important for professionals involved in reproductive medicine, even if they are not genetic experts.
Collapse
Affiliation(s)
- Yukiko Katagiri
- Department of Obstetrics and GynecologyFaculty of MedicineToho UniversityTokyoJapan
- Division of Clinical GeneticsToho University Omori Medical CenterTokyoJapan
- Reproduction CenterToho University Omori Medical CenterTokyoJapan
| | - Yuko Tamaki
- Department of Obstetrics and GynecologyFaculty of MedicineToho UniversityTokyoJapan
- Division of Clinical GeneticsToho University Omori Medical CenterTokyoJapan
- Reproduction CenterToho University Omori Medical CenterTokyoJapan
| |
Collapse
|
86
|
Hallast P, Kibena L, Punab M, Arciero E, Rootsi S, Grigorova M, Flores R, Jobling MA, Poolamets O, Pomm K, Korrovits P, Rull K, Xue Y, Tyler-Smith C, Laan M. A common 1.6 mb Y-chromosomal inversion predisposes to subsequent deletions and severe spermatogenic failure in humans. eLife 2021; 10:65420. [PMID: 33781384 PMCID: PMC8009663 DOI: 10.7554/elife.65420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Male infertility is a prevalent condition, affecting 5–10% of men. So far, few genetic factors have been described as contributors to spermatogenic failure. Here, we report the first re-sequencing study of the Y-chromosomal Azoospermia Factor c (AZFc) region, combined with gene dosage analysis of the multicopy DAZ, BPY2, and CDYgenes and Y-haplogroup determination. In analysing 2324 Estonian men, we uncovered a novel structural variant as a high-penetrance risk factor for male infertility. The Y lineage R1a1-M458, reported at >20% frequency in several European populations, carries a fixed ~1.6 Mb r2/r3 inversion, destabilizing the AZFc region and predisposing to large recurrent microdeletions. Such complex rearrangements were significantly enriched among severe oligozoospermia cases. The carrier vs non-carrier risk for spermatogenic failure was increased 8.6-fold (p=6.0×10−4). This finding contributes to improved molecular diagnostics and clinical management of infertility. Carrier identification at young age will facilitate timely counselling and reproductive decision-making.
Collapse
Affiliation(s)
- Pille Hallast
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Laura Kibena
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Margus Punab
- Andrology Unit, Tartu University Hospital, Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Elena Arciero
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Siiri Rootsi
- Institute of Genomics, Estonian Biocentre, University of Tartu, Tartu, Estonia
| | - Marina Grigorova
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Rodrigo Flores
- Institute of Genomics, Estonian Biocentre, University of Tartu, Tartu, Estonia
| | - Mark A Jobling
- Department of Genetics & Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Olev Poolamets
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - Kristjan Pomm
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - Paul Korrovits
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - Kristiina Rull
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.,Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Women's Clinic, Tartu University Hospital, Tartu, Estonia
| | - Yali Xue
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Chris Tyler-Smith
- Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
87
|
Vogt PH, Bender U, Deibel B, Kiesewetter F, Zimmer J, Strowitzki T. Human AZFb deletions cause distinct testicular pathologies depending on their extensions in Yq11 and the Y haplogroup: new cases and review of literature. Cell Biosci 2021; 11:60. [PMID: 33766143 PMCID: PMC7995748 DOI: 10.1186/s13578-021-00551-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
Genomic AZFb deletions in Yq11 coined “classical” (i.e. length of Y DNA deletion: 6.23 Mb) are associated with meiotic arrest (MA) of patient spermatogenesis, i.e., absence of any postmeiotic germ cells. These AZFb deletions are caused by non-allelic homologous recombination (NAHR) events between identical sequence blocks located in the proximal arm of the P5 palindrome and within P1.2, a 92 kb long sequence block located in the P1 palindrome structure of AZFc in Yq11. This large genomic Y region includes deletion of 6 protein encoding Y genes, EIFA1Y, HSFY, PRY, RBMY1, RPS4Y, SMCY. Additionally, one copy of CDY2 and XKRY located in the proximal P5 palindrome and one copy of BPY1, two copies of DAZ located in the P2 palindrome, and one copy of CDY1 located proximal to P1.2 are included within this AZFb microdeletion. It overlaps thus distally along 2.3 Mb with the proximal part of the genomic AZFc deletion. However, AZFb deletions have been also reported with distinct break sites in the proximal and/or distal AZFb breakpoint intervals on the Y chromosome of infertile men. These so called “non-classical” AZFb deletions are associated with variable testicular pathologies, including meiotic arrest, cryptozoospermia, severe oligozoospermia, or oligoasthenoteratozoospermia (OAT syndrome), respectively. This raised the question whether there are any specific length(s) of the AZFb deletion interval along Yq11 