51
|
Saintenac C, Cambon F, Aouini L, Verstappen E, Ghaffary SMT, Poucet T, Marande W, Berges H, Xu S, Jaouannet M, Favery B, Alassimone J, Sánchez-Vallet A, Faris J, Kema G, Robert O, Langin T. A wheat cysteine-rich receptor-like kinase confers broad-spectrum resistance against Septoria tritici blotch. Nat Commun 2021; 12:433. [PMID: 33469010 PMCID: PMC7815785 DOI: 10.1038/s41467-020-20685-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
The poverty of disease resistance gene reservoirs limits the breeding of crops for durable resistance against evolutionary dynamic pathogens. Zymoseptoria tritici which causes Septoria tritici blotch (STB), represents one of the most genetically diverse and devastating wheat pathogens worldwide. No fully virulent Z. tritici isolates against synthetic wheats carrying the major resistant gene Stb16q have been identified. Here, we use comparative genomics, mutagenesis and complementation to identify Stb16q, which confers broad-spectrum resistance against Z. tritici. The Stb16q gene encodes a plasma membrane cysteine-rich receptor-like kinase that was recently introduced into cultivated wheat and which considerably slows penetration and intercellular growth of the pathogen.
Collapse
Affiliation(s)
- Cyrille Saintenac
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Florence Cambon
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| | - Lamia Aouini
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.169077.e0000 0004 1937 2197Present Address: Department of Agronomy, Purdue University, West Lafayette, IN 47907 USA
| | - Els Verstappen
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands
| | - Seyed Mahmoud Tabib Ghaffary
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,Present Address: Seed and Plant Improvement Research Department, Safiabad Agricultural and Natural Resources Research and Education Center, AREEO, Dezful, Iran
| | - Théo Poucet
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France ,grid.11480.3c0000000121671098Present Address: Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Apdo. 644, 48080 Bilbao, Spain ,grid.412041.20000 0001 2106 639XPresent Address: Université de Bordeaux, 146 rue Leo-Saignat, Bordeaux, Cedex 33076 France
| | - William Marande
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France
| | - Hélène Berges
- grid.507621.7CNRGV (Centre National des Ressources Génomiques Végétales), INRAE, UPR 1258 Castanet-Tolosan, France ,grid.508749.7Present Address: Inari Agriculture, One Kendall Square Building 600/700, Cambridge, MA 02139 USA
| | - Steven Xu
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Maëlle Jaouannet
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Bruno Favery
- grid.4444.00000 0001 2112 9282INRAE, Université Côte d’Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Julien Alassimone
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- grid.5801.c0000 0001 2156 2780Plant Pathology, Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland ,grid.5690.a0000 0001 2151 2978Present Address: Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo-UPM, 28223-Pozuelo de Alarcón Madrid, Spain
| | - Justin Faris
- grid.463419.d0000 0001 0946 3608United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102 USA
| | - Gert Kema
- grid.4818.50000 0001 0791 5666Wageningen University and Research (Wageningen Plant Research, Biointeractions and Plant Health), PO Box 16, 6700AA Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen University (Laboratory of Phytopathology), 6700AA Wageningen, The Netherlands
| | - Oliver Robert
- Florimond-Desprez, 3 rue Florimond-Desprez, BP 41, 59242 Cappelle-en-Pevele, France
| | - Thierry Langin
- grid.503180.f0000 0004 0613 5360Université Clermont Auvergne, INRAE, GDEC, 63000 Clermont-Ferrand, France
| |
Collapse
|
52
|
Nyine M, Adhikari E, Clinesmith M, Aiken R, Betzen B, Wang W, Davidson D, Yu Z, Guo Y, He F, Akhunova A, Jordan KW, Fritz AK, Akhunov E. The Haplotype-Based Analysis of Aegilops tauschii Introgression Into Hard Red Winter Wheat and Its Impact on Productivity Traits. FRONTIERS IN PLANT SCIENCE 2021; 12:716955. [PMID: 34484280 PMCID: PMC8416154 DOI: 10.3389/fpls.2021.716955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/20/2021] [Indexed: 05/13/2023]
Abstract
The introgression from wild relatives have a great potential to broaden the availability of beneficial allelic diversity for crop improvement in breeding programs. Here, we assessed the impact of the introgression from 21 diverse accessions of Aegilops tauschii, the diploid ancestor of the wheat D genome, into 6 hard red winter wheat cultivars on yield and yield component traits. We used 5.2 million imputed D genome SNPs identified by the whole-genome sequencing of parental lines and the sequence-based genotyping of introgression population, including 351 BC1F3:5 lines. Phenotyping data collected from the irrigated and non-irrigated field trials revealed that up to 23% of the introgression lines (ILs) produce more grain than the parents and check