51
|
Wagener J, Loiko V. Recent Insights into the Paradoxical Effect of Echinocandins. J Fungi (Basel) 2017; 4:jof4010005. [PMID: 29371498 PMCID: PMC5872308 DOI: 10.3390/jof4010005] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/20/2022] Open
Abstract
Echinocandin antifungals represent one of the most important drug classes for the treatment of invasive fungal infections. The mode of action of the echinocandins relies on inhibition of the β-1,3-glucan synthase, an enzyme essentially required for the synthesis of the major fungal cell wall carbohydrate β-1,3-glucan. Depending on the species, echinocandins may exert fungicidal or fungistatic activity. Apparently independent of this differential activity, a surprising in vitro phenomenon called the “paradoxical effect” can be observed. The paradoxical effect is characterized by the ability of certain fungal isolates to reconstitute growth in the presence of higher echinocandin concentrations, while being fully susceptible at lower concentrations. The nature of the paradoxical effect is not fully understood and has been the focus of multiple studies in the last two decades. Here we concisely review the current literature and propose an updated model for the paradoxical effect, taking into account recent advances in the field.
Collapse
Affiliation(s)
- Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, 80336 Munich, Germany.
- Institut für Hygiene und Mikrobiologie, Julius-Maximilians-Universität Würzburg, 97080 Würzburg, Germany.
| | - Veronika Loiko
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, 80336 Munich, Germany.
| |
Collapse
|
52
|
Chitinase Induction Prior to Caspofungin Treatment of Experimental Invasive Aspergillosis in Neutropenic Rats Does Not Enhance Survival. Antimicrob Agents Chemother 2017; 62:AAC.00960-17. [PMID: 29084744 DOI: 10.1128/aac.00960-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/22/2017] [Indexed: 11/20/2022] Open
Abstract
Host chitinases, chitotriosidase and acidic mammalian chitinase (AMCase), improved the antifungal activity of caspofungin (CAS) against Aspergillus fumigatus in vitro These chitinases are not constitutively expressed in the lung. Here, we investigated whether chitosan derivatives were able to induce chitinase activity in the lungs of neutropenic rats and, if so, whether these chitinases were able to prolong survival of rats with invasive pulmonary aspergillosis (IPA) or of rats with IPA and treated with CAS. An oligosaccharide-lactate chitosan (OLC) derivative was instilled in the left lung of neutropenic rats to induce chitotriosidase and AMCase activities. Rats instilled with OLC or with phosphate-buffered saline (PBS) were subsequently infected with A. fumigatus and then treated with suboptimal doses of CAS. Survival, histopathology, and galactomannan indexes were determined. Instillation of OLC resulted in chitotriosidase and AMCase activities. However, instillation of OLC did not prolong rat survival when rats were subsequently challenged with A. fumigatus In 5 of 7 rats instilled with OLC, the fungal foci in the lungs were smaller than those in rats instilled with PBS. Instillation of OLC did not significantly enhance the survival of neutropenic rats challenged with A. fumigatus and treated with a suboptimal dosage of CAS. Chitotriosidase and AMCase activities can be induced with OLC, but the presence of active chitinases in the lung did not prevent the development of IPA or significantly enhance the therapeutic outcome of CAS treatment.
Collapse
|
53
|
Caspofungin-Mediated Growth Inhibition and Paradoxical Growth in Aspergillus fumigatus Involve Fungicidal Hyphal Tip Lysis Coupled with Regenerative Intrahyphal Growth and Dynamic Changes in β-1,3-Glucan Synthase Localization. Antimicrob Agents Chemother 2017; 61:AAC.00710-17. [PMID: 28760907 DOI: 10.1128/aac.00710-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022] Open
Abstract
Caspofungin targets cell wall β-1,3-glucan synthesis and is the international consensus guideline-recommended salvage therapy for invasive aspergillosis. Although caspofungin is inhibitory at low concentrations, it exhibits a paradoxical effect (reversal of growth inhibition) at high concentrations by an undetermined mechanism. Treatment with caspofungin at either the growth-inhibitory concentration (0.5 μg/ml) or paradoxical growth-inducing concentration (4 μg/ml) for 24 h caused similar abnormalities, including wider, hyperbranched hyphae, increased septation, and repeated hyphal tip lysis, followed by regenerative intrahyphal growth. By 48 h, only hyphae at the colony periphery treated with the high caspofungin concentration displayed paradoxical growth. A similar high concentration of caspofungin also induced the paradoxical growth of Aspergillus fumigatus during human A549 alveolar cell invasion. Localization of the β-1,3-glucan synthase complex (Fks1 and Rho1) revealed significant differences between cells exposed to the growth-inhibitory and paradoxical growth-inducing concentrations of caspofungin. At both concentrations, Fks1 initially mislocalized from the hyphal tips to vacuoles. However, only continuous exposure to 4 μg/ml of caspofungin for 48 h led to recovery of the normal hyphal morphology with renewed localization of Fks1 to hyphal tips. Rho1 remained at the hyphal tip after treatment with both caspofungin concentrations but was required for paradoxical growth. Farnesol blocked paradoxical growth and relocalized Fks1 and Rho1 to vacuoles. Our results highlight the importance of regenerative intrahyphal growth as a rapid adaptation to the fungicidal lytic effects of caspofungin on hyphal tips and the dynamic localization of Fks1 as part of the mechanism for the caspofungin-mediated paradoxical response in A. fumigatus.