required to cause meiotic arrest of the patient’s spermatogenesis, respectively, whether there is any single AZFb Y gene deletion also able to cause this “classical” AZFb testicular pathology? Review of the literature and more cases with “classical” and “non-classical” AZFb deletions analysed in our lab since the last 20 years suggests that the composition of the genomic Y sequence in AZFb is variable in men with distinct Y haplogroups especially in the distal AZFb region overlapping with the proximal AZFc deletion interval and that its extension can be “polymorphic” in the P3 palindrome. That means this AZFb subinterval can be rearranged or deleted also on the Y chromosome of fertile men. Any AZFb deletion observed in infertile men with azoospermia should therefore be confirmed as “de novo” mutation event, i.e., not present on the Y chromosome of the patient’s father or fertile brother before it is considered as causative agent for man’s infertility. Moreover, its molecular length in Yq11 should be comparable to that of the “classical” AZFb deletion, before meiotic arrest is prognosed as the patient’s testicular pathology.
Collapse
Affiliation(s)
- P H Vogt
- Division of Reproduction Genetics, Department of Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.
| | - U Bender
- Division of Reproduction Genetics, Department of Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - B Deibel
- Division of Reproduction Genetics, Department of Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - F Kiesewetter
- Department of Andrology, University Clinic of Dermatology, Erlangen, Germany
| | - J Zimmer
- Division of Reproduction Genetics, Department of Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - T Strowitzki
- Department of Gynaecol. Endocrinology & Infertility Disorders, Women Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
88
|
Genetics of Azoospermia. Int J Mol Sci 2021; 22:ijms22063264. [PMID: 33806855 PMCID: PMC8004677 DOI: 10.3390/ijms22063264] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Azoospermia affects 1% of men, and it can be due to: (i) hypothalamic-pituitary dysfunction, (ii) primary quantitative spermatogenic disturbances, (iii) urogenital duct obstruction. Known genetic factors contribute to all these categories, and genetic testing is part of the routine diagnostic workup of azoospermic men. The diagnostic yield of genetic tests in azoospermia is different in the different etiological categories, with the highest in Congenital Bilateral Absence of Vas Deferens (90%) and the lowest in Non-Obstructive Azoospermia (NOA) due to primary testicular failure (~30%). Whole-Exome Sequencing allowed the discovery of an increasing number of monogenic defects of NOA with a current list of 38 candidate genes. These genes are of potential clinical relevance for future gene panel-based screening. We classified these genes according to the associated-testicular histology underlying the NOA phenotype. The validation and the discovery of novel NOA genes will radically improve patient management. Interestingly, approximately 37% of candidate genes are shared in human male and female gonadal failure, implying that genetic counselling should be extended also to female family members of NOA patients.
Collapse
|
89
|
Chakraborty A, Palo I, Roy S, Koh SW, Hande MP, Banerjee B. A Novel Balanced Chromosomal Translocation in an Azoospermic Male: A Case Report. J Reprod Infertil 2021; 22:133-137. [PMID: 34041010 PMCID: PMC8143005 DOI: 10.18502/jri.v22i2.5802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background: Balanced translocation and azoospermia as two main reasons for recurrent pregnancy loss are known to be the leading causes of infertility across the world. Balanced translocations in azoospermic males are very rare and extensive studies need to be performed to elucidate the translocation status of the affected individuals. Case Presentaion: The cytogenetic characterization of a 28 year old male and his female partner is reported in this study. The male partner was diagnosed with non-obstructive azoospermia (NOA) and the couple was unable to conceive. Cytogenetic analysis by karyotyping through Giemsa-trypsin-giemsa banding technique (GTG) showed a novel balanced translocation, 46,XY,t(19;22)(19q13.4;22q11.2), 13ps+ in the male and the female karyotype was found to be 46,XX. Multicolor fluorescence in situ hybridization (mFISH) analysis on paternal chromosomal preparations confirmed both the region and origin of balanced translocation. The status of Y chromosome microdeletion (YMD) was analyzed and no notable microdeletion was observed. Furthermore, protein-protein interaction (PPI) network analysis was performed for breakpoint regions to explore the possible functional genetic associations. Conclusion: The azoospermic condition of the male patient along with novel balanced chromosomal translocation was responsible for infertility irrespective of its YMD status. Therefore, cytogenetic screening of azoospermic patients should be performed in addition to routine semen analysis to rule out or to confirm presence of any numerical or structural anomaly in the patient.
