51
|
Treebupachatsakul T, Boosamalee A, Shinnakerdchoke S, Pechprasarn S, Thongpance N. Cuff-Less Blood Pressure Prediction from ECG and PPG Signals Using Fourier Transformation and Amplitude Randomization Preprocessing for Context Aggregation Network Training. BIOSENSORS 2022; 12:159. [PMID: 35323429 PMCID: PMC8946486 DOI: 10.3390/bios12030159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
This research proposes an algorithm to preprocess photoplethysmography (PPG) and electrocardiogram (ECG) signals and apply the processed signals to the context aggregation network-based deep learning to achieve higher accuracy of continuous systolic and diastolic blood pressure monitoring than other reported algorithms. The preprocessing method consists of the following steps: (1) acquiring the PPG and ECG signals for a two second window at a sampling rate of 125 Hz; (2) separating the signals into an array of 250 data points corresponding to a 2 s data window; (3) randomizing the amplitude of the PPG and ECG signals by multiplying the 2 s frames by a random amplitude constant to ensure that the neural network can only learn from the frequency information accommodating the signal fluctuation due to instrument attachment and installation; (4) Fourier transforming the windowed PPG and ECG signals obtaining both amplitude and phase data; (5) normalizing both the amplitude and the phase of PPG and ECG signals using z-score normalization; and (6) training the neural network using four input channels (the amplitude and the phase of PPG and the amplitude and the phase of ECG), and arterial blood pressure signal in time-domain as the label for supervised learning. As a result, the network can achieve a high continuous blood pressure monitoring accuracy, with the systolic blood pressure root mean square error of 7 mmHg and the diastolic root mean square error of 6 mmHg. These values are within the error range reported in the literature. Note that other methods rely only on mathematical models for the systolic and diastolic values, whereas the proposed method can predict the continuous signal without degrading the measurement performance and relying on a mathematical model.
Collapse
Affiliation(s)
- Treesukon Treebupachatsakul
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.T.); (A.B.); (S.S.)
| | - Apivitch Boosamalee
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.T.); (A.B.); (S.S.)
| | - Siratchakrit Shinnakerdchoke
- Department of Biomedical Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand; (T.T.); (A.B.); (S.S.)
| | - Suejit Pechprasarn
- College of Biomedical Engineering, Rangsit University, Pathum Thani 12000, Thailand;
| | - Nuntachai Thongpance
- College of Biomedical Engineering, Rangsit University, Pathum Thani 12000, Thailand;
| |
Collapse
|
52
|
Qureshi HN, Manalastas M, Ijaz A, Imran A, Liu Y, Al Kalaa MO. Communication Requirements in 5G-Enabled Healthcare Applications: Review and Considerations. Healthcare (Basel) 2022; 10:293. [PMID: 35206907 PMCID: PMC8872156 DOI: 10.3390/healthcare10020293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Fifth generation (5G) mobile communication technology can enable novel healthcare applications and augment existing ones. However, 5G-enabled healthcare applications demand diverse technical requirements for radio communication. Knowledge of these requirements is important for developers, network providers, and regulatory authorities in the healthcare sector to facilitate safe and effective healthcare. In this paper, we review, identify, describe, and compare the requirements for communication key performance indicators in relevant healthcare use cases, including remote robotic-assisted surgery, connected ambulance, wearable and implantable devices, and service robotics for assisted living, with a focus on quantitative requirements. We also compare 5G-healthcare requirements with the current state of 5G capabilities. Finally, we identify gaps in the existing literature and highlight considerations for this space.
Collapse
Affiliation(s)
- Haneya Naeem Qureshi
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (M.M.); (Y.L.); (M.O.A.K.)
- AI4Networks Research Center, School of Electrical & Computer Engineering, University of Oklahoma, Tulsa, OK 74135, USA; (A.I.); (A.I.)
| | - Marvin Manalastas
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (M.M.); (Y.L.); (M.O.A.K.)
- AI4Networks Research Center, School of Electrical & Computer Engineering, University of Oklahoma, Tulsa, OK 74135, USA; (A.I.); (A.I.)
| | - Aneeqa Ijaz
- AI4Networks Research Center, School of Electrical & Computer Engineering, University of Oklahoma, Tulsa, OK 74135, USA; (A.I.); (A.I.)
| | - Ali Imran
- AI4Networks Research Center, School of Electrical & Computer Engineering, University of Oklahoma, Tulsa, OK 74135, USA; (A.I.); (A.I.)
| | - Yongkang Liu
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (M.M.); (Y.L.); (M.O.A.K.)
| | - Mohamad Omar Al Kalaa
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (M.M.); (Y.L.); (M.O.A.K.)
| |
Collapse
|
53
|
Guo CY, Wang KJ, Hsieh TL. Piezoelectric Sensor for the Monitoring of Arterial Pulse Wave: Detection of Arrhythmia Occurring in PAC/PVC Patients. SENSORS 2021; 21:s21206915. [PMID: 34696128 PMCID: PMC8540434 DOI: 10.3390/s21206915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023]
Abstract
Previous studies have found that the non-invasive blood pressure measurement method based on the oscillometric method is inaccurate when an arrhythmia occurs. Therefore, we propose a high-sensitivity pulse sensor that can measure the hemodynamic characteristics of the pulse wave and then estimate the blood pressure. When an arrhythmia occurs, the hemodynamics of the pulse wave are abnormal and change the morphology of the pulse wave. Our proposed sensor can measure the occurrence of ectopic beats from the radial artery, and the detection algorithm can reduce the error of blood pressure estimation caused by the distortion of ectopic beats that occurs when the pulse wave is measured. In this study, we tested patients with premature atrial contraction (PAC) or premature ventricular contraction (PVC) and analyzed the morphology of the pulse waves when the sensor detected the ectopic beats. We discuss the advantages of using the Moens–Korteweg equation to estimate the blood pressure of patients with arrhythmia, which is different from the oscillometric method. Our research provides a possible arrhythmia detection method for wearable devices and can accurately estimate blood pressure in a non-invasive way during an arrhythmia.
Collapse
Affiliation(s)
- Cheng-Yan Guo
- College of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Kuan-Jen Wang
- Accurate Meditech Inc., New Taipei City 24159, Taiwan;
| | - Tung-Li Hsieh
- General Education Center, Ursuline College of Liberal Arts Education, Wenzao Ursuline University of Languages, Kaohsiung 80793, Taiwan
- Correspondence: ; Tel.: +886-7-342-6031 (ext. 7226)
| |
Collapse
|
54
|
Kario K, Tomitani N, Morimoto T, Kanegae H, Lacy P, Williams B. Relationship between blood pressure repeatedly measured by a wrist-cuff oscillometric wearable blood pressure monitoring device and left ventricular mass index in working hypertensive patients. Hypertens Res 2021; 45:87-96. [PMID: 34657131 DOI: 10.1038/s41440-021-00758-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/18/2022]
Abstract
This study sought to evaluate the relationship between blood pressure (BP) taken by a new wrist-cuff oscillometric wearable BP monitoring device and left ventricular mass index measured by cardiac magnetic resonance imaging (cMRI-LVMI) in 50 hypertensive patients (mean age 60.5 ± 8.9 years, 92.0% men, 96% treated for hypertension) with regular employment. Participants were asked to self-measure their wearable BPs twice in the morning and evening under a guideline-recommended standardized home BP measurement, and once each at five predetermined times and any additional time points under an ambulatory condition for a maximum of 7 days. In total, 2105 wearable BP measurements (home BP: 747 [morning: 409, evening: 338], ambulatory condition: 1358 [worksite: 942]) were collected over 5.5 ± 1.2 days. The average of all wearable systolic BP (SBP) readings (129.8 ± 11.0 mmHg) was weakly correlated with cMRI-LVMI (r = 0.265, p = 0.063). Morning home wearable SBP average (128.5 ± 13.8 mmHg) was significantly correlated with cMRI-LVMI (r = 0.378, p = 0.013), but ambulatory wearable SBP average (132.5 ± 12.7 mmHg) was not (r = 0.215, p = 0.135). The averages of the highest three values of all wearable SBPs (153.3 ± 13.9 mmHg) and ambulatory wearable SBPs (152.9 ± 13.9 mmHg) were 16 mmHg higher than that of the morning home wearable SBPs (137.0 ± 15.9 mmHg). Those peak values were significantly correlated with cMRI-LVMI (r = 0.320, p = 0.023; r = 0.310, p = 0.029; r = 0.451, p = 0.002, respectively). In conclusion, an increased number of wearable BP measurements, which could detect individual peak BP, might add to the clinical value of these measurements as a complement to the guideline-recommended home BP measurements, but further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan.