Collapse
|
54
|
Immune Recognition of Fungal Polysaccharides. J Fungi (Basel) 2017; 3:jof3030047. [PMID: 29371564 PMCID: PMC5715945 DOI: 10.3390/jof3030047] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 02/06/2023] Open
Abstract
The incidence of fungal infections has dramatically increased in recent years, in large part due to increased use of immunosuppressive medications, as well as aggressive medical and surgical interventions that compromise natural skin and mucosal barriers. There are relatively few currently licensed antifungal drugs, and rising resistance to these agents has led to interest in the development of novel preventative and therapeutic strategies targeting these devastating infections. One approach to combat fungal infections is to augment the host immune response towards these organisms. The polysaccharide-rich cell wall is the initial point of contact between fungi and the host immune system, and therefore, represents an important target for immunotherapeutic approaches. This review highlights the advances made in our understanding of the mechanisms by which the immune system recognizes and interacts with exopolysaccharides produced by four of the most common fungal pathogens: Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, and Histoplasma capsulatum. Work to date suggests that inner cell wall polysaccharides that play an important structural role are the most conserved across diverse members of the fungal kingdom, and elicit the strongest innate immune responses. The immune system senses these carbohydrates through receptors, such as lectins and complement proteins. In contrast, a greater diversity of polysaccharides is found within the outer cell walls of pathogenic fungi. These glycans play an important role in immune evasion, and can even induce anti-inflammatory host responses. Further study of the complex interactions between the host immune system and the fungal polysaccharides will be necessary to develop more effective therapeutic strategies, as well as to explore the use of immunosuppressive polysaccharides as therapeutic agents to modulate inflammation.
Collapse
|
55
|
Latgé JP, Beauvais A, Chamilos G. The Cell Wall of the Human Fungal Pathogen Aspergillus fumigatus: Biosynthesis, Organization, Immune Response, and Virulence. Annu Rev Microbiol 2017; 71:99-116. [PMID: 28701066 DOI: 10.1146/annurev-micro-030117-020406] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
More than 90% of the cell wall of the filamentous fungus Aspergillus fumigatus comprises polysaccharides. Biosynthesis of the cell wall polysaccharides is under the control of three types of enzymes: transmembrane synthases, which are anchored to the plasma membrane and use nucleotide sugars as substrates, and cell wall-associated transglycosidases and glycosyl hydrolases, which are responsible for remodeling the de novo synthesized polysaccharides and establishing the three-dimensional structure of the cell wall. For years, the cell wall was considered an inert exoskeleton of the fungal cell. The cell wall is now recognized as a living organelle, since the composition and cellular localization of the different constitutive cell wall components (especially of the outer layers) vary when the fungus senses changes in the external environment. The cell wall plays a major role during infection. The recognition of the fungal cell wall by the host is essential in the initiation of the immune response. The interactions between the different pattern-recognition receptors (PRRs) and cell wall pathogen-associated molecular patterns (PAMPs) orientate the host response toward either fungal death or growth, which would then lead to disease development. Understanding the molecular determinants of the interplay between the cell wall and host immunity is fundamental to combatting Aspergillus diseases.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- Unité des Aspergillus, Institut Pasteur, 75015 Paris, France; ,
| | - Anne Beauvais
- Unité des Aspergillus, Institut Pasteur, 75015 Paris, France; ,
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University of Crete, Heraklion, Crete 74100, Greece.,Institute of Molecular Biology and Biotechnology, Heraklion, Crete 70013, Greece;