Collapse
Affiliation(s)
- Abhik Chakraborty
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Indira Palo
- Department of Obstetrics and Gynecology, Amit Hospital, Odisha, India
| | - Souvick Roy
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Shu Wen Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Manoor Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore
| | - Birendranath Banerjee
- Molecular Stress and Stem Cell Biology Group, School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India.,Division of Cytogenetics, inDNA Life Sciences Private Limited, Bhubaneswar, Odisha, India
| |
Collapse
|
90
|
Krausz C. Editorial for the special issue on the molecular genetics of male infertility. Hum Genet 2021; 140:1-5. [PMID: 33337534 DOI: 10.1007/s00439-020-02245-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
91
|
Witherspoon L, Dergham A, Flannigan R. Y-microdeletions: a review of the genetic basis for this common cause of male infertility. Transl Androl Urol 2021; 10:1383-1390. [PMID: 33850774 PMCID: PMC8039600 DOI: 10.21037/tau-19-599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The human Y-chromosome contains genetic material responsible for normal testis development and spermatogenesis. The long arm (Yq) of the Y-chromosome has been found to be susceptible to self-recombination during spermatogenesis predisposing this area to deletions. The incidence of these deletions is estimated to be 1/4,000 in the general population but has been found to be much higher in infertile men. Currently, Y-microdeletions are the second most commonly identified genetic cause of male infertility after Klinefelter syndrome. This has led to testing for these deletions becoming standard practice in men with azoospermia and severe oligospermia. There are three commonly identified Y-microdeletions in infertile males, termed azoospermia factor (AZF) microdeletions AZFa, AZFb and AZFc. With increased understanding and investigation of this genetic basis for infertility a more comprehensive understanding of these deletions has evolved, with several other deletion subtypes being identified. Understanding the genetic basis and pathology behind these Y-microdeletions is essential for any clinician involved in reproductive medicine. In this review we discuss the genetic basis of Y-microdeletions, the various subtypes of deletions, and current technologies available for testing. Our understanding of this issue is evolving in many areas, and in this review we highlight future testing opportunities that may allow us to stratify men with Y-microdeletion associated infertility more accurately
Collapse
Affiliation(s)
- Luke Witherspoon
- Division of Urology, Department of Surgery, The Ottawa Hospital and University of Ottawa, Ottawa, ON, Canada
| | - Ali Dergham
- School of Medicine, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
92
|
Yuen W, Golin AP, Flannigan R, Schlegel PN. Histology and sperm retrieval among men with Y chromosome microdeletions. Transl Androl Urol 2021; 10:1442-1456. [PMID: 33850779 PMCID: PMC8039602 DOI: 10.21037/tau.2020.03.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
In this review of Y chromosome microdeletions, azoospermia factor (AZF) deletion subtypes, histological features and microTESE sperm retrieval rates are summarized after a systematic literature review. PubMed was searched and papers were identified using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Approximately half of infertile couples have a male factor contributing to their infertility. One of the most common genetic etiologies are Y chromosome microdeletions. Men with Y chromosome microdeletions may have rare sperm available in the ejaculate or undergo surgical sperm retrieval and subsequent intracytoplasmic sperm injection to produce offspring. Azoospermia or severe oligozoospermia are the most common semen analysis findings found in men with Y chromosome microdeletions, associated with impaired spermatogenesis. Men with complete deletions of azoospermia factor a, b, or a combination of any loci have severely impaired spermatogenesis and are nearly always azoospermic with no sperm retrievable from the testis. Deletions of the azoospermia factor c or d often have sperm production and the highest likelihood of a successful sperm retrieval. In men with AZFc deletions, histologically, 46% of men demonstrate Sertoli cell only syndrome on biopsy, whereas 38.2% have maturation arrest and 15.7% have hypospermatogenesis. The microTESE sperm retrieval rates in AZFc-deleted men range from 13-100% based on the 32 studies analyzed, with a mean sperm retrieval rate of 47%.