| | - Naoko Tomitani
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Tomoko Morimoto
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroshi Kanegae
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan.,Genki Plaza Medical Center for Health Care, Tokyo, Japan
| | - Peter Lacy
- UCL Institute of Cardiovascular Sciences, University College London, London, UK
| | - Bryan Williams
- UCL Institute of Cardiovascular Sciences, University College London, London, UK
| |
Collapse
|
55
|
Amin MS, Wozniak M, Barbaric L, Pickard S, Yerrabelli RS, Christensen A, Coiado OC. Experimental Technologies in the Diagnosis and Treatment of COVID-19 in Patients with Comorbidities. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2021; 6:48-71. [PMID: 34541448 PMCID: PMC8442516 DOI: 10.1007/s41666-021-00106-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/05/2021] [Accepted: 09/01/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic has impacted the whole world and raised concerns about its effects on different human organ systems. Early detection of COVID-19 may significantly increase the rate of survival; thus, it is critical that the disease is detected early. Emerging technologies have been used to prevent, diagnose, and manage COVID-19 among the populace in the USA and globally. Numerous studies have revealed the growing implementation of novel engineered systems during the intervention at various points of the disease’s pathogenesis, especially as it relates to comorbidities and complications related to cardiovascular and respiratory organ systems. In this review, we provide a succinct, but extensive, review of the pathogenesis of COVID-19, particularly as it relates to angiotensin-converting enzyme 2 (ACE2) as a viral entry point. This is followed by a comprehensive analysis of cardiovascular and respiratory comorbidities of COVID-19 and novel technologies that are used to diagnose and manage hospitalized patients. Continuous cardiorespiratory monitoring systems, novel machine learning algorithms for rapidly triaging patients, various imaging modalities, wearable immunosensors, hotspot tracking systems, and other emerging technologies are reviewed. COVID-19 effects on the immune system, associated inflammatory biomarkers, and innovative therapies are also assessed. Finally, with emphasis on the impact of wearable and non-wearable systems, this review highlights future technologies that could help diagnose, monitor, and mitigate disease progression. Technologies that account for an individual’s health conditions, comorbidities, and even socioeconomic factors can drastically reduce the high mortality seen among many COVID-19 patients, primarily via disease prevention, early detection, and pertinent management.
Collapse
Affiliation(s)
- Md Shahnoor Amin
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Marcin Wozniak
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801 USA.,Department of Medical Laboratory Diagnostics - Biobank, Medical University of Gdansk, Gdansk, Poland
| | - Lidija Barbaric
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Shanel Pickard
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Rahul S Yerrabelli
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Anton Christensen
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA
| | - Olivia C Coiado
- Carle Illinois College of Medicine, University of Illinois At Urbana-Champaign, Champaign, IL 61820 USA.,Department of Bioengineering, University of Illinois At Urbana-Champaign, Urbana, IL 61801 USA.,Carle Illinois College of Medicine, 1406 W. Green St, Urbana, IL 61801 USA
| |
Collapse
|
56
|
Parati G, Stergiou GS, Bilo G, Kollias A, Pengo M, Ochoa JE, Agarwal R, Asayama K, Asmar R, Burnier M, De La Sierra A, Giannattasio C, Gosse P, Head G, Hoshide S, Imai Y, Kario K, Li Y, Manios E, Mant J, McManus RJ, Mengden T, Mihailidou AS, Muntner P, Myers M, Niiranen T, Ntineri A, O’Brien E, Octavio JA, Ohkubo T, Omboni S, Padfield P, Palatini P, Pellegrini D, Postel-Vinay N, Ramirez AJ, Sharman JE, Shennan A, Silva E, Topouchian J, Torlasco C, Wang JG, Weber MA, Whelton PK, White WB, Mancia G. Home blood pressure monitoring: methodology, clinical relevance and practical application: a 2021 position paper by the Working Group on Blood Pressure Monitoring and Cardiovascular Variability of the European Society of Hypertension. J Hypertens 2021; 39:1742-1767. [PMID: 34269334 PMCID: PMC9904446 DOI: 10.1097/hjh.0000000000002922] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023]
Abstract
The present paper provides an update of previous recommendations on Home Blood Pressure Monitoring from the European Society of Hypertension (ESH) Working Group on Blood Pressure Monitoring and Cardiovascular Variability sequentially published in years 2000, 2008 and 2010. This update has taken into account new evidence in this field, including a recent statement by the American Heart association, as well as technological developments, which have occurred over the past 20 years. The present document has been developed by the same ESH Working Group with inputs from an international team of experts, and has been endorsed by the ESH.
Collapse
Affiliation(s)
- Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Department of Cardiovascular Neural and Metabolic Sciences
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - George S. Stergiou
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | - Grzegorz Bilo
- Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Department of Cardiovascular Neural and Metabolic Sciences
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Anastasios Kollias
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | - Martino Pengo
- Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Department of Cardiovascular Neural and Metabolic Sciences
| | - Juan Eugenio Ochoa
- Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Department of Cardiovascular Neural and Metabolic Sciences
| | - Rajiv Agarwal
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine and Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Kei Asayama
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
- Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
- Tohoku Institute for the Management of Blood Pressure, Sendai, Japan
| | | | - Michel Burnier
- Service of Nephrology and Hypertension, University Hospital, Lausanne, Switzerland
| | - Alejandro De La Sierra
- Hypertension Unit, Department of Internal Medicine, Hospital Mútua Terrassa, University of Barcelona, Barcelona, Spain
| | - Cristina Giannattasio
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Cardiology IV, ‘A. De Gasperis” Department, ASTT GOM Niguarda Ca’ Granda
| | - Philippe Gosse
- Cardiology/Hypertension Unit Saint André Hospital. University Hospital of Borfeaux, France
| | - Geoffrey Head
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Satoshi Hoshide
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yutaka Imai
- Tohoku Institute for the Management of Blood Pressure, Sendai, Japan
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yan Li
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Efstathios Manios
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra Hospital, Athens, Greece
| | - Jonathan Mant
- Primary Care Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, UK
| | - Richard J. McManus
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Thomas Mengden
- Kerckhoff Clinic, Rehabilitation, ESH Excellence Centre, Bad Nauheim, Germany
| | - Anastasia S. Mihailidou
- Department of Cardiology and Kolling Institute, Royal North Shore Hospital, St Leonards Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Paul Muntner
- Hypertension Research Center, Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin Myers
- Schulich Heart Program, Sunnybrook Health Sciences Centre and Department of Medicine, University of Toronto, Toronto, Canada
| | - Teemu Niiranen
- Department of Medicine, Turku University Hospital and University of Turku
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Angeliki Ntineri
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Athens, Greece
| | - Eoin O’Brien
- The Conway Institute, University College Dublin, Dublin, Ireland
| | - José Andres Octavio
- Experimental Cardiology, Department of Tropical Medicine Institute, Universidad Central de Venezuela, Venezuela
| | - Takayoshi Ohkubo
- Department of Hygiene and Public Health, Teikyo University School of Medicine, Tokyo, Japan
- Tohoku Institute for the Management of Blood Pressure, Sendai, Japan
| | - Stefano Omboni
- Clinical Research Unit, Italian Institute of Telemedicine, Varese, Italy
- Department of Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Paul Padfield
- Department of Medical Sciences, University of Edinburgh, Edinburgh, UK
| | - Paolo Palatini
- Studium Patavinum, Department of Medicine. University of Padova, Padua
| | - Dario Pellegrini
- Cardiovascular Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | | | - Agustin J. Ramirez
- Arterial Hypertension and Metabolic Unit, University Hospital, Fundacion Favaloro, Argentina
| | - James E. Sharman
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, Australia
| | - Andrew Shennan
- Department of Women and Children's Health, School of Life Course Sciences, FoLSM, Kings College London, UK
| | - Egle Silva
- Research Institute of Cardiovascular Diseases of the University of Zulia, Venezuelan Foundation of Arterial Hypertension. Maracaibo, Venezuela
| | - Jirar Topouchian
- Diagnosis and Therapeutic Center, Paris-Descartes University, AP-HP, Hotel Dieu, Paris, France
| | - Camilla Torlasco
- Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Department of Cardiovascular Neural and Metabolic Sciences
| | - Ji Guang Wang
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Michael A. Weber
- Division of Cardiovascular Medicine, Downstate College of Medicine, State University of New York, Brooklyn, New York, USA
| | - Paul K. Whelton
- Department of Epidemiology, Tulane University, School of Public Health and Tropical Medicine, New Orleans, Lousiana
| | - William B. White
- Cardiology Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | | |
Collapse
|
57
|
Kario K. Home Blood Pressure Monitoring: Current Status and New Developments. Am J Hypertens 2021; 34:783-794. [PMID: 34431500 PMCID: PMC8385573 DOI: 10.1093/ajh/hpab017] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/18/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
Home blood pressure monitoring (HBPM) is a reliable, convenient, and less costly alternative to ambulatory blood pressure monitoring (ABPM) for the diagnosis and management of hypertension. Recognition and use of HBPM have dramatically increased over the last 20 years and current guidelines make strong recommendations for the use of both HBPM and ABPM in patients with hypertension. The accuracy and reliability of home blood pressure (BP) measurements require use of a validated device and standardized procedures, and good patient information and training. Key HBPM parameters include morning BP, evening BP, and the morning-evening difference. In addition, newer semi-automatic HBPM devices can also measure nighttime BP at fixed intervals during sleep. Advances in technology mean that HBPM devices could provide additional relevant data (e.g., environmental conditions) or determine BP in response to a specific trigger (e.g., hypoxia, increased heart rate). The value of HBPM is highlighted by a growing body of evidence showing that home BP is an important predictor of target organ damage, and cardiovascular disease (CVD)- and stroke-related morbidity and mortality, and provides better prognostic information than office BP. In addition, use of HBPM to monitor antihypertensive therapy can help to optimize reductions in BP, improve BP control, and reduce target organ damage and cardiovascular risk. Overall, HBPM should play a central role in the management of patients with hypertension, with the goal of identifying increased risk and predicting the onset of CVD events, allowing proactive interventions to reduce risk and eliminate adverse outcomes.