| |
Collapse
|
56
|
Leonhardt Y, Kakoschke SC, Wagener J, Ebel F. Lah is a transmembrane protein and requires Spa10 for stable positioning of Woronin bodies at the septal pore of Aspergillus fumigatus. Sci Rep 2017; 7:44179. [PMID: 28281662 PMCID: PMC5345055 DOI: 10.1038/srep44179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/06/2017] [Indexed: 11/09/2022] Open
Abstract
Woronin bodies are specialized, fungal-specific organelles that enable an immediate closure of septal pores after injury to protect hyphae from excessive cytoplasmic bleeding. In most Ascomycetes, Woronin bodies are tethered at the septal pore by so-called Lah proteins. Using the pathogenic mold Aspergillus fumigatus as a model organism, we show that the C-terminal 288 amino acids of Lah (LahC288) bind to the rim of the septal pore. LahC288 essentially consists of a membrane spanning region and a putative extracellular domain, which are both required for the targeting to the septum. In an A. fumigatus rho4 deletion mutant that has a severe defect in septum formation, LahC288 is recruited to spot-like structures in or at the lateral membrane. This suggests that LahC is recruited before Rho4 starts to govern the septation process. Accordingly, we found that in wild type hyphae Lah is bound before a cross-wall emerges and thus enables a tethering of Woronin bodies at the site of the newly formed septum. Finally, we identified Spa10, a member of a recently described family of septal pore-associated proteins, as a first protein that directly or indirectly interacts with LahC to allow a stable positioning of Woronin bodies at the mature septum.
Collapse
Affiliation(s)
- Yannik Leonhardt
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Sara Carina Kakoschke
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Johannes Wagener
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, 80336, Germany
| | - Frank Ebel
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, 80336, Germany.,Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, 80539, Germany
| |
Collapse
|
57
|
The Paradoxical Effect of Echinocandins in Aspergillus fumigatus Relies on Recovery of the β-1,3-Glucan Synthase Fks1. Antimicrob Agents Chemother 2017; 61:AAC.01690-16. [PMID: 27872079 DOI: 10.1128/aac.01690-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022] Open
Abstract
Echinocandins target the fungal cell wall by inhibiting biosynthesis of the cell wall carbohydrate β-1,3-glucan. This antifungal drug class exhibits a paradoxical effect that is characterized by the resumption of growth of otherwise susceptible strains at higher drug concentrations (approximately 4 to 32 μg/ml). The nature of this phenomenon is still unknown. In this study, we analyzed the paradoxical effect of the echinocandin caspofungin on the pathogenic mold Aspergillus fumigatus Using a conditional fks1 mutant, we show that very high caspofungin concentrations exert an additional antifungal activity besides inhibition of the β-1,3-glucan synthase. This activity could explain the suppression of paradoxical growth at very high caspofungin concentrations. Additionally, we found that exposure to inhibitory caspofungin concentrations always causes initial growth deprivation independently of the capability of the drug concentration to induce the paradoxical effect. Paradoxically growing hyphae emerge from microcolonies essentially devoid of β-1,3-glucan. However, these hyphae expose β-1,3-glucan again, suggesting that β-1,3-glucan synthesis is restored. In agreement with this hypothesis, we found that expression of the β-1,3-glucan synthase Fks1 is an essential requirement for the paradoxical effect. Surprisingly, overexpression of fks1 renders A. fumigatus more susceptible, whereas reduced expression leads to hyphae that are more resistant to the growth-inhibitory and limited fungicidal activity of caspofungin. Upregulation of chitin synthesis appears to be of minor importance for the paradoxical effect, since paradoxically growing hyphae exhibit significantly less chitin than the growth-deprived parental microcolonies. Our results argue for a model where the paradoxical effect primarily relies on recovery of β-1,3-glucan synthase activity.
