51
|
Abstract
Elongation factor P (EF-P) binds to ribosomes requiring assistance with the formation of oligo-prolines. In order for EF-P to associate with paused ribosomes, certain tRNAs with specific d-arm residues must be present in the peptidyl site, e.g., tRNAPro. Once EF-P is accommodated into the ribosome and bound to Pro-tRNAPro, productive synthesis of the peptide bond occurs. The underlying mechanism by which EF-P facilitates this reaction seems to have entropic origins. Maximal activity of EF-P requires a posttranslational modification in Escherichia coli, Pseudomonas aeruginosa, and Bacillus subtilis. Each of these modifications is distinct and ligated onto its respective EF-P through entirely convergent means. Here we review the facets of translation elongation that are controlled by EF-P, with a particular focus on the purpose behind the many different modifications of EF-P.
Collapse
Affiliation(s)
- Andrei Rajkovic
- Molecular, Cellular and Developmental Biology Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210;
| | - Michael Ibba
- Molecular, Cellular and Developmental Biology Program and Center for RNA Biology, Ohio State University, Columbus, Ohio 43210; .,Department of Microbiology, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
52
|
What Froze the Genetic Code? Life (Basel) 2017; 7:life7020014. [PMID: 28379164 PMCID: PMC5492136 DOI: 10.3390/life7020014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 11/16/2022] Open
Abstract
The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.
Collapse
|
53
|
Choi E, Choi S, Nam D, Park S, Han Y, Lee JS, Lee EJ. Elongation factor P restricts Salmonella's growth by controlling translation of a Mg 2+ transporter gene during infection. Sci Rep 2017; 7:42098. [PMID: 28181542 PMCID: PMC5299641 DOI: 10.1038/srep42098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
When a ribosome translates mRNA sequences, the ribosome often stalls at certain codons because it is hard to translate. Consecutive proline codons are such examples that induce ribosome stalling and elongation factor P (EF-P) is required for the stalled ribosome to continue translation at those consecutive proline codons. We found that EF-P is required for translation of the mgtB gene encoding a Mg2+ transporter in the mgtCBR virulence operon from the intracellular pathogen Salmonella enterica serovar Typhimurium. Salmonella lacking EF-P decreases MgtB protein levels in a manner dependent on consecutive proline codons located in the mgtB coding region despite increasing transcription of the mgtCBR operon via the mgtP open reading frame in the leader RNA, resulting in an altered ratio between MgtC and MgtB proteins within the operon. Substitution of the consecutive proline codons to alanine codons eliminates EF-P-mediated control of the mgtB gene during infection and thus contributes to Salmonella's survival inside macrophages where Salmonella experiences low levels of EF-P. This suggests that this pathogen utilizes a strategy to coordinate expression of virulence genes by an evolutionarily conserved translation factor.
Collapse
Affiliation(s)
- Eunna Choi
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea
| | - Soomin Choi
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea
| | - Daesil Nam
- Division of Microbiology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Shinae Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Yoontak Han
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea
| | - Jung-Shin Lee
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 24341, South Korea
| | - Eun-Jin Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, South Korea
| |
Collapse
|
54
|
Takai K. Translational resistivity/conductivity of coding sequences during exponential growth of Escherichia coli. J Theor Biol 2017; 413:66-71. [PMID: 27876621 DOI: 10.1016/j.jtbi.2016.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 11/28/2022]
Abstract
Codon adaptation index (CAI) has been widely used for prediction of expression of recombinant genes in Escherichia coli and other organisms. However, CAI has no mechanistic basis that rationalizes its application to estimation of translational efficiency. Here, I propose a model based on which we could consider how codon usage is related to the level of expression during exponential growth of bacteria. In this model, translation of a gene is considered as an analog of electric current, and an analog of electric resistance corresponding to each gene is considered. "Translational resistance" is dependent on the steady-state concentration and the sequence of the mRNA species, and "translational resistivity" is dependent only on the mRNA sequence. The latter is the sum of two parts: one is the resistivity for the elongation reaction (coding sequence resistivity), and the other comes from all of the other steps of the decoding reaction. This electric circuit model clearly shows that some conditions should be met for codon composition of a coding sequence to correlate well with its expression level. On the other hand, I calculated relative frequency of each of the 61 sense codon triplets translated during exponential growth of E. coli from a proteomic dataset covering over 2600 proteins. A tentative method for estimating relative coding sequence resistivity based on the data is presented.