cultivars. Based on 16 yield stability statistics, the yield of 12 ILs (3.4%) was stable across treatments, years, and locations; 5 of these lines were also high yielding lines, producing 9.8% more grain than the average yield of check cultivars. The most significant SNP- and haplotype-trait associations were identified on chromosome arms 2DS and 6DL for the spikelet number per spike (SNS), on chromosome arms 2DS, 3DS, 5DS, and 7DS for grain length (GL) and on chromosome arms 1DL, 2DS, 6DL, and 7DS for grain width (GW). The introgression of haplotypes from A. tauschii parents was associated with an increase in SNS, which was positively correlated with a heading date (HD), whereas the haplotypes from hexaploid wheat parents were associated with an increase in GW. We show that the haplotypes on 2DS associated with an increase in the spikelet number and HD are linked with multiple introgressed alleles of Ppd-D1 identified by the whole-genome sequencing of A. tauschii parents. Meanwhile, some introgressed haplotypes exhibited significant pleiotropic effects with the direction of effects on the yield component traits being largely consistent with the previously reported trade-offs, there were haplotype combinations associated with the positive trends in yield. The characterized repertoire of the introgressed haplotypes derived from A. tauschii accessions with the combined positive effects on yield and yield component traits in elite germplasm provides a valuable source of alleles for improving the productivity of winter wheat by optimizing the contribution of component traits to yield.
Collapse
Affiliation(s)
- Moses Nyine
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Elina Adhikari
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Marshall Clinesmith
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Robert Aiken
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Bliss Betzen
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Wei Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Dwight Davidson
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Zitong Yu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Yuanwen Guo
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Fei He
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Alina Akhunova
- Integrated Genomics Facility, Kansas State University, Manhattan, KS, United States
| | - Katherine W. Jordan
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
- United States Department of Agriculture, Agricultural Research Service Hard Winter Wheat Genetics Research Unit, Manhattan, KS, United States
| | - Allan K. Fritz
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
- *Correspondence: Eduard Akhunov
| |
Collapse
|
53
|
Domestication affects the composition, diversity, and co-occurrence of the cereal seed microbiota. J Adv Res 2020; 31:75-86. [PMID: 34194833 PMCID: PMC8240117 DOI: 10.1016/j.jare.2020.12.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction The seed-associated microbiome has a strong influence on plant ecology, fitness, and productivity. Plant microbiota could be exploited for a more responsible crop management in sustainable agriculture. However, the relationships between seed microbiota and hosts related to the changes from ancestor species to breeded crops still remain poor understood. Objectives Our aims were i) to understand the effect of cereal domestication on seed endophytes in terms of diversity, structure and co-occurrence, by comparing four cereal crops and the respective ancestor species; ii) to test the phylogenetic coherence between cereals and their seed microbiota (clue of co-evolution). Methods We investigated the seed microbiota of four cereal crops (Triticum aestivum, Triticum monococcum, Triticum durum, and Hordeum vulgare), along with their respective ancestors (Aegilops tauschii, Triticum baeoticum, Triticum dicoccoides, and Hordeum spontaneum, respectively) using 16S rRNA gene metabarcoding, Randomly Amplified Polymorphic DNA (RAPD) profiling of host plants and co-evolution analysis. Results The diversity of seed microbiota was generally higher in cultivated cereals than in wild ancestors, suggesting that domestication lead to a bacterial diversification. On the other hand, more microbe-microbe interactions were detected in wild species, indicating a better-structured, mature community. Typical human-associated taxa, such as Cutibacterium, dominated in cultivated cereals, suggesting an interkingdom transfers of microbes from human to plants during domestication. Co-evolution analysis revealed a significant phylogenetic congruence between seed endophytes and host plants, indicating clues of co-evolution between hosts and seed-associated microbes during domestication. Conclusion This study demonstrates a diversification of the seed microbiome as a consequence of domestication, and provides clues of co-evolution between cereals and their seed microbiota. This knowledge is useful to develop effective strategies of microbiome exploitation for sustainable agriculture.