Collapse
Affiliation(s)
- Wallace Yuen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew P Golin
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ryan Flannigan
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Peter N Schlegel
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
93
|
Pelzman DL, Hwang K. Genetic testing for men with infertility: techniques and indications. Transl Androl Urol 2021; 10:1354-1364. [PMID: 33850771 PMCID: PMC8039607 DOI: 10.21037/tau-19-725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetic testing is an integral component in the workup of male infertility as genetic conditions may be responsible for up to 15% of all cases. Currently, three genetic tests are commonly performed and recommended by major urologic associations: karyotype analysis (KA), Y-chromosome microdeletion testing, and CFTR mutation testing. Despite widespread adoption of these tests, an etiology for infertility remains elusive in up to 80% of cases. Recent work has identified intriguing new targets for genetic testing which may soon see clinical relevance. This review will discuss the indications and techniques for currently offered genetic tests and briefly explore ongoing research directions within this field.
Collapse
Affiliation(s)
- Daniel L Pelzman
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathleen Hwang
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
94
|
Rogers MJ. Y chromosome copy number variation and its effects on fertility and other health factors: a review. Transl Androl Urol 2021; 10:1373-1382. [PMID: 33850773 PMCID: PMC8039628 DOI: 10.21037/tau.2020.04.06] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The Y chromosome is essential for testis development and spermatogenesis. It is a chromosome with the lowest gene density owing to its medium size but paucity of coding genes. The Y chromosome is unique in that the majority of its structure is highly repetitive sequences, with the majority of these limited genes occurring in 9 amplionic sequences throughout the chromosome. The repetitive nature has its benefits as it can be protective against gene loss over many generations, but it can also predispose the Y chromosome to having wide variations of the number of gene copies present in these repeated sequences. This is known as copy number variation. Copy number variation is not unique to the Y chromosome but copy number variation is a well-known cause of male infertility and having effects on spermatogenesis. This is most commonly seen as deletions of the AZF sequences on the Y chromosome. However, there are other implications for copy number variation beyond just the AZF deletions that can affect spermatogenesis and potentially have other health implications. Copy number variations of TSPY1, DAZ, CDY1, RBMY1, the DYZ1 array, along with minor deletions of gr/gr, b1/b3, and b2/b3 have all be implicated in affecting spermatogenesis. UTY copy number variations have been implicated in risk for cardiovascular disease, and other deletions within gr/gr and the AZF sequences have been implicated in cancer and neuropsychiatric diseases. This review sets out to describe the Y chromosome and unique susceptibility to copy number variation and then to examine how this growing body of research impacts spermatogenesis and other health factors.
Collapse
Affiliation(s)
- Marc J Rogers
- Department of Urology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
95
|
Rabinowitz MJ, Huffman PJ, Haney NM, Kohn TP. Y-Chromosome Microdeletions: A Review of Prevalence, Screening, and Clinical Considerations. Appl Clin Genet 2021; 14:51-59. [PMID: 33603438 PMCID: PMC7886244 DOI: 10.2147/tacg.s267421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 11/24/2022] Open
Abstract
Deletions within the male-specific region of the Y-chromosome, known as Y-Chromosome Microdeletions (YCMs), are present in as many as 5% and 10% of severe oligospermic and azoospermic men, respectively. These microdeletions are distinguished by which segment of the Y chromosome is absent, identified as AZFa (the most proximal segment), AZFb (middle), and AZFc (distal). The reported prevalence of YCMs within the world’s populations of infertile men displays vast heterogeneity, ranging from less than 2% to over 24% based on region and ethnicity. AZFc is the most commonly identified YCM, and its phenotypic presentation provides for the highest chance for fertility through artificial reproductive techniques. Conversely, deletions identified in the subregions of AZFa, AZFb, or any combination of regions containing these segments, are associated with low probabilities of achieving pregnancy. A putative mechanism explaining this discrepancy lies within the expression of autosomal, DAZ-like genes which could serve to “rescue” wild type AZFc gene expression and hence spermatogenesis. Nevertheless, recent reports challenge this dogma and stress the importance of further analysis when an AZFb deletion is detected. The screening thresholds to determine which oligospermic and azoospermic men are tested for potential YCMs has been recently contested. More recent literature supports lowering the threshold from 5 million sperm/mL of ejaculate to 1 million/mL as the frequency of YCMs in men with sperm concentrations between 1 and 5 million sperm/mL is very low (~0.8%). As such, subsequent guidelines should recommend a lower screening threshold. While YCMs are extremely common globally, the understanding of their clinical significance in the field remains scattered and without consensus. Furthermore, very little is currently known about partial deletions within the AZFc region, such as b1/b3, b2/b3, and gr/gr. Hence, this review aimed to summarize and discuss modern trends in the epidemiology, screening guidelines, and clinical considerations pertaining to YCMs.