Collapse
Affiliation(s)
- Kazuyuki Takai
- Department of Materials Sciences and Biotechnology, Graduate School of Science and Engineering, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
55
|
Patil NA, Basu B, Deobagkar DD, Apte SK, Deobagkar DN. Putative DNA modification methylase DR_C0020 of Deinococcus radiodurans is an atypical SAM dependent C-5 cytosine DNA methylase. Biochim Biophys Acta Gen Subj 2016; 1861:593-602. [PMID: 28038990 DOI: 10.1016/j.bbagen.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/17/2016] [Accepted: 12/24/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Control of cellular processes by epigenetic modification of cytosine in DNA is widespread among living organisms, but, is hitherto unknown in the extremely radioresistant microbe D. radiodurans. METHODS C-5 methyl cytosines (m5C) were detected by immuno-blotting with m5C-specific antibody. Site of cytosine methylation by DR_C0020 encoded protein was investigated by bisulfite sequencing. The DR_C0020 knockout mutant (Δdcm), constructed by site directed mutagenesis, was assessed for effect on growth, radiation resistance and proteome. Proteins were identified by mass spectrometry. RESULTS Methylated cytosines were detected in the D. radiodurans genome. The DR_C0020 encoded protein (Dcm, NCBI accession: WP_034351354.1), whose amino acid sequence resembles m4C methylases, was shown to be the lone SAM-dependent C-5 cytosine methyltransferase. Purified Dcm protein was found to methylate CpN sequence with a preference for methylation of two consecutive cytosines. The Δdcm strain completely lost m5C modification from its genome, had no effect on growth but became radiation sensitive. The Δdcm cells exhibited minor alterations in the abundance of several proteins involved primarily in protein homeostasis, oxidative stress defense, metabolism, etc. CONCLUSION DR_C0020 encoded SAM-dependent methyltransferase Dcm is solely responsible for C-5cytosine methylation at CpN sites in the genome of D. radiodurans and regulates protein homeostasis under normal growth conditions. The protein is an unusual case of an amino methyltransferase that has evolved to producing m5C. GENERAL SIGNIFICANCE Although, dispensable under optimal growth conditions, the presence of m5C may be important for recognition of parent strand and, thus, could contribute to the extraordinary DNA repair in D. radiodurans.
Collapse
Affiliation(s)
- Nayana A Patil
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Department of Zoology, Centre for Advanced Studies, Savitribai Phule Pune University, Pune 411007, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Deepti D Deobagkar
- Department of Zoology, Centre for Advanced Studies, Savitribai Phule Pune University, Pune 411007, India
| | - Shree K Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Dileep N Deobagkar
- Department of Zoology, Centre for Advanced Studies, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
56
|
Barbosa NM, Boldrin PEG, Rossi D, Yamamoto PA, Watanabe TF, Serrão VH, Hershey JWB, Fraser CS, Valentini SR, Zanelli CF. Mapping surface residues of eIF5A that are important for binding to the ribosome using alanine scanning mutagenesis. Amino Acids 2016; 48:2363-74. [PMID: 27388480 PMCID: PMC5897047 DOI: 10.1007/s00726-016-2279-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/11/2016] [Indexed: 01/15/2023]
Abstract
The translation elongation factor eIF5A is conserved through evolution and is necessary to rescue the ribosome during translation elongation of polyproline-containing proteins. Although the site of eIF5A binding to the ribosome is known, no systematic analysis has been performed so far to determine the important residues on the surface of eIF5A required for ribosome binding. In this study, we used clustered charged-to-alanine mutagenesis and structural modeling to address this question. We generated four new mutants of yeast eIF5A: tif51A-4, tif51A-6, tif51A-7 and tif51A-11, and complementation analysis revealed that tif51A-4 and tif51A-7 could not sustain cell growth in a strain lacking wild-type eIF5A. Moreover, the allele tif51A-4 also displayed negative dominance over wild-type eIF5A. Both in vivo GST-pulldowns and in vitro fluorescence anisotropy demonstrated that eIF5A from mutant tif51A-7 exhibited an importantly reduced affinity for the ribosome, implicating the charged residues in cluster 7 as determinant features on the eIF5A surface for contacting the ribosome. Notably, modified eIF5A from mutant tif51A-4, despite exhibiting the most severe growth phenotype, did not abolish ribosome interactions as with mutant tif51A-7. Taking into account the modeling eIF5A + 80S + P-tRNA complex, our data suggest that interactions of eIF5A with ribosomal protein L1 are more important to stabilize the interaction with the ribosome as a whole than the contacts with P-tRNA. Finally, the ability of eIF5A from tif51A-4 to bind to the ribosome while potentially blocking physical interaction with P-tRNA could explain its dominant negative phenotype.
Collapse
Affiliation(s)
- Natália M Barbosa
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Paulo E G Boldrin
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Danuza Rossi
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Priscila A Yamamoto
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Tatiana F Watanabe
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Vitor H Serrão
- Physics and Interdisciplinary Science Department, Physics Institute of Sao Carlos, University of Sao Paulo-USP, Sao Carlos, SP, 13563-120, Brazil
| | - John W B Hershey
- Molecular and Cellular Biology Department, University of California, Davis, CA, 95616, USA
| | - Christopher S Fraser
- Molecular and Cellular Biology Department, University of California, Davis, CA, 95616, USA
| | - Sandro R Valentini
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil
| | - Cleslei F Zanelli
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Rod Araraquara-Jaú Km01, Araraquara, SP, 14800-903, Brazil.