Collapse
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
- The Hypertension Cardiovascular Outcome Prevention and Evidence in Asia (HOPE Asia) Network, Tokyo, Japan
| |
Collapse
|
58
|
Bayoumy K, Gaber M, Elshafeey A, Mhaimeed O, Dineen EH, Marvel FA, Martin SS, Muse ED, Turakhia MP, Tarakji KG, Elshazly MB. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat Rev Cardiol 2021; 18:581-599. [PMID: 33664502 PMCID: PMC7931503 DOI: 10.1038/s41569-021-00522-7] [Citation(s) in RCA: 315] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Technological innovations reach deeply into our daily lives and an emerging trend supports the use of commercial smart wearable devices to manage health. In the era of remote, decentralized and increasingly personalized patient care, catalysed by the COVID-19 pandemic, the cardiovascular community must familiarize itself with the wearable technologies on the market and their wide range of clinical applications. In this Review, we highlight the basic engineering principles of common wearable sensors and where they can be error-prone. We also examine the role of these devices in the remote screening and diagnosis of common cardiovascular diseases, such as arrhythmias, and in the management of patients with established cardiovascular conditions, for example, heart failure. To date, challenges such as device accuracy, clinical validity, a lack of standardized regulatory policies and concerns for patient privacy are still hindering the widespread adoption of smart wearable technologies in clinical practice. We present several recommendations to navigate these challenges and propose a simple and practical 'ABCD' guide for clinicians, personalized to their specific practice needs, to accelerate the integration of these devices into the clinical workflow for optimal patient care.
Collapse
Affiliation(s)
- Karim Bayoumy
- Department of Medicine, NewYork-Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY, USA
| | - Mohammed Gaber
- Department of Oncology, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Omar Mhaimeed
- Department of Medical Education, Weill Cornell Medicine, Doha, Qatar
| | - Elizabeth H Dineen
- Department of Cardiovascular Medicine, University of California Irvine, Irvine, CA, USA
| | - Francoise A Marvel
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Seth S Martin
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA
| | - Evan D Muse
- Scripps Research Translational Institute and Division of Cardiovascular Diseases, Scripps Clinic, La Jolla, CA, USA
| | - Mintu P Turakhia
- Center for Digital Health, Stanford University, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Khaldoun G Tarakji
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mohamed B Elshazly
- Department of Medical Education, Weill Cornell Medicine, Doha, Qatar.
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, MD, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
59
|
Ahn JH, Song J, Choi I, Youn J, Cho JW. Validation of Blood Pressure Measurement Using a Smartwatch in Patients With Parkinson's Disease. Front Neurol 2021; 12:650929. [PMID: 34267718 PMCID: PMC8275847 DOI: 10.3389/fneur.2021.650929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives: We aimed to validate the accuracy of blood pressure (BP) measurement using a smartwatch in patients with Parkinson's disease (PD). Materials and Methods: We compared 168 pairs of BP (n = 56) measurements acquired by a smartwatch (SM-R850) with those measured by a sphygmomanometer (reference device). Results: Differences between the smartwatch BP and reference BP measurements were compared. The mean and standard deviation of the differences systolic BP (SBP) and diastolic BP (DBP), measured by smartwatch and reference device, fulfilled both criterion 1 (0.4 ± 4.6 and 1.1 ± 4.5 mm Hg for DBP and SBP, respectively) and criterion 2 (0.2 ± 2.5 and 0.9 ± 2.4 mm Hg for DBP and SBP, respectively) of the BP validation criterion of the International Organization for Standardization. Conclusion: BP measurement using a smartwatch with a photoplethysmography sensor is an accurate and reliable method in patients with PD.
Collapse
Affiliation(s)
- Jong Hyeon Ahn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Joomee Song
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Inyoung Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Jinyoung Youn
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| | - Jin Whan Cho
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Neuroscience Center, Samsung Medical Center, Seoul, South Korea
| |
Collapse
|
60
|
Tomitani N, Kanegae H, Suzuki Y, Kuwabara M, Kario K. Stress-Induced Blood Pressure Elevation Self-Measured by a Wearable Watch-Type Device. Am J Hypertens 2021; 34:377-382. [PMID: 32852527 PMCID: PMC8057129 DOI: 10.1093/ajh/hpaa139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Psychological stress contributes to blood pressure (BP) variability, which is a significant and independent risk factor for cardiovascular events. We compared the effectiveness of a recently developed wearable watch-type BP monitoring (WBPM) device and an ambulatory BP monitoring (ABPM) device for detecting ambulatory stress-induced BP elevation in 50 outpatients with 1 or more cardiovascular risk factors. METHODS The WBPM and ABPM were both worn on the subject's nondominant arm. ABPM was measured automatically at 30-minute intervals, and each ABPM measurement was followed by a self-measured WBPM measurement. We also collected self-reported information about situational conditions, including the emotional state of subjects at the time of each BP measurement. We analyzed 642 paired BP readings for which the self-reported emotional state in the corresponding diary entry was happy, calm, anxious, or tense. RESULTS In a mixed-effect analysis, there were significant differences between the BP values measured during negative (anxious, tense) and positive (happy, calm) emotions in both the WBPM (systolic BP [SBP]: 9.3 ± 2.1 mm Hg, P < 0.001; diastolic BP [DBP]: 8.4 ± 1.4 mm Hg, P < 0.001) and ABPM (SBP: 10.7 ± 2.1 mm Hg, P < 0.001; DBP: 5.6 ± 1.4 mm Hg, P < 0.001). The absolute BP levels induced by emotional stress self-measured by the WBPM were similar to those automeasured by the ABPM (SBP, WBPM: 141.1 ± 2.7 mm Hg; ABPM: 140.3 ± 2.7 mm Hg; P = 0.724). The subject's location at the BP measurement was also significantly associated with BP elevation. CONCLUSIONS The self-measurement by the WBPM could detect BP variability induced by multiple factors, including emotional stress, under ambulatory conditions as accurately as ABPM.
Collapse
Affiliation(s)
- Naoko Tomitani
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroshi Kanegae
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
- Genki Plaza Medical Center for Health Care, Tokyo, Japan
| | | | | | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
61
|
Ringrose J, Padwal R. Wearable Technology to Detect Stress-Induced Blood Pressure Changes: The Next Chapter in Ambulatory Blood Pressure Monitoring? Am J Hypertens 2021; 34:330-331. [PMID: 33739365 DOI: 10.1093/ajh/hpaa158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jennifer Ringrose
- Department of Medicine, University of Alberta, Edmonton, Alberta,Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Raj Padwal
- Department of Medicine, University of Alberta, Edmonton, Alberta,Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
62
|
Teixeira E, Fonseca H, Diniz-Sousa F, Veras L, Boppre G, Oliveira J, Pinto D, Alves AJ, Barbosa A, Mendes R, Marques-Aleixo I. Wearable Devices for Physical Activity and Healthcare Monitoring in Elderly People: A Critical Review. Geriatrics (Basel) 2021; 6:38. [PMID: 33917104 PMCID: PMC8167657 DOI: 10.3390/geriatrics6020038] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 01/22/2023] Open
Abstract
The availability of wearable devices (WDs) to collect biometric information and their use during activities of daily living is significantly increasing in the general population. These small electronic devices, which record fitness and health-related outcomes, have been broadly utilized in industries such as medicine, healthcare, and fitness. Since they are simple to use and progressively cheaper, they have also been used for numerous research purposes. However, despite their increasing popularity, most of these WDs do not accurately measure the proclaimed outcomes. In fact, research is equivocal about whether they are valid and reliable methods to specifically evaluate physical activity and health-related outcomes in older adults, since they are mostly designed and produced considering younger subjects' physical and mental characteristics. Additionally, their constant evolution through continuous upgrades and redesigned versions, suggests the need for constant up-to-date reviews and research. Accordingly, this article aims to scrutinize the state-of-the-art scientific evidence about the usefulness of WDs, specifically on older adults, to monitor physical activity and health-related outcomes. This critical review not only aims to inform older consumers but also aid researchers in study design when selecting physical activity and healthcare monitoring devices for elderly people.
Collapse
Affiliation(s)
- Eduardo Teixeira
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Faculty of Psychology, Education and Sports, Lusófona University of Porto, 4000-098 Porto, Portugal
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Hélder Fonseca
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Florêncio Diniz-Sousa
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Lucas Veras
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Giorjines Boppre
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - José Oliveira
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| | - Diogo Pinto
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University Institute of Maia, 4475-690 Maia, Portugal
| | - Alberto Jorge Alves
- Research Center in Sports Sciences, Health Sciences and Human Development (CIDESD), University Institute of Maia, 4475-690 Maia, Portugal
| | - Ana Barbosa
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
| | - Romeu Mendes
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, 4050-091 Porto, Portugal
- Northern Region Health Administration, 4000-477 Porto, Portugal
| | - Inês Marques-Aleixo
- Research Centre in Physical Activity, Health, and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
- Faculty of Psychology, Education and Sports, Lusófona University of Porto, 4000-098 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
63
|
Duncker D, Ding WY, Etheridge S, Noseworthy PA, Veltmann C, Yao X, Bunch TJ, Gupta D. Smart Wearables for Cardiac Monitoring-Real-World Use beyond Atrial Fibrillation. SENSORS (BASEL, SWITZERLAND) 2021; 21:2539. [PMID: 33916371 PMCID: PMC8038592 DOI: 10.3390/s21072539] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 01/17/2023]
Abstract
The possibilities and implementation of wearable cardiac monitoring beyond atrial fibrillation are increasing continuously. This review focuses on the real-world use and evolution of these devices for other arrhythmias, cardiovascular diseases and some of their risk factors beyond atrial fibrillation. The management of nonatrial fibrillation arrhythmias represents a broad field of wearable technologies in cardiology using Holter, event recorder, electrocardiogram (ECG) patches, wristbands and textiles. Implementation in other patient cohorts, such as ST-elevation myocardial infarction (STEMI), heart failure or sleep apnea, is feasible and expanding. In addition to appropriate accuracy, clinical studies must address the validation of clinical pathways including the appropriate device and clinical decisions resulting from the surrogate assessed.