Collapse
Affiliation(s)
- Matthew J Rabinowitz
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip J Huffman
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nora M Haney
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor P Kohn
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
96
|
Agarwal A, Baskaran S, Parekh N, Cho CL, Henkel R, Vij S, Arafa M, Panner Selvam MK, Shah R. Male infertility. Lancet 2021; 397:319-333. [PMID: 33308486 DOI: 10.1016/s0140-6736(20)32667-2] [Citation(s) in RCA: 571] [Impact Index Per Article: 142.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
It is estimated that infertility affects 8-12% of couples globally, with a male factor being a primary or contributing cause in approximately 50% of couples. Causes of male subfertility vary highly, but can be related to congenital, acquired, or idiopathic factors that impair spermatogenesis. Many health conditions can affect male fertility, which underscores the need for a thorough evaluation of patients to identify treatable or reversible lifestyle factors or medical conditions. Although semen analysis remains the cornerstone for evaluating male infertility, advanced diagnostic tests to investigate sperm quality and function have been developed to improve diagnosis and management. The use of assisted reproductive techniques has also substantially improved the ability of couples with infertility to have biological children. This Seminar aims to provide a comprehensive overview of the assessment and management of men with infertility, along with current controversies and future endeavours.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Chak-Lam Cho
- SH Ho Urology Center, Department of Surgery, Chinese University of Hong Kong, Hong Kong
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA; Department of Medical Bioscience, University of Western Cape, Bellville, South Africa; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Sarah Vij
- Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Mohamed Arafa
- Male Infertility Unit, Urology Department, Hamad Medical Corporation, Doha, Qatar; Andrology Department, Cairo University, Cairo, Egypt
| | | | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Center, Mumbai, India
| |
Collapse
|
97
|
Garolla A, Pizzol D, Carosso AR, Borini A, Ubaldi FM, Calogero AE, Ferlin A, Lanzone A, Tomei F, Engl B, Rienzi L, De Santis L, Coticchio G, Smith L, Cannarella R, Anastasi A, Menegazzo M, Stuppia L, Corsini C, Foresta C. Practical Clinical and Diagnostic Pathway for the Investigation of the Infertile Couple. Front Endocrinol (Lausanne) 2021; 11:591837. [PMID: 33542705 PMCID: PMC7851076 DOI: 10.3389/fendo.2020.591837] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
Capsule This expert opinion summarizes current knowledge on risk factors for infertility and identifies a practical clinical and diagnostic approach for the male and female partners of an infertile couple aimed to improve the investigation and management of fertility problems. Background Infertility represents an important and growing health problem affecting up to 16% of couples worldwide. In most cases, male, female, or combined factor can be identified, and different causes or risk factors have been related to this condition. However, there are no standardized guidelines on the clinical-diagnostic approach of infertile couples and the recommendations concerning infertility are sometimes lacking, incomplete, or problematic to apply. Objective The aim of this work is to provide an appropriate clinical and diagnostic pathway for infertile couples designed by a multidisciplinary-team of experts. The rationale is based on the history and physical examination and then oriented on the basis of initial investigations. This approach could be applied in order to reduce variation in practice and to improve the investigation and management of fertility problems. Methods Prominent Italian experts of the main specialties committed in the ART procedures, including gynecologists, andrologists, embryologists, biologists, geneticists, oncologists, and microbiologists, called "InfertilItaly group", used available evidence to develop this expert position. Outcomes Starting from the individuation of the principal risk factors that may influence the fertility of females and males and both genders, the work group identified most appropriate procedures using a gradual approach to both partners aimed to obtain a precise diagnosis and the most effective therapeutic option, reducing invasive and occasionally redundant procedures. Conclusions This expert position provides current knowledge on risk factors and suggests a diagnostic workflow of infertile couples. By using this step-by-step approach, health care workers involved in ART, may individuate a practical clinical management of infertile couples shared by experts.