Collapse
|
58
|
Wiedemann A, Spadinger A, Löwe A, Seeger A, Ebel F. Agents that activate the High Osmolarity Glycerol pathway as a means to combat pathogenic molds. Int J Med Microbiol 2016; 306:642-651. [PMID: 27713026 DOI: 10.1016/j.ijmm.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/07/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022] Open
Abstract
Treatment of invasive fungal infections often fails due to the limited number of therapeutic options. In this study, we have analyzed the impact of agents activating the High Osmolarity Glycerol (HOG) pathway on molds that cause infections in humans and livestock. We found that agents like fludioxonil and iprodione, have a clear anti-fungal activity against pathogenic Aspergillus, Lichtheimia, Rhizopus and Scedosporium species. Only A. terreus turned out to be resistant to fludioxonil, even though it is sensitive to iprodione and able to adapt to hyperosmotic conditions. Moreover, the A. terreus tcsC gene can fully complement an A. fumigatus ΔtcsC mutant, thereby also restoring its sensitivity to fludioxonil. The particular phenotype of A. terreus is therefore likely to be independent of its TcsC kinase. In a second part of this study, we further explored the impact of fludioxonil using A. fumigatus as a model organism. When applied in concentrations of 1-2μg/ml, fludioxonil causes an immediate growth arrest and, after longer exposure, a quantitative killing. Hyphae respond to fludioxonil by the formation of new septa and closure of nearly all septal pores. Mitosis occurs in all compartments and is accompanied by a re-localization of the NimA kinase to the cytoplasm. In the swollen compartments, the massive extension of the cell wall triggers a substantial reorganization resulting in an enhanced incorporation of chitin and, most strikingly, a massive loss of galactomannan. Hence, HOG-activating agents have dramatic cell biological consequences and may represent a valuable, future element in the armory that can be used to combat mold infections.
Collapse
Affiliation(s)
- Annegret Wiedemann
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| | - Anja Spadinger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| | - Axel Löwe
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Allison Seeger
- Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany; Max-von-Pettenkofer-Institute, Ludwig-Maximilians-University, Munich, Germany; German Center for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
59
|
Latgé JP. 30 years of battling the cell wall. Med Mycol 2016; 55:4-9. [DOI: 10.1093/mmy/myw076] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 11/13/2022] Open
|
60
|
Aspergillus fumigatus MADS-Box Transcription Factor rlmA Is Required for Regulation of the Cell Wall Integrity and Virulence. G3-GENES GENOMES GENETICS 2016; 6:2983-3002. [PMID: 27473315 PMCID: PMC5015955 DOI: 10.1534/g3.116.031112] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Cell Wall Integrity (CWI) pathway is the primary signaling cascade that controls the de novo synthesis of the fungal cell wall, and in Saccharomyces cerevisiae this event is highly dependent on the RLM1 transcription factor. Here, we investigated the function of RlmA in the fungal pathogen Aspergillus fumigatus. We show that the ΔrlmA strain exhibits an altered cell wall organization in addition to defects related to vegetative growth and tolerance to cell wall-perturbing agents. A genetic analysis indicated that rlmA is positioned downstream of the pkcA and mpkA genes in the CWI pathway. As a consequence, rlmA loss-of-function leads to the altered expression of genes encoding cell wall-related proteins. RlmA positively regulates the phosphorylation of MpkA and is induced at both protein and transcriptional levels during cell wall stress. The rlmA was also involved in tolerance to oxidative damage and transcriptional regulation of genes related to oxidative stress adaptation. Moreover, the ΔrlmA strain had attenuated virulence in a neutropenic murine model of invasive pulmonary aspergillosis. Our results suggest that RlmA functions as a transcription factor in the A. fumigatus CWI pathway, acting downstream of PkcA-MpkA signaling and contributing to the virulence of this fungus.
Collapse
|
61
|
Nano-LC-Q-TOF Analysis of Proteome Revealed Germination of Aspergillus flavus Conidia is Accompanied by MAPK Signalling and Cell Wall Modulation. Mycopathologia 2016; 181:769-786. [PMID: 27576557 DOI: 10.1007/s11046-016-0056-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Aspergillus flavus is the second most leading cause of aspergillosis. The ability of A. flavus to adapt within the host environment is crtical for its colonization. Onset of germination of conidia is one of the crucial events; thus, in order to gain insight into A. flavus molecular adaptation while germination, protein profile of A. flavus was obtained. Approximately 82 % of conidia showed germination at 7 h; thus, samples were collected followed by protein extraction and subjected to nLC-Q-TOF mass spectrometer. Q-TOF data were analysed using Protein Lynx Global Services (PLGS 2.2.5) software. A total of 416 proteins were identified from UniProt Aspergillus species database. Orthologues of A. flavus was observed in A. fumigatus, A. niger, A. terreus, A. oryzae, etc. Proteins were further analysed in NCBI database, which showed that 27 proteins of A. flavus are not reported in UniProt and NCBI database. Functional characterization of proteins resulted majorly to cell wall synthesis and degradation, metabolisms (carbohydrate and amino acid metabolism), protein synthesis and degradation. Proteins/enzymes associated with aflatoxin biosynthesis were observed. We also observed Dicer-like proteins 1, 2 and autophagy-related proteins 2, 9, 18, 13, 11, 22. Expression of protein/enzymes associated with MAPK signalling pathway suggests their role during the germination process. Overall, the data present a catalogue of proteins/enzymes involved in the germination of A. flavus conidia and could also be applied to other Aspergillus species.