Collapse
Affiliation(s)
- David Duncker
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany;
| | - Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, University of Liverpool, Liverpool L1 8JX, UK; (W.Y.D.); (D.G.)
| | - Susan Etheridge
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA;
| | - Peter A. Noseworthy
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55902, USA; (P.A.N.); (X.Y.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - Christian Veltmann
- Hannover Heart Rhythm Center, Department of Cardiology and Angiology, Hannover Medical School, 30625 Hannover, Germany;
| | - Xiaoxi Yao
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN 55902, USA; (P.A.N.); (X.Y.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55902, USA
| | - T. Jared Bunch
- Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| | - Dhiraj Gupta
- Liverpool Centre for Cardiovascular Science, Liverpool Heart and Chest Hospital, University of Liverpool, Liverpool L1 8JX, UK; (W.Y.D.); (D.G.)
| |
Collapse
|
64
|
Singhal A, Cowie MR. Digital Health: Implications for Heart Failure Management. Card Fail Rev 2021; 7:e08. [PMID: 34035953 PMCID: PMC8135017 DOI: 10.15420/cfr.2020.28] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Digital health encompasses the use of information and communications technology and the use of advanced computing sciences in healthcare. This review covers the application of digital health in heart failure patients, focusing on teleconsultation, remote monitoring and apps and wearables, looking at how these technologies can be used to support care and improve outcomes. Interest in and use of these technologies, particularly teleconsultation, have been accelerated by the coronavirus disease 2019 pandemic. Remote monitoring of heart failure patients, to identify those patients at high risk of hospitalisation and to support clinical stability, has been studied with mixed results. Remote monitoring of pulmonary artery pressure has a consistent effect on reducing hospitalisation rates for patients with moderately severe symptoms and multiparameter monitoring shows promise for the future. Wearable devices and apps are increasingly used by patients for health and lifestyle support. Some wearable technologies have shown promise in AF detection, and others may be useful in supporting self-care and guiding prognosis, but more evidence is required to guide their optimal use. Support for patients and clinicians wishing to use these technologies is important, along with consideration of data validity and privacy and appropriate recording of decision-making.
Collapse
Affiliation(s)
| | - Martin R Cowie
- Royal Brompton Hospital London, UK
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London London, UK
| |
Collapse
|
65
|
Wang JG, Li Y, Chia YC, Cheng HM, Minh HV, Siddique S, Sogunuru GP, Tay JC, Teo BW, Tsoi K, Turana Y, Wang TD, Zhang YQ, Kario K. Telemedicine in the management of hypertension: Evolving technological platforms for blood pressure telemonitoring. J Clin Hypertens (Greenwich) 2021; 23:435-439. [PMID: 33484617 PMCID: PMC8029526 DOI: 10.1111/jch.14194] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 01/16/2023]
Abstract
The prevalence of hypertension is high and still increasing in almost all communities regardless of high, middle, or low income. The control rate remains low in most countries. Telemedicine offers possibilities to improve blood pressure control. The past two decades witnessed the fast evolving telecommunication from telephone transmission to smart mobile phone technology for telemedicine. There is some evidence from randomized controlled trials that telemonitoring improves blood pressure control. However, it requires co‐interventions. The emerging new technology may offer even more possibilities in telemonitoring and co‐interventions, for instance, an interactive platform between patients and health professionals for the management of hypertension. Telemedicine might ultimately change the situation of the unsatisfactory management of hypertension in many communities. It helps fully utilize antihypertensive treatment, the most effective cardiovascular prevention, to achieve the goal of ending atherosclerosis and arteriosclerosis in humans.
Collapse
Affiliation(s)
- Ji-Guang Wang
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, The Shanghai Institute of Hypertension, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Li
- Centre for Epidemiological Studies and Clinical Trials, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital, The Shanghai Institute of Hypertension, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yook-Chin Chia
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Hao-Min Cheng
- Institute of Public Health and Community Medicine Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Center for Evidence-based Medicine, Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Huynh Van Minh
- Department of Internal Medicine, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | | | - Guru Prasad Sogunuru
- MIOT International Hospital, Chennai, India.,College of Medical Sciences, Kathmandu University, Bharatpur, Nepal
| | - Jam Chin Tay
- Department of General Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Boon Wee Teo
- Division of Nephrology, Department of Medicine, Yong Loo Lin School of Medicine, Singapore, Singapore
| | - Kelvin Tsoi
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuda Turana
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Tzung-Dau Wang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan.,Division of Hospital Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Yu-Qing Zhang
- Divisions of Hypertension and Heart Failure, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | | |
Collapse
|
66
|
Harte R, Ó Laighin G, Quinlan L. Validation, verification, and reliability. Digit Health 2021. [DOI: 10.1016/b978-0-12-818914-6.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
67
|
Lin HJ, Wang TD, Yu-Chih Chen M, Hsu CY, Wang KL, Huang CC, Hsieh MJ, Chiu YW, Chiang LT, Chuang WP, Hsu PF, Wu CH, Hung CS, Chen KC, Wu CC, Wang YC, Chou PC, Yap HY, Cheng HM. 2020 Consensus Statement of the Taiwan Hypertension Society and the Taiwan Society of Cardiology on Home Blood Pressure Monitoring for the Management of Arterial Hypertension. ACTA CARDIOLOGICA SINICA 2020; 36:537-561. [PMID: 33235411 PMCID: PMC7677637 DOI: 10.6515/acs.202011_36(6).20201106a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022]
Abstract
To facilitate the applications of home blood pressure (HBP) monitoring in clinical settings, the Taiwan Hypertension Society and the Taiwan Society of Cardiology jointly put forward the Consensus Statement on HBP monitoring according to up-to-date scientific evidence by convening a series of expert meetings and compiling opinions from the members of these two societies. In this Consensus Statement as well as recent international guidelines for management of arterial hypertension, HBP monitoring has been implemented in diagnostic confirmation of hypertension, identification of hypertension phenotypes, guidance of anti-hypertensive treatment, and detection of hypotensive events. HBP should be obtained by repetitive measurements based on the " 722 " principle, which is referred to duplicate blood pressure readings taken per occasion, twice daily, over seven consecutive days. The " 722" principle of HBP monitoring should be applied in clinical settings, including confirmation of hypertension diagnosis, 2 weeks after adjustment of antihypertensive medications, and at least every 3 months in well-controlled hypertensive patients. A good reproducibility of HBP monitoring could be achieved by individuals carefully following the instructions before and during HBP measurement, by using validated BP devices with an upper arm cuff. Corresponding to office BP thresholds of 140/90 and 130/80 mmHg, the thresholds (or targets) of HBP are 135/85 and 130/80 mmHg, respectively. HBP-based hypertension management strategies including bedtime dosing (for uncontrolled morning hypertension), shifting to drugs with longer-acting antihypertensive effect (for uncontrolled evening hypertension), and adding another antihypertensive drug (for uncontrolled morning and evening hypertension) should be considered. Only with the support from medical caregivers, paramedical team, or tele- monitoring, HBP monitoring could reliably improve the control of hypertension.