Collapse
Affiliation(s)
- Andrea Garolla
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Damiano Pizzol
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
- Italian Agency for Development Cooperation, Public Health, Jerusalem, Israel
| | - Andrea Roberto Carosso
- Department of Surgical Sciences, Gynecology and Obstetrics 1, Physiopathology of Reproduction and IVF Unit, S. Anna Hospital, University of Torino, Torino, Italy
| | - Andrea Borini
- 9.baby, Family and Fertility Center, Tecnobios Procreazione, Bologna, Italy
| | | | - Aldo Eugenio Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alberto Ferlin
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Antonio Lanzone
- Department of Woman’s Health Sciences of the Child and Public Health, Unit of Obstetrics Pathology, University Clinic Foundation “A Gemelli” IRCCS, Rome, Italy
- Clinic of Obstetrics and Gynecology, Catholic University Sacro Cuore, Rome, Italy
| | - Francesco Tomei
- Assisted Reproductive Unit, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Bruno Engl
- Donna Salus, Center for Women’s Health and Fertility, Bolzano, Italy
| | - Laura Rienzi
- GENERA Centre for Reproductive Medicine, Clinica Valle Giulia, Rome, Italy
| | - Lucia De Santis
- IVF Unit, Gynaecological-Obstetric Department, IRCCS San Raffaele Hospital, Vita-Salute University, Milan, Italy
- Italian Society of Embryology, Reproduction and Research (SIERR), Giarre, Italy
| | - Giovanni Coticchio
- 9.baby, Family and Fertility Center, Tecnobios Procreazione, Bologna, Italy
| | - Lee Smith
- The Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Attilio Anastasi
- Center for Physiopathology of Human Reproduction, Delta Hospital, Lagosanto, Italy
| | - Massimo Menegazzo
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Liborio Stuppia
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Christian Corsini
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Section of Andrology and Reproductive Medicine & Centre for Male Gamete Cryopreservation, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
98
|
Y chromosome structural variation in infertile men detected by targeted next-generation sequencing. J Assist Reprod Genet 2021; 38:941-948. [PMID: 33454900 DOI: 10.1007/s10815-020-02031-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To provide a validated method to identify copy number variation (CNV) in regions of the Y chromosome of infertile men by next-generation sequencing (NGS). METHODS Semen analysis was used to determine the quality of semen and diagnose infertility. Deletion of the azoospermia factor (AZF) region in the Y chromosome was detected by a routine sequence-tagged-site PCR (STS-PCR) method. We then used the NGS method to detect CNV in the AZF region, including deletions and duplications. RESULTS A total of 326 samples from male infertility patients, family members, and sperm donors were studied between January 2011 and May 2017. AZF microdeletions were detected in 120 patients by STS-PCR, and these results were consistent with the results from NGS. In addition, of the 160 patients and male family members who had no microdeletions detected by STS-PCR, 51 cases were found to exhibit Y chromosome structural variations by the NGS method (31.88%, 51/160). No microdeletions were found in 46 donors by STS-PCR, but the NGS method revealed 11 of these donors (23.91%, 11/46) carried structural variations, which were mainly in the AZFc region, including partial deletions and duplications. CONCLUSION The established NGS method can replace the conventional STS-PCR method to detect Y chromosome microdeletions. The NGS method can detect CNV, such as partial deletion or duplication, and provide details of the abnormal range and size of variations.