Collapse
|
54
|
Miki Y, Yoshida K, Enoki H, Komura S, Suzuki K, Inamori M, Nishijima R, Takumi S. GRAS-Di system facilitates high-density genetic map construction and QTL identification in recombinant inbred lines of the wheat progenitor Aegilops tauschii. Sci Rep 2020; 10:21455. [PMID: 33293651 PMCID: PMC7723059 DOI: 10.1038/s41598-020-78589-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Due to large and complex genomes of Triticeae species, skim sequencing approaches have cost and analytical advantages for detecting genetic markers and building linkage maps. Here, we develop a high-density linkage map and identify quantitative trait loci (QTLs) for recombinant inbred lines of Aegilops tauschii, a D-genome donor of bread wheat, using the recently developed genotyping by Random Amplicon Sequencing-Direct (GRAS-Di) system, which facilitates skimming of the large and complicated genome and generates a large number of genetic markers. The deduced linkage groups based on the GRAS-Di genetic markers corresponded to the chromosome number of Ae. tauschii. We successfully identified stable QTLs for flowering time and spikelet shape-related traits. Genotype differences of RILs at the QTL-linked markers were significantly associated with the trait variations. In particular, one of the QTL-linked markers for flowering time was mapped close to VRN3 (also known as FLOWERING LOCUS T), which controls flowering. The GRAS-Di system is, therefore, an efficient and useful application for genotyping and linkage mapping in species with large and complex genomes, such as Triticeae species.
Collapse
Affiliation(s)
- Yuka Miki
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan.
| | - Hiroyuki Enoki
- toyota Motor Corporation, 1099, Marune, Kurozasa-cho, Miyoshi, Aichi, Japan
| | - Shoya Komura
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan
| | - Kazuyo Suzuki
- toyota Motor Corporation, 1099, Marune, Kurozasa-cho, Miyoshi, Aichi, Japan
| | - Minoru Inamori
- toyota Motor Corporation, 1099, Marune, Kurozasa-cho, Miyoshi, Aichi, Japan
| | - Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Japan
| |
Collapse
|
55
|
Bazhenov MS, Chernook AG, Goncharov NP, Chikida NN, Belousova MK, Karlov GI, Divashuk MG. The Allelic Diversity of the Gibberellin Signaling Pathway Genes in Aegilops tauschii Coss. PLANTS 2020; 9:plants9121696. [PMID: 33276632 PMCID: PMC7761575 DOI: 10.3390/plants9121696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022]
Abstract
Gibberellin-insensitive reduced height genes are widely spread in modern wheat varieties, making them resistant to lodging under conditions of intensive farming. However, the limited diversity of these genes present in wheat germplasm can limit the adaptability of newly created cultivars to the changing climate. The diversity of the gibberellin signaling pathway genes involved in plant height control- Reduced height 1 (Rht-D1), Gibberellin-insensitive dwarf 1 (Gid1‑D) and Gibberellin-insensitive dwarf 2 (Gid2-D)-was studied in the diploid wild goatgrass Aegilops tauschii Coss., one of the ancestral species of the bread wheat (Triticum aestivum L.) and the donor of its D subgenome, using high-throughput sequencing. The examination of 24 Ae. tauschii accessions of different geographical origins revealed a large number of new alleles (haplotypes) not found in bread wheat varieties. Some of the detected polymorphisms lead to changes in the amino acid sequence of proteins. Four isoforms (amino acid sequence variants) were found for the RHT-D1 protein, and two isoforms-for the GID1 and GID2 proteins, each. An analysis of the co-occurrence frequencies of various isoforms of the three proteins showed that their combinations were not random in Ae. tauschii, which may indicate the functional significance of their differences. New alleles of the Rht-D1, Gid1-D, and Gid2-D genes are promising for introgression into bread wheat and studying their effect on plant height and adaptability.
Collapse
Affiliation(s)
- Mikhail S. Bazhenov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
- Correspondence:
| | - Anastasiya G. Chernook
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
| | - Nikolay P. Goncharov
- Wheat Genetics Laboratory, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Akademika Lavrentieva Avenue, 10, 630090 Novosibirsk, Russia;
| | - Nadezhda N. Chikida
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia;
| | - Mariya Kh. Belousova
- Dagestan Experimental Station—The Branch of the Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Vavilovo Village, Derbent District, 368600 Dagestan, Russia;
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
| | - Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.G.C.); (G.I.K.); (M.G.D.)