Collapse
Affiliation(s)
- Hung-Ju Lin
- Cardiovascular Center and Divisions of Cardiology, Department of Internal Medicine, National Taiwan University Hospital
| | - Tzung-Dau Wang
- Cardiovascular Center and Divisions of Cardiology and Hospital Medicine, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Michael Yu-Chih Chen
- Division of Cardiology, Department of Internal Medicine, Buddhist Tzu Chi General Hospital, Hualien
| | - Chien-Yi Hsu
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University Hospital
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine
- Taipei Heart Institute, Taipei Medical University
| | | | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Cardiovascular Research Center
- Institute of Pharmacology, National Yang-Ming University, Taipei
| | - Ming-Jer Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine
| | - Yu-Wei Chiu
- Department of Computer Science and Engineering, Yuan Ze University, Taoyuan
- Cardiology Division of Cardiovascular Medical Center, Far Eastern Memorial Hospital
| | - Liang-Ting Chiang
- Division of Cardiology, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Wen-Po Chuang
- Division of Cardiology, Far Eastern Memorial Hospital, New Taipei City
| | - Pai-Feng Hsu
- Healthcare and Management Center, Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center
| | - Chi-Sheng Hung
- Cardiovascular Center and Divisions of Cardiology, Department of Internal Medicine, National Taiwan University Hospital
| | - Kuan-Chun Chen
- Heart Center, Cheng Hsin General Hospital
- National Defense Medical Center
- Institute of Emergency and Critical Care Medicine, National Yang Ming University, Taipei
| | - Chih-Cheng Wu
- Cardiovascular Center, National Taiwan University Hospital Hsin-Chu Branch
- Institute of Biomedical Engineering, National Tsing-Hwa University, Hsinchu
- Institute of Cellular and System Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Yu-Chen Wang
- Division of Cardiology, Department of Internal Medicine, Asia University Hospital
- Department of Biotechnology, Asia University
- Division of Cardiology, Department of Internal Medicine, China Medical University College of Medicine and Hospital, Taichung
| | - Po-Ching Chou
- Cardiovascular Center of Cathay General Hospital, Taipei
| | - Hui-Yi Yap
- Department of cardiology, Chi Mei Medical Center, Liouying
| | - Hao-Min Cheng
- Faculty of Medicine, National Yang-Ming University School of Medicine
- Center for Evidence-based Medicine, Department of Medical Education, Taipei Veterans General Hospital
- Institute of Public Health and Community Medicine Research Center
- Institute of Health and Welfare Policy, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
68
|
Schoettker P, Degott J, Hofmann G, Proença M, Bonnier G, Lemkaddem A, Lemay M, Schorer R, Christen U, Knebel JF, Wuerzner A, Burnier M, Wuerzner G. Blood pressure measurements with the OptiBP smartphone app validated against reference auscultatory measurements. Sci Rep 2020; 10:17827. [PMID: 33082436 PMCID: PMC7576142 DOI: 10.1038/s41598-020-74955-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Mobile health diagnostics have been shown to be effective and scalable for chronic disease detection and management. By maximizing the smartphones' optics and computational power, they could allow assessment of physiological information from the morphology of pulse waves and thus estimate cuffless blood pressure (BP). We trained the parameters of an existing pulse wave analysis algorithm (oBPM), previously validated in anaesthesia on pulse oximeter signals, by collecting optical signals from 51 patients fingertips via a smartphone while simultaneously acquiring BP measurements through an arterial catheter. We then compared smartphone-based measurements obtained on 50 participants in an ambulatory setting via the OptiBP app against simultaneously acquired auscultatory systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean blood pressure (MBP) measurements. Patients were normotensive (70.0% for SBP versus 61.4% for DBP), hypertensive (17.1% vs. 13.6%) or hypotensive (12.9% vs. 25.0%). The difference in BP (mean ± standard deviation) between both methods were within the ISO 81,060-2:2018 standard for SBP (- 0.7 ± 7.7 mmHg), DBP (- 0.4 ± 4.5 mmHg) and MBP (- 0.6 ± 5.2 mmHg). These results demonstrate that BP can be measured with accuracy at the finger using the OptiBP smartphone app. This may become an important tool to detect hypertension in various settings, for example in low-income countries, where the availability of smartphones is high but access to health care is low.
Collapse
Affiliation(s)
- Patrick Schoettker
- Department of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Jean Degott
- Department of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gregory Hofmann
- Department of Anesthesiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martin Proença
- CSEM, Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland
| | - Guillaume Bonnier
- CSEM, Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland
| | - Alia Lemkaddem
- CSEM, Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland
| | - Mathieu Lemay
- CSEM, Swiss Center for Electronics and Microtechnology, Neuchâtel, Switzerland
| | - Raoul Schorer
- Department of Acute Medicine, Geneva University Hospital and University of Geneva, Geneva, Switzerland
| | | | | | - Arlene Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gregoire Wuerzner
- Service of Nephrology and Hypertension, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
69
|
Townsend RR. Out-of-Office Blood Pressure Monitoring: A Comparison of Ambulatory Blood Pressure Monitoring and Home (Self) Monitoring Of Blood Pressure. Hypertension 2020; 76:1667-1673. [PMID: 33012202 DOI: 10.1161/hypertensionaha.120.14650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Raymond R Townsend
- From the Renal Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
70
|
Kario K. Management of Hypertension in the Digital Era: Small Wearable Monitoring Devices for Remote Blood Pressure Monitoring. Hypertension 2020; 76:640-650. [PMID: 32755418 PMCID: PMC7418935 DOI: 10.1161/hypertensionaha.120.14742] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Out-of-office blood pressure measurement is an essential part of diagnosing and managing hypertension. In the era of advanced digital health information technology, the approach to achieving this is shifting from traditional methods (ambulatory and home blood pressure monitoring) to wearable devices and technology. Wearable blood pressure monitors allow frequent blood pressure measurements (ideally continuous beat-by-beat monitoring of blood pressure) with minimal stress on the patient. It is expected that wearable devices will dramatically change the quality of detection and management of hypertension by increasing the number of measurements in different situations, allowing accurate detection of phenotypes that have a negative impact on cardiovascular prognosis, such as masked hypertension and abnormal blood pressure variability. Frequent blood pressure measurements and the addition of new features such as monitoring of environmental conditions allows interpretation of blood pressure data in the context of daily stressors and different situations. This new digital approach to hypertension contributes to anticipation medicine, which refers to strategies designed to identify increasing risk and predict the onset of cardiovascular events based on a series of data collected over time, allowing proactive interventions to reduce risk. To achieve this, further research and validation is required to develop wearable blood pressure monitoring devices that provide the same accuracy as current approaches and can effectively contribute to personalized medicine.
Collapse
Affiliation(s)
- Kazuomi Kario
- From the Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan; and the Hypertension Cardiovascular Outcome Prevention and Evidence in Asia (HOPE Asia) Network
| |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW This review discusses how wearable devices-sensors externally applied to the body to measure a physiological signal-can be used in heart failure (HF) care. RECENT FINDINGS Most wearables are marketed to consumers and can measure movement, heart rate, and blood pressure; detect and monitor arrhythmia; and support exercise training and rehabilitation. Wearable devices targeted at healthcare professionals include ECG patch recorders and vests, patches, and textiles with in-built sensors for improved prognostication and the early detection of acute decompensation. Integrating data from wearables into clinical decision-making has been slow due to clinical inertia and concerns regarding data security and validity, lack of evidence of meaningful impact, interoperability, regulatory and reimbursement issues, and legal liability. Although few studies have assessed how best to integrate wearable technologies into clinical practice, their use is rapidly expanding and may support improved decision-making by patients and healthcare professionals along the whole patient pathway.
Collapse
Affiliation(s)
| | - Martin R Cowie
- Royal Brompton Hospital, London, UK.
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, SW3 6LY, UK.
| |
Collapse
|
72
|
Pandit JA, Lores E, Batlle D. Cuffless Blood Pressure Monitoring: Promises and Challenges. Clin J Am Soc Nephrol 2020; 15:1531-1538. [PMID: 32680913 PMCID: PMC7536750 DOI: 10.2215/cjn.03680320] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Current BP measurements are on the basis of traditional BP cuff approaches. Ambulatory BP monitoring, at 15- to 30-minute intervals usually over 24 hours, provides sufficiently continuous readings that are superior to the office-based snapshot, but this system is not suitable for frequent repeated use. A true continuous BP measurement that could collect BP passively and frequently would require a cuffless method that could be worn by the patient, with the data stored electronically much the same way that heart rate and heart rhythm are already done routinely. Ideally, BP should be measured continuously and frequently during diverse activities during both daytime and nighttime in the same subject by means of novel devices. There is increasing excitement for newer methods to measure BP on the basis of sensors and algorithm development. As new devices are refined and their accuracy is improved, it will be possible to better assess masked hypertension, nocturnal hypertension, and the severity and variability of BP. In this review, we discuss the progression in the field, particularly in the last 5 years, ending with sensor-based approaches that incorporate machine learning algorithms to personalized medicine.
Collapse
Affiliation(s)
- Jay A Pandit
- Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Enrique Lores
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Daniel Batlle
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
73
|
The dawning of the digital era in the management of hypertension. Hypertens Res 2020; 43:1135-1140. [PMID: 32655134 DOI: 10.1038/s41440-020-0506-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Awareness, treatment, and control of hypertension are of the utmost importance in conquering stroke and cardiovascular disease. To reduce the global burden of hypertension, the Japanese Society of Hypertension (JSH) established the "JSH Future Plan" based on an increasing need to transform the strategy for combating hypertension. In addition to energizing conventional approaches in basic, translational, and clinical research, the application of rapidly evolving digital health technologies and artificial intelligence to hypertension healthcare and research (digital hypertension) holds promise for providing further insights into the pathophysiology and therapeutic targets and implementing predictive, personalized, and preemptive approaches in clinical practice. With great potential to revolutionize the landscape of hypertension, digital hypertension has some technical, legal, ethical, social, and financial issues to overcome. Given the multidisciplinary framework, digital hypertension requires comprehensive and strategic collaboration among industry, academia, and government to move forward toward the goal of "Future Medicine".
Collapse
|
74
|
Koshimizu H, Kojima R, Okuno Y. Future possibilities for artificial intelligence in the practical management of hypertension. Hypertens Res 2020; 43:1327-1337. [PMID: 32655135 DOI: 10.1038/s41440-020-0498-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/09/2022]
Abstract
The use of artificial intelligence in numerous prediction and classification tasks, including clinical research and healthcare management, is becoming increasingly more common. This review describes the current status and a future possibility for artificial intelligence in blood pressure management, that is, the possibility of accurately predicting and estimating blood pressure using large-scale data, such as personal health records and electronic medical records. Individual blood pressure continuously changes because of lifestyle habits and the environment. This review focuses on two topics regarding controlling changing blood pressure: a novel blood pressure measurement system and blood pressure analysis using artificial intelligence. Regarding the novel blood pressure measurement system, we compare the conventional cuff-less method with the analysis of pulse waves using artificial intelligence for blood pressure estimation. Then, we describe the prediction of future blood pressure values using machine learning and deep learning. In addition, we summarize factor analysis using "explainable AI" to solve a black-box problem of artificial intelligence. Overall, we show that artificial intelligence is advantageous for hypertension management and can be used to establish clinical evidence for the practical management of hypertension.