| |
Collapse
|
57
|
Faure G, Ogurtsov AY, Shabalina SA, Koonin EV. Role of mRNA structure in the control of protein folding. Nucleic Acids Res 2016; 44:10898-10911. [PMID: 27466388 PMCID: PMC5159526 DOI: 10.1093/nar/gkw671] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/13/2022] Open
Abstract
Specific structures in mRNA modulate translation rate and thus can affect protein folding. Using the protein structures from two eukaryotes and three prokaryotes, we explore the connections between the protein compactness, inferred from solvent accessibility, and mRNA structure, inferred from mRNA folding energy (ΔG). In both prokaryotes and eukaryotes, the ΔG value of the most stable 30 nucleotide segment of the mRNA (ΔGmin) strongly, positively correlates with protein solvent accessibility. Thus, mRNAs containing exceptionally stable secondary structure elements typically encode compact proteins. The correlations between ΔG and protein compactness are much more pronounced in predicted ordered parts of proteins compared to the predicted disordered parts, indicative of an important role of mRNA secondary structure elements in the control of protein folding. Additionally, ΔG correlates with the mRNA length and the evolutionary rate of synonymous positions. The correlations are partially independent and were used to construct multiple regression models which explain about half of the variance of protein solvent accessibility. These findings suggest a model in which the mRNA structure, particularly exceptionally stable RNA structural elements, act as gauges of protein co-translational folding by reducing ribosome speed when the nascent peptide needs time to form and optimize the core structure.
Collapse
Affiliation(s)
- Guilhem Faure
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Aleksey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
58
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
59
|
Katoh T, Wohlgemuth I, Nagano M, Rodnina MV, Suga H. Essential structural elements in tRNA(Pro) for EF-P-mediated alleviation of translation stalling. Nat Commun 2016; 7:11657. [PMID: 27216360 PMCID: PMC4890201 DOI: 10.1038/ncomms11657] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
The ribosome stalls on translation of polyproline sequences due to inefficient peptide bond formation between consecutive prolines. The translation factor EF-P is able to alleviate this stalling by accelerating Pro-Pro formation. However, the mechanism by which EF-P recognizes the stalled complexes and accelerates peptide bond formation is not known. Here, we use genetic code reprogramming through a flexible in-vitro translation (FIT) system to investigate how mutations in tRNAPro affect EF-P function. We show that the 9-nt D-loop closed by the stable D-stem sequence in tRNAPro is a crucial recognition determinant for EF-P. Such D-arm structures are shared only among the tRNAPro isoacceptors and tRNAfMet in Escherichia coli, and the D-arm of tRNAfMet is essential for EF-P-induced acceleration of fMet–puromycin formation. Thus, the activity of EF-P is controlled by recognition elements in the tRNA D-arm. Ribosomes tend to stall during the translation of consecutive proline residues, which can be rescued by the co-translational factor EF-P. Here the authors identify a structural element of tRNAPro responsible for specific recognition by EF-P and stimulation of Pro-Pro peptide bond formation.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Masanobu Nagano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
60
|
Mandal A, Mandal S, Park MH. Global quantitative proteomics reveal up-regulation of endoplasmic reticulum stress response proteins upon depletion of eIF5A in HeLa cells. Sci Rep 2016; 6:25795. [PMID: 27180817 PMCID: PMC4867578 DOI: 10.1038/srep25795] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/20/2016] [Indexed: 11/08/2022] Open
Abstract
The eukaryotic translation factor, eIF5A, is a translation factor essential for protein synthesis, cell growth and animal development. By use of a adenoviral eIF5A shRNA, we have achieved an effective depletion of eIF5A in HeLa cells and undertook in vivo comprehensive proteomic analyses to examine the effects of eIF5A depletion on the total proteome and to identify cellular pathways influenced by eIF5A. The proteome of HeLa cells transduced with eIF5A shRNA was compared with that of scramble shRNA-transduced counterpart by the iTRAQ method. We identified 972 proteins consistently detected in three iTRAQ experiments and 104 proteins with significantly altered levels (protein ratio ≥1.5 or ≤0.66, p-value ≤0.05) at 72 h and/or 96 h of Ad-eIF5A-shRNA transduction. The altered expression levels of key pathway proteins were validated by western blotting. Integration of functional ontology with expression data of the 104 proteins revealed specific biological processes that are prominently up- or down-regulated. Heatmap analysis and Cytoscape visualization of biological networks identified protein folding as the major cellular process affected by depletion of eIF5A. Our unbiased, quantitative, proteomic data demonstrate that the depletion of eIF5A leads to endoplasmic reticulum stress, an unfolded protein response and up-regulation of chaperone expression in HeLa cells.
Collapse
Affiliation(s)
- Ajeet Mandal
- Molecular and Cellular Biochemistry Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg.30 Rm. 3A300, Bethesda, MD 20892, USA
| | - Swati Mandal
- Molecular and Cellular Biochemistry Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg.30 Rm. 3A300, Bethesda, MD 20892, USA
| | - Myung Hee Park
- Molecular and Cellular Biochemistry Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg.30 Rm. 3A300, Bethesda, MD 20892, USA
| |
Collapse
|