- Kurchatov Genomics Center–ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia
| |
Collapse
|
56
|
Matsuoka Y, Mori N. Reproductive and genetic roles of the maternal progenitor in the origin of common wheat ( Triticum aestivum L.). Ecol Evol 2020; 10:13926-13937. [PMID: 33391691 PMCID: PMC7771132 DOI: 10.1002/ece3.6985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 11/06/2022] Open
Abstract
Common wheat (Triticum aestivum L., AABBDD genome) is thought to have emerged through natural hybridization between Triticum turgidum L. (AABB genome) and Aegilops tauschii Coss. (DD genome). Hybridization barriers and doubling of the trihaploid F1 hybrids' genome (ABD) via unreduced gamete fusion had key roles in the process. However, how T. turgidum, the maternal progenitor, was involved in these mechanisms remains unknown. An artificial cross-experiment using 46 cultivated and 31 wild T. turgidum accessions and a single Ae. tauschii tester with a very short genetic distance to the common wheat D genome was conducted. Cytological and quantitative trait locus analyses of F1 hybrid genome doubling were performed. The crossability and ability to cause hybrid inviability did not greatly differ between the cultivars and wild accessions. The ability to cause hybrid genome doubling was higher in the cultivars. Three novel T. turgidum loci for hybrid genome doubling, which influenced unreduced gamete production in F1 hybrids, were identified. Cultivated T. turgidum might have increased the probability of the emergence of common wheat through its enhanced ability to cause genome doubling in F1 hybrids with Ae. tauschii. The ability enhancement might have involved alterations at a relatively small number of loci.
Collapse
Affiliation(s)
| | - Naoki Mori
- Crop EvolutionGraduate School of Agricultural ScienceKobe UniversityKobeJapan
| |
Collapse
|
57
|
Production of synthetic wheat lines to exploit the genetic diversity of emmer wheat and D genome containing Aegilops species in wheat breeding. Sci Rep 2020; 10:19698. [PMID: 33184344 PMCID: PMC7661528 DOI: 10.1038/s41598-020-76475-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the accumulation of various useful traits over evolutionary time, emmer wheat (Triticum turgidum subsp. dicoccum and dicoccoides, 2n = 4x = 28; AABB), durum wheat (T. turgidum subsp. durum, 2n = 4x = 28; AABB), T. timopheevii (2n = 4x = 28; AAGG) and D genome containing Aegilops species offer excellent sources of novel variation for the improvement of bread wheat (T. aestivum L., AABBDD). Here, we made 192 different cross combinations between diverse genotypes of wheat and Aegilops species including emmer wheat × Ae. tauschii (2n = DD or DDDD), durum wheat × Ae. tauschii, T. timopheevii × Ae. tauschii, Ae. crassa × durum wheat, Ae. cylindrica × durum wheat and Ae. ventricosa × durum wheat in the field over three successive years. We successfully recovered 56 different synthetic hexaploid and octaploid F2 lines with AABBDD, AABBDDDD, AAGGDD, D1D1XcrXcrAABB, DcDcCcCcAABB and DvDvNvNvAABB genomes via in vitro rescue of F1 embryos and spontaneous production of F2 seeds on the Fl plants. Cytogenetic analysis of F2 lines showed that the produced synthetic wheat lines were generally promising stable amphiploids. Contribution of D genome bearing Aegilops and the less-investigated emmer wheat genotypes as parents in the crosses resulted in synthetic amphiploids which are a valuable resource for bread wheat breeding.
Collapse
|
58
|
Zeng X, Tagiri A, Kikuchi S, Sassa H, Komatsuda T. The Ectopic Expression of Btr2 in Aegilops tauschii Switches the Disarticulation Layer From Above to Below the Rachis Node. FRONTIERS IN PLANT SCIENCE 2020; 11:582622. [PMID: 33240300 PMCID: PMC7680762 DOI: 10.3389/fpls.2020.582622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 05/31/2023]
Abstract
Seed dispersal among wild species belonging to the tribe Triticeae is typically achieved by the formation of a brittle rachis. The trait relies on the development of a disarticulation layer, most frequently above the rachis node (resulting in wedge type dispersal units), but in some species below the rachis node (resulting in barrel type dispersal units). The genes responsible for the former type are the complementary pair Btr1 and Btr2, while the genetic basis of the latter type has yet to be determined. Aegilops tauschii forms barrel type dispersal units and previous study showed this species lacked an intact copy of Btr1. Here it has been demonstrated that Ae. tauschii carries two of Btr2; and that Btr2 transcript is present in a region below the rachis node where the abscission zone forms. The implication is that in this species, the Btr2 product is involved in the formation of barrel type dispersal units.