Collapse
|
62
|
Park J, Hulsman M, Arentshorst M, Breeman M, Alazi E, Lagendijk EL, Rocha MC, Malavazi I, Nitsche BM, van den Hondel CAMJJ, Meyer V, Ram AFJ. Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis. Cell Microbiol 2016; 18:1268-84. [PMID: 27264789 PMCID: PMC5129474 DOI: 10.1111/cmi.12624] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
The biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing molecules. Our previous work in Aspergillus niger work suggested that loss of function of ugmA results in activation of the cell wall integrity (CWI) pathway which is characterized by increased expression of the agsA gene, encoding an α-glucan synthase. In this study, the transcriptional response of the ΔugmA mutant was further linked to the CWI pathway by showing the induced and constitutive phosphorylation of the CWI-MAP kinase in the ΔugmA mutant. To identify genes involved in cell wall remodelling in response to the absence of galactofuranose biosynthesis, a genome-wide expression analysis was performed using RNAseq. Over 400 genes were higher expressed in the ΔugmA mutant compared to the wild-type. These include genes that encode enzymes involved in chitin (gfaB, gnsA, chsA) and α-glucan synthesis (agsA), and in β-glucan remodelling (bgxA, gelF and dfgC), and also include several glycosylphosphatidylinositol (GPI)-anchored cell wall protein-encoding genes. In silico analysis of the 1-kb promoter regions of the up-regulated genes in the ΔugmA mutant indicated overrepresentation of genes with RlmA, MsnA, PacC and SteA-binding sites. The importance of these transcription factors for survival of the ΔugmA mutant was analysed by constructing the respective double mutants. The ΔugmA/ΔrlmA and ΔugmA/ΔmsnA double mutants showed strong synthetic growth defects, indicating the importance of these transcription factors to maintain cell wall integrity in the absence of Galf biosynthesis.
Collapse
Affiliation(s)
- Joohae Park
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mark Hulsman
- Delft Bioinformatics Lab, Department of Intelligent Systems, Faculty Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Matthijs Breeman
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ebru Alazi
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ellen L Lagendijk
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Marina C Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Benjamin M Nitsche
- Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Cees A M J J van den Hondel
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Vera Meyer
- Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Arthur F J Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
63
|
Dichtl K, Samantaray S, Wagener J. Cell wall integrity signalling in human pathogenic fungi. Cell Microbiol 2016; 18:1228-38. [DOI: 10.1111/cmi.12612] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Karl Dichtl
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität München; 80336 Munich Germany
| | - Sweta Samantaray
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität München; 80336 Munich Germany
- Institute of Microbiology and Infection, School of Biosciences; University of Birmingham; Birmingham UK
| | - Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität München; 80336 Munich Germany
| |
Collapse
|
64
|
Kaltdorf M, Srivastava M, Gupta SK, Liang C, Binder J, Dietl AM, Meir Z, Haas H, Osherov N, Krappmann S, Dandekar T. Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach. Front Mol Biosci 2016; 3:22. [PMID: 27379244 PMCID: PMC4911368 DOI: 10.3389/fmolb.2016.00022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/24/2016] [Indexed: 11/13/2022] Open
Abstract
New antimycotic drugs are challenging to find, as potential target proteins may have close human orthologs. We here focus on identifying metabolic targets that are critical for fungal growth and have minimal similarity to targets among human proteins. We compare and combine here: (I) direct metabolic network modeling using elementary mode analysis and flux estimates approximations using expression data, (II) targeting metabolic genes by transcriptome analysis of condition-specific highly expressed enzymes, and (III) analysis of enzyme structure, enzyme interconnectedness ("hubs"), and identification of pathogen-specific enzymes using orthology relations. We have identified 64 targets including metabolic enzymes involved in vitamin synthesis, lipid, and amino acid biosynthesis including 18 targets validated from the literature, two validated and five currently examined in own genetic experiments, and 38 further promising novel target proteins which are non-orthologous to human proteins, involved in metabolism and are highly ranked drug targets from these pipelines.