Collapse
|
99
|
Li X, Li X, Sun Y, Han J, Ma H, Sun Y. Effect of Y Chromosome Microdeletions on the Pregnancy Outcome of Assisted Reproduction Technology: a Meta-analysis. Reprod Sci 2021; 28:2413-2421. [PMID: 33409872 DOI: 10.1007/s43032-020-00387-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/03/2020] [Indexed: 12/25/2022]
Abstract
This systematic analysis aimed to summarize the effects of Y chromosome microdeletions (YCMs) on pregnancy outcomes of assisted reproductive technology (ART). This retrospective controlled meta-analysis evaluated the effect of YCMs on pregnancy outcomes of ART. Full-text retrieval was conducted in the PubMed, CBM, Web of Science, CNKI, VIP, and WANFANG databases. The pregnancy outcomes included fertilization rate, good embryo rate, clinical pregnancy rate, early miscarriage rate, miscarriage rate, live birth rate, and baby boy rate. The quality of these studies was evaluated using the Newcastle-Ottawa scale. Statistical software Review Manager 5.3 and STATA 14.0 were used. Twelve high-quality studies were included in the analysis. Compared with that in the normal group, the fertilization rate in the YCMs group decreased significantly (odds ratio [OR] = 0.75, 95% confidence interval [CI] [0.63, 0.88], P = 0.0006). However, there was no significant difference (P > 0.05) between groups in the good embryo rate (OR = 0.88, 95% CI [0.72, 1.07]), clinical pregnancy rate (OR = 0.94, 95% CI [0.78, 1.11]), early miscarriage rate (OR = 1.70, 95% CI [0.93, 3.10]), miscarriage rate (OR = 1.3, 95% CI [0.93, 1.91]), live birth rate (OR = 0.90, 95% CI [0.74, 1.08]), and baby boy rate (OR = 1.15, 95% CI [0.85, 1.56]). YCMs are associated with a reduced fertilization rate of ART, but they do not decrease the good embryo rate, clinical pregnancy rate, early miscarriage rate, miscarriage rate, live birth rate, or baby boy rate.
Collapse
Affiliation(s)
- Xuening Li
- Weifang Medical University, Weifang, China
| | - Xiugui Li
- Department of Neonatology, Wulian People's Hospital, Rizhao, China
| | - Yanhua Sun
- Department of Hematology, Weifang People's Hospital, Weifang, China
| | - Jie Han
- Weifang Medical University, Weifang, China
| | - Huagang Ma
- Center of Reproductive Medicine, Weifang People's Hospital, Weifang, China.
| | - Yanli Sun
- Department of Laboratory Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
100
|
Seyedin A, Kazeroun MH, Namipashaki A, Qobadi-Nasr S, Zamanian M, Ansari-Pour N. Association of MSY haplotype background with nonobstructive azoospermia is AZF-dependent: A case-control study. Andrologia 2021; 53:e13946. [PMID: 33386637 DOI: 10.1111/and.13946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 11/28/2022] Open
Abstract
Identifying causal genes of spermatogenic failure on the male-specific region of Y chromosome (MSY) has been a challenging process. Due to the nonrecombining nature of MSY, haplotype-based approaches have recently been shown to be promising in identifying associated MSY haplogroups. We conducted an MSY analysis of nonobstructive azoospermia (NOA) patients in a case-control setting (N = 278 and 105 respectively) to identify modal haplogroups strongly associated with NOA. Patients with AZF deletions (AZF+) and no AZF deletions (AZF-) were compared with the control group. Given the larger sample set of AZF- NOA patients, we further investigated the association based on histopathological severity, namely Sertoli cell-only syndrome and maturation arrest subtypes. We observed no significant enrichment of MSY haplogroups in AZF- azoospermic patients (or its subtypes). However, we observed a strongly significant association between haplogroup J2a* and AZF+ patients (FDR-corrected p = .0056; OR = 7.02, 95%CI 1.89 to 39.20), a haplogroup which also showed significant enrichment for AZFa/b deletions (p = 4x10-4 ). We conclude that unlike AZF+ patients, AZF- NOA are less likely to have an MSY causative factor with large effect size, thus indicating that the aetiology of AZF- NOA, and to some extent AZFc NOA, is more likely to be based on non-MSY factors.
Collapse
Affiliation(s)
- Atieh Seyedin
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Atefeh Namipashaki
- Turner Institute for Brain and Mental Health and the School of Psychological Sciences, Monash University, Melbourne, Vic., Australia
| | - Samaneh Qobadi-Nasr
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadreza Zamanian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Naser Ansari-Pour
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|