Collapse
Affiliation(s)
- Xiaoxue Zeng
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Akemi Tagiri
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Shinji Kikuchi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Hidenori Sassa
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Takao Komatsuda
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| |
Collapse
|
59
|
Triticum population sequencing provides insights into wheat adaptation. Nat Genet 2020; 52:1412-1422. [PMID: 33106631 DOI: 10.1038/s41588-020-00722-w] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Bread wheat expanded its habitat from a core area of the Fertile Crescent to global environments within ~10,000 years. The genetic mechanisms of this remarkable evolutionary success are not well understood. By whole-genome sequencing of populations from 25 subspecies within the genera Triticum and Aegilops, we identified composite introgression from wild populations contributing to a substantial portion (4-32%) of the bread wheat genome, which increased the genetic diversity of bread wheat and allowed its divergent adaptation. Meanwhile, convergent adaptation to human selection showed 2- to 16-fold enrichment relative to random expectation-a certain set of genes were repeatedly selected in Triticum species despite their drastic differences in ploidy levels and growing zones, indicating the important role of evolutionary constraints in shaping the adaptive landscape of bread wheat. These results showed the genetic necessities of wheat as a global crop and provided new perspectives on transferring adaptive success across species for crop improvement.
Collapse
|
60
|
Genomic Patterns of Introgression in Interspecific Populations Created by Crossing Wheat with Its Wild Relative. G3-GENES GENOMES GENETICS 2020; 10:3651-3661. [PMID: 32737066 PMCID: PMC7534432 DOI: 10.1534/g3.120.401479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Collapse
|
61
|
Yermekbayev K, Griffiths S, Chhetry M, Leverington-Waite M, Orford S, Amalova A, Abugalieva S, Turuspekov Y. Construction of a Genetic Map of RILs Derived from Wheat (T. aestivum L.) Varieties Pamyati Azieva × Paragon Using High-Throughput SNP Genotyping Platform KASP—Kompetitive Allele Specific PCR. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542009015x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Yang Y, Wan H, Yang F, Xiao C, Li J, Ye M, Chen C, Deng G, Wang Q, Li A, Mao L, Yang W, Zhou Y. Mapping QTLs for enhancing early biomass derived from Aegilops tauschii in synthetic hexaploid wheat. PLoS One 2020; 15:e0234882. [PMID: 32584908 PMCID: PMC7316292 DOI: 10.1371/journal.pone.0234882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022] Open
Abstract
Strong early vigour plays a crucial role in wheat yield improvement by enhancing resource utilization efficiency. Synthetic hexaploid wheat (SHW) combines the elite genes of tetraploid wheat with Aegilops tauschii and has been widely used in wheat genetic improvement for its abundant genetic variation. The two SHWs Syn79 and Syn80 were derived from the crossing of the same tetraploid wheat DOY1 with two different Ae. tauschii accessions, AT333 and AT428, respectively. The Syn80 possessed better early vigour traits than Syn79, theretically caused by their D genome from Ae. tauschii. To dissect their genetic basis in a hexaploid background, 203 recombinant inbred lines (RILs) derived from the cross of Syn79 x Syn80 were developed to detect quantitative trait loci (QTL) for four early biomass related traits: plant height (PH), tiller number (TN), shoot fresh weight (SFW) and shoot dry weight (SDW) per plant, under five different environmental conditions. Determined from the data of SNP markers, two genome regions on 1DS and 7D were stably associated with the four early biomass related traits showing pleiotropic effects. Four stable QTLs QPh.saas-1DS, QTn.saas-1DS, QSfw.saas-1DS and QSdw.saas-1DS explaining 7.92, 15.34, 9.64 and 10.15% of the phenotypic variation, respectively, were clustered in the region of 1DS from AX-94812958 to AX-110910133. Meanwhile, QPh.saas-7D, QTn.saas-7D, QSfw.saas-7D and QSdw.saas-7D were flanked by AX-109917900 and AX-110605376 on 7D, explaining 16.12, 24.35, 15.25 and 13.37% of the phenotypic variation on average, respectively. Moreover, these genomic QTLs on 1DS and 7D enhancing biomass in the parent Syn80 were from Ae. tauschii AT428. These findings suggest that these two QTLs from Ae. tauschii can be expressed stably in a hexaploid background at the jointing stage and be used for wheat improvement.