Collapse
Affiliation(s)
- Martin Kaltdorf
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Mugdha Srivastava
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Shishir K Gupta
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Chunguang Liang
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Jasmin Binder
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen Erlangen, Germany
| | - Anna-Maria Dietl
- Division of Molecular Biology/Biocenter, Medical University Innsbruck Innsbruck, Austria
| | - Zohar Meir
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel-Aviv, Israel
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Medical University Innsbruck Innsbruck, Austria
| | - Nir Osherov
- Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University Tel-Aviv, Israel
| | - Sven Krappmann
- Microbiology Institute - Clinical Microbiology, Immunology and Hygiene, Friedrich-Alexander University Erlangen-Nürnberg, University Hospital of Erlangen Erlangen, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| |
Collapse
|
65
|
Arroyo J, Farkaš V, Sanz AB, Cabib E. ‘Strengthening the fungal cell wall through chitin-glucan cross-links: effects on morphogenesis and cell integrity’. Cell Microbiol 2016; 18:1239-50. [DOI: 10.1111/cmi.12615] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Javier Arroyo
- Departamento de Microbiología II, Facultad de Farmacia; Universidad Complutense de Madrid, IRYCIS; 28040 Madrid Spain
| | - Vladimír Farkaš
- Institute of Chemistry, Center for Glycomics; Department of Glycobiology, Slovak Academy of Sciences; 84538 Bratislava Slovakia
| | - Ana Belén Sanz
- Departamento de Microbiología II, Facultad de Farmacia; Universidad Complutense de Madrid, IRYCIS; 28040 Madrid Spain
| | - Enrico Cabib
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health; Department of Health and Human Services; Bethesda MD USA
| |
Collapse
|
66
|
Leonhardt Y, Beck J, Ebel F. Functional characterization of the Woronin body protein WscA of the pathogenic mold Aspergillus fumigatus. Int J Med Microbiol 2016; 306:165-73. [PMID: 27016805 DOI: 10.1016/j.ijmm.2016.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/14/2016] [Accepted: 03/17/2016] [Indexed: 11/25/2022] Open
Abstract
Woronin bodies are fungal-specific organelles that seal damaged hyphal compartments and thereby contribute to the stress resistance and virulence of filamentous fungi. In this study, we have characterized the Aspergillus fumigatus Woronin body protein WscA. WscA is homologous to Neurospora crassa WSC, a protein that was shown to be important for biogenesis, segregation and positioning of Woronin bodies. WscA and WSC both belong to the Mpv17/PMP22 family of peroxisomal membrane proteins. An A. fumigatus ΔwscA mutant is unable to form Woronin bodies, and HexA, the protein that forms the crystal-like core of Woronin bodies, accumulates in large peroxisomes instead. The ΔwscA mutant showed no defect in segregation of HexA containing organelles, as has been reported for the corresponding N. crassa mutant. In the peroxisomes of the A. fumigatus mutant, HexA assembles into compact, donut-shaped structures. Experiments with GFP fusion proteins revealed that WscA function is highly sensitive to these modifications, in particular to an N-terminal fusion of GFP. In N. crassa, WSC was shown to be essentially required for Woronin body positioning, but the respective domain is not conserved in most other Pezizomycotina, including A. fumigatus. We have recently found evidence that HexA may have a direct role in WB positioning, since a HexA-GFP fusion protein, lacking a functional PTS1 motif, is efficiently recruited to the septal pore. In the current study we show that this targeting of HexA-GFP is independent of WscA.