Collapse
Affiliation(s)
- Hiroshi Koshimizu
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.,Development Center, Omron Healthcare Co., Ltd., Kyoto, 617-0002, Japan
| | - Ryosuke Kojima
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
75
|
Kario K, Morisawa Y, Sukonthasarn A, Turana Y, Chia Y, Park S, Wang T, Chen C, Tay JC, Li Y, Wang J. COVID-19 and hypertension-evidence and practical management: Guidance from the HOPE Asia Network. J Clin Hypertens (Greenwich) 2020; 22:1109-1119. [PMID: 32643874 PMCID: PMC7361740 DOI: 10.1111/jch.13917] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022]
Abstract
There are several risk factors for worse outcomes in patients with coronavirus 2019 disease (COVID-19). Patients with hypertension appear to have a poor prognosis, but there is no direct evidence that hypertension increases the risk of new infection or adverse outcomes independent of age and other risk factors. There is also concern about use of renin-angiotensin system (RAS) inhibitors due to a key role of angiotensin-converting enzyme 2 receptors in the entry of the SARS-CoV-2 virus into cells. However, there is little evidence that use of RAS inhibitors increases the risk of SARS-CoV-2 virus infection or worsens the course of COVID-19. Therefore, antihypertensive therapy with these agents should be continued. In addition to acute respiratory distress syndrome, patients with severe COVID-19 can develop myocardial injury and cytokine storm, resulting in heart failure, arteriovenous thrombosis, and kidney injury. Troponin, N-terminal pro-B-type natriuretic peptide, D-dimer, and serum creatinine are biomarkers for these complications and can be used to monitor patients with COVID-19 and for risk stratification. Other factors that need to be incorporated into patient management strategies during the pandemic include regular exercise to maintain good health status and monitoring of psychological well-being. For the ongoing management of patients with hypertension, telemedicine-based home blood pressure monitoring strategies can facilitate maintenance of good blood pressure control while social distancing is maintained. Overall, multidisciplinary management of COVID-19 based on a rapidly growing body of evidence will help ensure the best possible outcomes for patients, including those with risk factors such as hypertension.
Collapse
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Yuji Morisawa
- Division of Infectious DiseasesJichi Medical University HospitalShimotsuke‐shiJapan
| | - Apichard Sukonthasarn
- Cardiology DivisionDepartment of Internal MedicineFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Yuda Turana
- Faculty of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaJakartaIndonesia
| | - Yook‐Chin Chia
- Department of Medical SciencesSchool of Healthcare and Medical SciencesSunway UniversityBandar SunwayMalaysia
| | - Sungha Park
- Division of CardiologyCardiovascular HospitalYonsei Health SystemSeoulKorea
| | - Tzung‐Dau Wang
- Department of Internal MedicineCardiovascular Center and Division of CardiologyNational Taiwan University Hospital and National Taiwan University College of MedicineTaipei CityTaiwan
| | - Chen‐Huan Chen
- Department of MedicineSchool of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Jam Chin Tay
- Department of General MedicineTan Tock Seng HospitalSingapore CitySingapore
| | - Yan Li
- Department of HypertensionCentre for Epidemiological Studies and Clinical TrialsThe Shanghai Institute of HypertensionShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Ji‐Guang Wang
- Department of HypertensionCentre for Epidemiological Studies and Clinical TrialsThe Shanghai Institute of HypertensionShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | | |
Collapse
|
76
|
E-Health in Hypertension Management: an Insight into the Current and Future Role of Blood Pressure Telemonitoring. Curr Hypertens Rep 2020; 22:42. [PMID: 32506273 DOI: 10.1007/s11906-020-01056-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE OF REVIEW Out-of-office blood pressure (BP) monitoring techniques, including home and ambulatory BP monitoring, are currently recommended by hypertension guidelines worldwide to confirm the diagnosis of hypertension and to monitor the appropriateness of treatment. However, such techniques are not always effectively implemented or timely available in the routine clinical practice. In recent years, the widespread availability of e-health solutions has stimulated the development of blood pressure telemonitoring (BPT) systems, which allow remote BP tracking and tighter and more efficient monitoring of patients' health status. RECENT FINDINGS There is currently strong evidence that BPT may be of benefit for hypertension screening and diagnosis and for improving hypertension management. The advantage is more significant when BPT is coupled with multimodal interventions involving a physician, a nurse or pharmacist, and including education on lifestyle and risk factors and drug management. Several randomized controlled studies documented enhanced hypertension management and improved BP control of hypertensive patients through BPT. Potential additional effects of BPT are represented by improved compliance to treatment, intensification, and optimization of drug use, improved quality of life, reduction in risk of developing cardiovascular complications, and cost-saving. Applications based on m-health and making use of wearables or smartwatches integrated with machine learning models are particularly promising for the future development of efficient BPT solutions, and they will provide remarkable support decision tools for doctors. BPT and telehealth will soon disrupt hypertension management. However, which approach will be the most effective and whether it will be sustainable in the long-term still need to be elucidated.
Collapse
|
77
|
|
78
|
Picone DS, Deshpande RA, Schultz MG, Fonseca R, Campbell NRC, Delles C, Hecht Olsen M, Schutte AE, Stergiou G, Padwal R, Zhang XH, Sharman JE. Nonvalidated Home Blood Pressure Devices Dominate the Online Marketplace in Australia: Major Implications for Cardiovascular Risk Management. Hypertension 2020; 75:1593-1599. [PMID: 32275193 DOI: 10.1161/hypertensionaha.120.14719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Self-home blood pressure (BP) monitoring is recommended to guide clinical decisions on hypertension and is used worldwide for cardiovascular risk management. People usually make their own decisions when purchasing BP devices, which can be made online. If patients purchase nonvalidated devices (those not proven accurate according to internationally accepted standards), hypertension management may be based on inaccurate readings resulting in under- or over-diagnosis or treatment. This study aimed to evaluate the number, type, percentage validated, and cost of home BP devices available online. A search of online businesses selling devices for home BP monitoring was conducted. Multinational companies make worldwide deliveries, so searches were restricted to BP devices available for one nation (Australia) as an example of device availability through the global online marketplace. Validation status of BP devices was determined according to established protocols. Fifty nine online businesses, selling 972 unique BP devices were identified. These included 278 upper-arm cuff devices (18.3% validated), 162 wrist-cuff devices (8.0% validated), and 532 wrist-band wearables (0% validated). Most BP devices (92.4%) were stocked by international e-commerce businesses (eg, eBay, Amazon), but only 5.5% were validated. Validated cuff BP devices were more expensive than nonvalidated devices: median (interquartile range) of 101.1 (75.0-151.5) versus 67.4 (30.4-112.8) Australian Dollars. Nonvalidated BP devices dominate the online marketplace and are sold at lower cost than validated ones, which is a major barrier to accurate home BP monitoring and cardiovascular risk management. Before purchasing a BP device, people should check it has been validated at https://www.stridebp.org.
Collapse
Affiliation(s)
- Dean S Picone
- From the Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (D.S.P., R.A.D., M.G.S., R.F., J.E.S.)
| | - Rewati A Deshpande
- From the Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (D.S.P., R.A.D., M.G.S., R.F., J.E.S.)
| | - Martin G Schultz
- From the Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (D.S.P., R.A.D., M.G.S., R.F., J.E.S.)
| | - Ricardo Fonseca
- From the Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (D.S.P., R.A.D., M.G.S., R.F., J.E.S.)
| | - Norm R C Campbell
- Department of Medicine, Physiology and Pharmacology and Community Health Sciences, O'Brien Institute for Public Health and Libin Cardiovascular Institute of Alberta, University of Calgary, Canada (N.R.C.C.)
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.D.)
| | - Michael Hecht Olsen
- Department of Internal Medicine, Holbaek Hospital, Denmark (M.H.-O.).,Centre for Individualized Medicine in Arterial Diseases, Odense University Hospital, University of Southern Denmark (M.H.-O.)
| | - Aletta E Schutte
- The George Institute for Global Health, University of New South Wales, Sydney, Australia (A.E.S.).,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa (A.E.S.)
| | - George Stergiou
- Hypertension Center STRIDE-7, National and Kapodistrian University of Athens, School of Medicine, Third Department of Medicine, Sotiria Hospital, Greece (G.S.)
| | - Raj Padwal
- Department of Medicine, University of Alberta, Edmonton, Canada (R.P.)
| | | | - James E Sharman
- From the Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia (D.S.P., R.A.D., M.G.S., R.F., J.E.S.)
| |
Collapse
|
79
|
Kario K. The HOPE Asia Network activity for "zero" cardiovascular events in Asia: Overview 2020. J Clin Hypertens (Greenwich) 2020; 22:321-330. [PMID: 32092244 PMCID: PMC8029853 DOI: 10.1111/jch.13750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Abstract
The impact of hypertension-related cardiovascular disease and target organ damage, and therefore the benefits of blood pressure (BP) control, is greater in Asian than in Western countries. Asia-specific features of hypertension and its effective management are important and active areas of research. The Hypertension Cardiovascular Outcome Prevention and Evidence in Asia (HOPE Asia) Network was formed in 2016 and is now a member of the World Hypertension League. The main goal of the HOPE Asia Network is to improve the management of hypertension and organ protection toward achieving "zero" cardiovascular events in Asia. Considerable work has already been done on the journey to achieving this goal. We have shown that BP control status in Asia differs between countries, and even between regions within the same country. Several expert panel consensus recommendations and clinical guidance papers are available to support the use of home and ambulatory BP monitoring in the region. In addition, the AsiaBP@Home study prospectively investigated home BP control status across 15 specialist centers using the same validated device and measurement schedule. We have also proposed the concept of systemic hemodynamic atherothrombotic syndrome (SHATS), a vicious cycle of BP variability and vascular disease on cardiovascular events and organ damage, and suggested a SHATS score for risk stratification for clinical practice. This special issue of the journal collates Asia-specific resources and data, contributing to advances in hypertension management and cardiovascular disease prevention in the region.