Collapse
Affiliation(s)
- Yumin Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
| | - Hongshen Wan
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Fan Yang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chun Xiao
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jun Li
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Meijin Ye
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunxiu Chen
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Guangmin Deng
- Soil and Fertilizer Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Aili Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Mao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wuyun Yang
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of Agriculture and Rural Areas), Chengdu, China
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- * E-mail: (WY); (YZ)
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- * E-mail: (WY); (YZ)
| |
Collapse
|
63
|
Zhao X, Bai S, Li L, Han X, Li J, Zhu Y, Fang Y, Zhang D, Li S. Comparative Transcriptome Analysis of Two Aegilops tauschii with Contrasting Drought Tolerance by RNA-Seq. Int J Mol Sci 2020; 21:ijms21103595. [PMID: 32438769 PMCID: PMC7279474 DOI: 10.3390/ijms21103595] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 01/03/2023] Open
Abstract
As the diploid progenitor of common wheat, Aegilops tauschii is considered to be a valuable resistance source to various biotic and abiotic stresses. However, little has been reported concerning the molecular mechanism of drought tolerance in Ae. tauschii. In this work, the drought tolerance of 155 Ae. tauschii accessions was firstly screened on the basis of their coleoptile lengths under simulated drought stress. Subsequently, two accessions (XJ002 and XJ098) with contrasting coleoptile lengths were selected and intensively analyzed on rate of water loss (RWL) as well as physiological characters, confirming the difference in drought tolerance at the seedling stage. Further, RNA-seq was utilized for global transcriptome profiling of the two accessions seedling leaves under drought stress conditions. A total of 6969 differentially expressed genes (DEGs) associated with drought tolerance were identified, and their functional annotations demonstrated that the stress response was mediated by pathways involving alpha-linolenic acid metabolism, starch and sucrose metabolism, peroxisome, mitogen-activated protein kinase (MAPK) signaling, carbon fixation in photosynthetic organisms, and glycerophospholipid metabolism. In addition, DEGs with obvious differences between the two accessions were intensively analyzed, indicating that the expression level of DEGs was basically in alignment with the physiological changes of Ae. tauschii under drought stress. The results not only shed fundamental light on the regulatory process of drought tolerance in Ae. tauschii, but also provide a new gene resource for improving the drought tolerance of common wheat.
Collapse
Affiliation(s)
- Xinpeng Zhao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Shenglong Bai
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Lechen Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Xue Han
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Jiahui Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Yumeng Zhu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| | - Yuan Fang
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Dale Zhang
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
- Correspondence:
| | - Suoping Li
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China; (X.Z.); (S.B.); (L.L.); (X.H.); (J.L.); (Y.Z.); (S.L.)