Collapse
Affiliation(s)
| | - Julia Beck
- Max-von-Pettenkofer-Institute, LMU, Munich, Germany
| | - Frank Ebel
- Max-von-Pettenkofer-Institute, LMU, Munich, Germany; Institute for Infectious Diseases and Zoonoses, LMU, Munich, Germany; German Center for Infection Research (DZIF), Munich, Germany.
| |
Collapse
|
67
|
Conditional gene expression and promoter replacement in Zymoseptoria tritici using fungal nitrate reductase promoters. Fungal Genet Biol 2016; 79:174-9. [PMID: 26092804 DOI: 10.1016/j.fgb.2015.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 10/23/2022]
Abstract
Studying essential genes in haploid fungi requires specific tools. Conditional promoter replacement (CPR) is an efficient method for testing gene essentiality. However, this tool requires promoters that can be strongly down-regulated. To this end, we tested the nitrate reductase promoters of Magnaporthe oryzae (pMoNIA1) and Zymoseptoria tritici (pZtNIA1) for their conditional expression in Z. tritici. Expression of EGFP driven by pMoNIA1 or pZtNIA1 was induced on nitrate and down-regulated on glutamate (10-fold less than nitrate). Levels of differential expression were similar for both promoters, demonstrating that the Z. tritici nitrogen regulatory network functions with a heterologous promoter similarly to a native promoter. To establish CPR, the promoter of Z. tritici BGS1, encoding a β-1,3-glucan synthase, was replaced by pZtNIA1 using targeted sequence replacement. Growth of pZtNIA1::BGS1 CPR transformants was strongly reduced in conditions repressing pZtNIA1, while their growth was similar to wild type in conditions inducing pZtNIA1. This differential phenotype demonstrates that BGS1 is important for growth in Z. tritici. In addition, in inducing conditions, pZtNIA1::BGS1 CPR transformants were hyper-sensitive to Calcofluor white, a cell wall disorganizing agent. Nitrate reductase promoters are therefore suitable for conditional promoter replacement in Z. tritici. This tool is a major step toward identifying novel fungicide targets.
Collapse
|
68
|
Recent advances in the understanding of the Aspergillus fumigatus cell wall. J Microbiol 2016; 54:232-42. [PMID: 26920883 DOI: 10.1007/s12275-016-6045-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 10/24/2022]
Abstract
Over the past several decades, research on the synthesis and organization of the cell wall polysaccharides of Aspergillus fumigatus has expanded our knowledge of this important fungal structure. Besides protecting the fungus from environmental stresses and maintaining structural integrity of the organism, the cell wall is also the primary site for interaction with host tissues during infection. Cell wall polysaccharides are important ligands for the recognition of fungi by the innate immune system and they can mediate potent immunomodulatory effects. The synthesis of cell wall polysaccharides is a complicated process that requires coordinated regulation of many biosynthetic and metabolic pathways. Continuous synthesis and remodeling of the polysaccharides of the cell wall is essential for the survival of the fungus during development, reproduction, colonization and invasion. As these polysaccharides are absent from the human host, these biosynthetic pathways are attractive targets for antifungal development. In this review, we present recent advances in our understanding of Aspergillus fumigatus cell wall polysaccharides, including the emerging role of cell wall polysaccharides in the host-pathogen interaction.
Collapse
|
69
|
Altwasser R, Baldin C, Weber J, Guthke R, Kniemeyer O, Brakhage AA, Linde J, Valiante V. Network Modeling Reveals Cross Talk of MAP Kinases during Adaptation to Caspofungin Stress in Aspergillus fumigatus. PLoS One 2015; 10:e0136932. [PMID: 26356475 PMCID: PMC4565559 DOI: 10.1371/journal.pone.0136932] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 08/11/2015] [Indexed: 12/14/2022] Open
Abstract
Mitogen activated protein kinases (MAPKs) are highly conserved in eukaryotic organisms. In pathogenic fungi, their activities were assigned to different physiological functions including drug adaptation and resistance. Aspergillus fumigatus is a human pathogenic fungus, which causes life-threatening invasive infections. Therapeutic options against invasive mycoses are still limited. One of the clinically used drugs is caspofungin, which specifically targets the fungal cell wall biosynthesis. A systems biology approach, based on comprehensive transcriptome data sets and mathematical modeling, was employed to infer a regulatory network and identify key interactions during adaptation to caspofungin stress in A. fumigatus. Mathematical modeling and experimental validations confirmed an intimate cross talk occurring between the cell wall-integrity and the high osmolarity-glycerol signaling pathways. Specifically, increased concentrations of caspofungin promoted activation of these signalings. Moreover, caspofungin affected the intracellular transport, which caused an additional osmotic stress that is independent of glucan inhibition. High concentrations of caspofungin reduced this osmotic stress, and thus decreased its toxic activity. Our results demonstrated that MAPK signaling pathways play a key role during caspofungin adaptation and are contributing to the paradoxical effect exerted by this drug.