Collapse
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
- The Hypertension Cardiovascular Outcome Prevention and Evidence in Asia (HOPE Asia) NetworkTokyoJapan
| |
Collapse
|
80
|
Kabutoya T, Hoshide S, Kario K. Asian management of hypertension: Current status, home blood pressure, and specific concerns in Japan. J Clin Hypertens (Greenwich) 2020; 22:486-492. [PMID: 31622008 PMCID: PMC8029793 DOI: 10.1111/jch.13713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 11/27/2022]
Abstract
Hypertension is highly prevalent in Japan, affecting up to 60% of males and 45% of females. Stroke is the main adverse cardiovascular event, occurring at a higher rate than acute myocardial infarction. Reducing blood pressure (BP) therefore has an important role to play in decreasing morbidity and mortality. The high use of home BP monitoring (HBPM) in Japan is a positive, and home BP is a better predictor of cardiovascular event occurrence than office BP. New 2019 Japanese Society of Hypertension Guidelines strongly recommend the use of HBPM to facilitate control of hypertension to new lower target BP levels (office BP < 130/80 mm Hg and home BP < 125/75 mm Hg). Lifestyle modifications, especially reducing salt intake, are also an important part of hypertension management strategies in Japan. The most commonly used antihypertensive agents are calcium channel blockers followed by angiotensin receptor blockers, and the combination of agents from these two classes is the most popular combination therapy. These agents are appropriate choices in South East Asian countries given that they have been shown to reduce stroke more effectively than other antihypertensives. Morning hypertension, nocturnal hypertension, and BP variability are important targets for antihypertensive therapy based on their association with target organ damage and cardiovascular events. Use of home and ambulatory BP monitoring techniques is needed to monitor these important hypertension phenotypes. Information and communication technology-based monitoring platforms and wearable devices are expected to facilitate better management of hypertension in Japan in the future.
Collapse
Affiliation(s)
- Tomoyuki Kabutoya
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Satoshi Hoshide
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Kazuomi Kario
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| |
Collapse
|
81
|
Kario K, Chia Y, Sukonthasarn A, Turana Y, Shin J, Chen C, Buranakitjaroen P, Nailes J, Hoshide S, Siddique S, Sison J, Soenarta AA, Sogunuru GP, Tay JC, Teo BW, Zhang Y, Park S, Minh HV, Tomitani N, Kabutoya T, Verma N, Wang T, Wang J. Diversity of and initiatives for hypertension management in Asia-Why we need the HOPE Asia Network. J Clin Hypertens (Greenwich) 2020; 22:331-343. [PMID: 31773883 PMCID: PMC8029896 DOI: 10.1111/jch.13733] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/21/2022]
Abstract
The Hypertension Cardiovascular Outcome Prevention and Evidence in Asia (HOPE Asia) Network was set up to improve the management of hypertension in Asia with the ultimate goal of achieving "zero" cardiovascular events. Asia is a diverse continent, and the prevalence of hypertension has increased over the last 30 years. There are a number of Asia-specific features of hypertension and hypertension-related cardiovascular complications, which means that a region-specific approach is needed. White-coat hypertension will become more of an issue over time as Asian populations age, and masked hypertension is more prevalent in Asian than in Western countries. Identifying and treating masked hypertension is important to reduce cardiovascular risk. Abnormal patterns of blood pressure (BP) variability common in Asia include exaggerated early morning BP surge and nocturnal hypertension. These are also important cardiovascular risk factors that need to be managed. Home blood pressure monitoring (HBPM) is an important tool for detecting white-coat and masked hypertension, and monitoring BP variability, and practices in Asia are variable. Use of HBPM is important given the Asia-specific features of hypertension, and strategies are needed to improve and standardize HBPM usage. Development of HBPM devices capable of measuring nocturnal BP along with other information and communication technology-based strategies are key developments in the widespread implementation of anticipation medicine strategies to detect and prevent cardiovascular events in patients with hypertension. Region-wide differences in hypertension prevalence, control, and management practices in Asia highlight the importance of information sharing to facilitate best practices.
Collapse
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Yook‐Chin Chia
- Department of Medical SciencesSchool of Healthcare and Medical SciencesSunway UniversityBandar SunwayMalaysia
- Department of Primary Care MedicineFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Apichard Sukonthasarn
- Cardiology DivisionDepartment of Internal MedicineFaculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Yuda Turana
- Faculty of Medicine and Health SciencesAtma Jaya Catholic University of IndonesiaJakartaIndonesia
| | - Jinho Shin
- Faculty of Cardiology ServiceHanyang University Medical CenterSeoulKorea
| | - Chen‐Huan Chen
- Department of MedicineSchool of MedicineNational Yang‐Ming UniversityTaipeiTaiwan
| | - Peera Buranakitjaroen
- Department of MedicineFaculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jennifer Nailes
- University of the East Ramon Magsaysay Memorial Medical Center Inc.Quezon CityPhilippines
| | - Satoshi Hoshide
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | | | - Jorge Sison
- Section of CardiologyDepartment of MedicineMedical Center ManilaManilaPhilippines
| | - Arieska Ann Soenarta
- Department of Cardiology and Vascular MedicineFaculty of MedicineUniversity of Indonesia‐National Cardiovascular Center, Harapan KitaJakartaIndonesia
| | - Guru Prasad Sogunuru
- MIOT International HospitalChennaiIndia
- College of Medical SciencesKathmandu UniversityBharatpurNepal
| | - Jam Chin Tay
- Department of General MedicineTan Tock Seng HospitalSingapore CitySingapore
| | - Boon Wee Teo
- Division of NephrologyDepartment of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore CitySingapore
| | - Yu‐Qing Zhang
- Divisions of Hypertension and Heart FailureFu Wai HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Sungha Park
- Division of CardiologyCardiovascular HospitalYonsei Health SystemSeoulKorea
| | - Huynh Van Minh
- Department of Internal MedicineUniversity of Medicine and PharmacyHue UniversityHue CityVietnam
| | - Naoko Tomitani
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Tomoyuki Kabutoya
- Division of Cardiovascular MedicineDepartment of MedicineJichi Medical University School of MedicineTochigiJapan
| | - Narsingh Verma
- Department of PhysiologyKing George's Medical UniversityLucknowIndia
| | - Tzung‐Dau Wang
- Department of Internal MedicineCardiovascular Center and Division of CardiologyNational Taiwan University Hospital and National Taiwan University College of MedicineTaipei CityTaiwan
| | - Ji‐Guang Wang
- Department of HypertensionCentre for Epidemiological Studies and Clinical Trialsthe Shanghai Institute of HypertensionShanghai Key Laboratory of HypertensionRuijin HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
82
|
Kario K, Shimbo D, Tomitani N, Kanegae H, Schwartz JE, Williams B. The first study comparing a wearable watch‐type blood pressure monitor with a conventional ambulatory blood pressure monitor on in‐office and out‐of‐office settings. J Clin Hypertens (Greenwich) 2020; 22:135-141. [DOI: 10.1111/jch.13799] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular Medicine Department of Medicine Jichi Medical University School of Medicine Tochigi Japan
| | - Daichi Shimbo
- The Hypertension Center Columbia University Medical Center New York NY USA
| | - Naoko Tomitani
- Division of Cardiovascular Medicine Department of Medicine Jichi Medical University School of Medicine Tochigi Japan
| | - Hiroshi Kanegae
- Division of Cardiovascular Medicine Department of Medicine Jichi Medical University School of Medicine Tochigi Japan
- Genki Plaza Medical Center for Health Care Tokyo Japan
| | - Joseph E. Schwartz
- Columbia University New York NY, USA
- Department of Psychiatry Stony Brook University Stony Brook NY USA
| | - Bryan Williams
- Institute of Cardiovascular Sciences University College London London UK
| |
Collapse
|
83
|
Cohen JB, Geara AS, Hogan JJ, Townsend RR. Hypertension in Cancer Patients and Survivors: Epidemiology, Diagnosis, and Management. JACC CardioOncol 2019; 1:238-251. [PMID: 32206762 PMCID: PMC7089580 DOI: 10.1016/j.jaccao.2019.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer patients and survivors of cancer have a greater burden of cardiovascular disease compared to the general population. Much of the elevated cardiovascular risk in these individuals is likely attributable to hypertension, as individuals with cancer have a particularly high incidence of hypertension following cancer diagnosis. Treatment with chemotherapy is an independent risk factor for hypertension due to direct effects of many agents on endothelial function, sympathetic activity, and renin-angiotensin system activity as well as nephrotoxicity. Diagnosis and management of hypertension in cancer patients requires accurate blood pressure measurement and consideration of potential confounding factors, such as adjuvant treatments and acute pain, that can temporarily elevate blood pressure readings. Home blood pressure monitoring can be a useful tool to facilitate longitudinal blood pressure monitoring for titration of antihypertensive medications. Selection of antihypertensive agents in cancer patients should account for treatment-specific morbidities and target organ injury.