Collapse
Affiliation(s)
- Robert Altwasser
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Clara Baldin
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Jakob Weber
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Reinhard Guthke
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
| | - Jörg Linde
- Department of Systems Biology/Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- * E-mail: (JL); (VV)
| | - Vito Valiante
- Leibniz Junior Research Group—Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Str. 23, 07745, Jena, Germany
- * E-mail: (JL); (VV)
| |
Collapse
|
70
|
Live imaging of β-1,3-glucan synthase FKS-1 in Neurospora crassa hyphae. Fungal Genet Biol 2015; 82:104-7. [DOI: 10.1016/j.fgb.2015.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022]
|
71
|
Rocha MC, de Godoy KF, de Castro PA, Hori JI, Bom VLP, Brown NA, da Cunha AF, Goldman GH, Malavazi I. The Aspergillus fumigatus pkcA G579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model. PLoS One 2015; 10:e0135195. [PMID: 26295576 PMCID: PMC4546635 DOI: 10.1371/journal.pone.0135195] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/19/2015] [Indexed: 12/03/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen, which causes the life-threatening disease, invasive pulmonary aspergillosis. In fungi, cell wall homeostasis is controlled by the conserved Cell Wall Integrity (CWI) pathway. In A. fumigatus this signaling cascade is partially characterized, but the mechanisms by which it is activated are not fully elucidated. In this study we investigated the role of protein kinase C (PkcA) in this signaling cascade. Our results suggest that pkcA is an essential gene and is activated in response to cell wall stress. Subsequently, we constructed and analyzed a non-essential A. fumigatus pkcAG579R mutant, carrying a Gly579Arg substitution in the PkcA C1B regulatory domain. The pkcAG579R mutation has a reduced activation of the downstream Mitogen-Activated Protein Kinase, MpkA, resulting in the altered expression of genes encoding cell wall-related proteins, markers of endoplasmic reticulum stress and the unfolded protein response. Furthermore, PkcAG579R is involved in the formation of proper conidial architecture and protection to oxidative damage. The pkcAG579R mutant elicits increased production of TNF-α and phagocytosis but it has no impact on virulence in a murine model of invasive pulmonary aspergillosis. These results highlight the importance of PkcA to the CWI pathway but also indicated that additional regulatory circuits may be involved in the biosynthesis and/or reinforcement of the A. fumigatus cell wall during infection.
Collapse
Affiliation(s)
- Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Krissia Franco de Godoy
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Issa Hori
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius Leite Pedro Bom
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Neil Andrew Brown
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts, United Kingdom
| | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol, Campinas, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
72
|
Valiante V, Macheleidt J, Föge M, Brakhage AA. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front Microbiol 2015; 6:325. [PMID: 25932027 PMCID: PMC4399325 DOI: 10.3389/fmicb.2015.00325] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/31/2015] [Indexed: 01/06/2023] Open
Abstract
Aspergillus fumigatus is the most important airborne fungal pathogen, causing severe infections with invasive growth in immunocompromised patients. The fungal cell wall (CW) prevents the cell from lysing and protects the fungus against environmental stress conditions. Because it is absent in humans and because of its essentiality, the fungal CW is a promising target for antifungal drugs. Nowadays, compounds acting on the CW, i.e., echinocandin derivatives, are used to treat A. fumigatus infections. However, studies demonstrating the clinical effectiveness of echinocandins in comparison with antifungals currently recommended for first-line treatment of invasive aspergillosis are still lacking. Therefore, it is important to elucidate CW biosynthesis pathways and their signal transduction cascades, which potentially compensate the inhibition caused by CW- perturbing compounds. Like in other fungi, the central core of the cell wall integrity (CWI) signaling pathway in A. fumigatus is composed of three mitogen activated protein kinases. Deletion of these genes resulted in severely enhanced sensitivity of the mutants against CW-disturbing compounds and in drastic alterations of the fungal morphology. Additionally, several cross-talk interactions between the CWI pathways and other signaling pathways are emerging, raising the question about their role in the CW compensatory mechanisms. In this review we focused on recent advances in understanding the CWI signaling pathway in A. fumigatus and its role during drug stress response and virulence.
Collapse
Affiliation(s)
- Vito Valiante
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Juliane Macheleidt
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany
| | - Martin Föge
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| | - Axel A Brakhage
- Molecular Biotechnology of Natural Products, Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany ; Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University Jena, Germany
| |
Collapse
|