Collapse
Affiliation(s)
- Jordana B. Cohen
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Abdallah S. Geara
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jonathan J. Hogan
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymond R. Townsend
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
84
|
Kario K. Key Points of the 2019 Japanese Society of Hypertension Guidelines for the Management of Hypertension. Korean Circ J 2019; 49:1123-1135. [PMID: 31760704 PMCID: PMC6875598 DOI: 10.4070/kcj.2019.0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The new 2019 Japanese Society of Hypertension (JSH) guidelines for the management of hypertension are now available; these update the previous guidelines published in 2014. The primary objective of the guideline is to provide all healthcare professionals with a standard management strategy and appropriate antihypertensive treatments to prevent hypertension-related target organ damage and cardiovascular events. The major changes in the new guideline relate to the definition of normal blood pressure (BP) and target BP. The terms 'normal BP' and 'high normal BP' used in the JSH 2014 guidelines are replaced with terms 'high normal BP' and 'elevated BP,' respectively. There was no change to the office BP diagnostic threshold for hypertension (140/90 mmHg). Recommended target office and home BP values for patients with hypertension aged <75 years and/or high-risk patients are <130/80 mmHg and <125/75 mmHg, respectively. Corresponding targets for elderly patients with hypertension (age≥75 years) are 140/90 and 135/85 mmHg, respectively. The goal is that these changes will contribute to reducing cardiovascular events, especially stroke and heart failure, in Japan. The dissemination of the JSH 2019 guidelines and implementation of a home BP-based approach by all general practitioners in Japan might be facilitated by digital hypertension management using health information technology.
Collapse
Affiliation(s)
- Kazuomi Kario
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
85
|
Kario K, Kanegae H, Tomitani N, Okawara Y, Fujiwara T, Yano Y, Hoshide S. Nighttime Blood Pressure Measured by Home Blood Pressure Monitoring as an Independent Predictor of Cardiovascular Events in General Practice. Hypertension 2019; 73:1240-1248. [PMID: 31006331 PMCID: PMC6510323 DOI: 10.1161/hypertensionaha.118.12740] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We developed an innovative automated home blood pressure (BP) monitoring method that measures BP while asleep repeatedly over several days. Our aim was to assess the predictive ability of nighttime BP obtained using the home BP device for incident cardiovascular disease (CVD) in general practice patients. We used data from the nationwide practice-based J-HOP (Japan Morning Surge-Home Blood Pressure) Nocturnal BP Study, which recruited 2545 Japanese with a history of or risk factors for CVD (mean age 63 years; antihypertensive medication use 83%). The associations between nighttime home BPs (measured at 2:00, 3:00, and 4:00 am using validated, automatic, and oscillometric home BP devices) and incident CVD, including coronary disease and stroke events, were assessed with Cox proportional hazards models. The mean±SD office, morning home, and nighttime home systolic BP (SBP)/diastolic BP were 140±15/82±10, 137±15/79±10, and 121±15/70±9 mm Hg, respectively. During a follow-up of 7.1±3.8 years (18,116 person-years), 152 CVD events occurred. A 10-mm Hg increase of nighttime home SBP was associated with an increased risk of CVD events (hazard ratios [95% CIs]: 1.201 [1.046-1.378]), after adjustments for covariates including office and morning home SBPs. The model fit assessed by the change in Goodness-of-Fit was improved when we added nighttime home SBP into the base models including office and morning home SBPs (Δ6.838 [5.6%]; P=0.009). This is among the first and largest nationwide practice-based study demonstrating that nighttime SBP obtained using a home device is a predictor of incident CVD events, independent of in-office and morning in-home SBP measurement. Clinical Trial Registration- URL: http://www.umin.ac.jp/icdr/index.html . Unique identifier: UMIN000000894.
Collapse
Affiliation(s)
- Kazuomi Kario
- From the Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine (JMU), Tochigi, Japan (K.K., H.K., N.T., T.F., S.H.).,JMU Center of Excellence, Community Medicine Cardiovascular Research and Development (JCARD), Tochigi, Japan (K.K., N.T., T.F., Y.Y., S.H.)
| | - Hiroshi Kanegae
- From the Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine (JMU), Tochigi, Japan (K.K., H.K., N.T., T.F., S.H.).,Genki Plaza Medical Center for Health Care, Tokyo, Japan (H.K.)
| | - Naoko Tomitani
- From the Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine (JMU), Tochigi, Japan (K.K., H.K., N.T., T.F., S.H.).,JMU Center of Excellence, Community Medicine Cardiovascular Research and Development (JCARD), Tochigi, Japan (K.K., N.T., T.F., Y.Y., S.H.)
| | - Yukie Okawara
- JMU Center of Global Home and Ambulatory BP Analysis (GAP), Tochigi, Japan (Y.O.)
| | - Takeshi Fujiwara
- From the Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine (JMU), Tochigi, Japan (K.K., H.K., N.T., T.F., S.H.).,JMU Center of Excellence, Community Medicine Cardiovascular Research and Development (JCARD), Tochigi, Japan (K.K., N.T., T.F., Y.Y., S.H.)
| | - Yuichiro Yano
- JMU Center of Excellence, Community Medicine Cardiovascular Research and Development (JCARD), Tochigi, Japan (K.K., N.T., T.F., Y.Y., S.H.)
| | - Satoshi Hoshide
- From the Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine (JMU), Tochigi, Japan (K.K., H.K., N.T., T.F., S.H.).,JMU Center of Excellence, Community Medicine Cardiovascular Research and Development (JCARD), Tochigi, Japan (K.K., N.T., T.F., Y.Y., S.H.)
| |
Collapse
|
86
|
Can an automatic oscillometric device replace a mercury sphygmomanometer on blood pressure measurement? a systematic review and meta-analysis. Blood Press Monit 2019; 24:265-276. [PMID: 31658107 DOI: 10.1097/mbp.0000000000000412] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE A mercury sphygmomanometer has been considered a gold standard for measuring blood pressure. However, by the Minamata Convention on Mercury, the traditional mercury sphygmomanometer is being replaced by an automated oscillometric device. This study aimed to provide scientific evidence to determine whether an automated oscillometric device can replace a mercury sphygmomanometer and if it is applicable in routine practice. METHODS MEDLINE, EMBASE, the Cochrane Library, and CINAHL were searched on 4 May 2018. Studies comparing blood pressure measurements between automated oscillometric devices and mercury sphygmomanometers were included. Study characteristics were abstracted using the evidence table, and random-effects meta-analyses were conducted. RESULTS Data were compiled from 24 studies comprising 47 759 subjects. The results of meta-analysis showed that automated oscillometric devices measured lower than mercury sphygmomanometers for both systolic blood pressure (mean differences -1.75 mmHg, 95% confidence intervals: -3.05 to -0.45, I = 91.0%) and diastolic blood pressure (mean differences -1.20 mmHg, 95% confidence intervals: -2.16 to -0.24, I = 95.0%). In sub-group analyses by manufacturer, BpTRU measured lower than the mercury sphygmomanometer and OMRON showed no difference compared to the mercury sphygmomanometer for both systolic and diastolic blood pressure, but the results differed depending on the devices. CONCLUSION As a result of this review, the difference in blood pressure between the mercury sphygmomanometer and the automated oscillometric device was within 5 mmHg, but the heterogeneity between the studies was very high. The automated oscillometric devices showed differences in blood pressure results according to the manufacturer and product type.
Collapse
|
87
|
Cho MC. Clinical Significance and Therapeutic Implication of Nocturnal Hypertension: Relationship between Nighttime Blood Pressure and Quality of Sleep. Korean Circ J 2019; 49:818-828. [PMID: 31456375 PMCID: PMC6713830 DOI: 10.4070/kcj.2019.0245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Recent global hypertension guidelines recommend an early, strict and 24-hour blood pressure (BP) control for the prevention of target organ damage and cardiovascular events. Out-of-office BP measurement such as ambulatory BP monitoring and home BP monitoring is now widely utilized to rule out white-coat hypertension, to detect masked hypertension, to evaluate the effects of antihypertensive medication, to analyze diurnal BP variation, and to increase drug adherence. Nocturnal hypertension has been neglected in the management of hypertension despite of its clinical significance. Nighttime BP and non-dipping patterns of BP are stronger risk predictors for the future cardiovascular mortality and morbidity than clinic or daytime BP. In addition to ambulatory or home daytime BP and 24-hour mean BP, nocturnal BP should be a new therapeutic target for the optimal treatment of hypertension to improve prognosis in hypertensive patients. This review will provide an overview of epidemiology, characteristics, and pathophysiology of nocturnal hypertension and clinical significance, therapeutic implication and future perspectives of nocturnal hypertension will be discussed.
Collapse
Affiliation(s)
- Myeong Chan Cho
- Department of Internal Medicine, College of Medicine, Chungbuk National University, Cheongju, Korea.
| |
Collapse
|