| |
Collapse
|
64
|
Identification of a hard kernel texture line of synthetic allohexaploid wheat reducing the puroindoline accumulation on the D genome from Aegilops tauschii. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
65
|
Kroupin PY, Chernook AG, Bazhenov MS, Karlov GI, Goncharov NP, Chikida NN, Divashuk MG. Allele mining of TaGRF-2D gene 5'-UTR in Triticum aestivum and Aegilops tauschii genotypes. PLoS One 2020; 15:e0231704. [PMID: 32298343 PMCID: PMC7162470 DOI: 10.1371/journal.pone.0231704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
The low diversity of the D-subgenome of bread wheat requires the involvement of new alleles for breeding. In grasses, the allelic state of Growth Regulating Factor (GRF) gene is correlated with nitrogen uptake. In this study, we characterized the sequence of TaGRF-2D and assessed its diversity in bread wheat and goatgrass Aegilops tauschii (genome DD). In silico analysis was performed for reference sequence searching, primer pairs design and sequence assembly. The gene sequence was obtained using Illumina and Sanger sequencing. The complete sequences of TaGRF-2D were obtained for 18 varieties of wheat. The polymorphism in the presence/absence of two GCAGCC repeats in 5' UTR was revealed and the GRF-2D-SSR marker was developed. Our results showed that the alleles 5' UTR-250 and 5' UTR-238 were present in wheat varieties, 5' UTR-250 was presented in the majority of wheat varieties. In Ae. tauschii ssp. strangulata (likely donor of the D-subgenome of polyploid wheat), most accessions carried the 5' UTR-250 allele, whilst most Ae. tauschii ssp. tauschii have 5' UTR-244. The developed GRF-2D-SSR marker can be used to study the genetic diversity of wheat and Ae. tauschii.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Anastasiya G. Chernook
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Mikhail S. Bazhenov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Gennady I. Karlov
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| | - Nikolay P. Goncharov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda N. Chikida
- Federal Research Center Vavilov All-Russian Institute of Plant Genetic Resources, Saint Petersburg, Russia
| | - Mikhail G. Divashuk
- Laboratory of Applied Genomics and Crop Breeding, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
- Centre for Molecular Biotechnology, Russian State Agrarian University–Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Kurchatov Genomics Center-ARRIAB, All-Russia Research Institute of Agricultural Biotechnology, Moscow, Russia
| |
Collapse
|
66
|
Su Q, Liu L, Zhao M, Zhang C, Zhang D, Li Y, Li S. The complete chloroplast genomes of seventeen Aegilops tauschii: genome comparative analysis and phylogenetic inference. PeerJ 2020; 8:e8678. [PMID: 32181055 PMCID: PMC7060751 DOI: 10.7717/peerj.8678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/03/2020] [Indexed: 11/20/2022] Open
Abstract
The D genome progenitor of bread wheat, Aegilops tauschii Cosson (DD, 2n = 2x = 14), which is naturally distributed in Central Eurasia, ranging from northern Syria and Turkey to western China, is considered a potential genetic resource for improving bread wheat. In this study, the chloroplast (cp) genomes of 17 Ae. tauschii accessions were reconstructed. The cp genome sizes ranged from 135,551 bp to 136,009 bp and contained a typical quadripartite structure of angiosperms. Within these genomes, we identified a total of 124 functional genes, including 82 protein-coding genes, 34 transfer RNA genes and eight ribosomal RNA genes, with 17 duplicated genes in the IRs. Although the comparative analysis revealed that the genomic structure (gene order, gene number and IR/SC boundary regions) is conserved, a few variant loci were detected, predominantly in the non-coding regions (intergenic spacer regions). The phylogenetic relationships determined based on the complete genome sequences were consistent with the hypothesis that Ae. tauschii populations in the Yellow River region of China originated in South Asia not Xinjiang province or Iran, which could contribute to more effective utilization of wild germplasm resources. Furthermore, we confirmed that Ae. tauschii was derived from monophyletic speciation rather than hybrid speciation at the cp genome level. We also identified four variable genomic regions, rpl32-trnL-UAG, ccsA-ndhD, rbcL-psaI and rps18-rpl20, showing high levels of nucleotide polymorphisms, which may accordingly prove useful as cpDNA markers in studying the intraspecific genetic structure and diversity of Ae. tauschii.
Collapse
Affiliation(s)
- Qing Su
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Luxian Liu
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Mengyu Zhao
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Cancan Zhang
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Dale Zhang
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| | - Youyong Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Suoping Li
- Key Laboratory of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, China
| |
Collapse
|
67
|
Huang W, Cheng C, Liu J, Zhang X, Ren C, Jiang X, Chen T, Cheng K, Li H, Hu C. Fine Mapping of the High-pH Tolerance and Growth Trait-Related Quantitative Trait Loci (QTLs) and Identification of the Candidate Genes in Pacific White Shrimp (Litopenaeus vannamei). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:1-18. [PMID: 31758429 DOI: 10.1007/s10126-019-09932-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
High-pH tolerance and growth are important traits for the shrimp culture industry in areas with saline-alkali water. In the present study, an F1 full-sib family of Pacific white shrimp (Litopenaeus vannamei) was generated with a new "semidirectional cross" method, and double-digest restriction site-associated DNA sequencing (ddRAD-Seq) technology was applied to genotype the 2 parents and 148 progenies. A total of 3567 high-quality markers were constructed for the genetic linkage map, and the total map length was 4161.555 centimorgans (cM), showing 48 linkage groups (LGs) with an average interlocus length of 1.167 cM. With a constrained logarithm of odds (LOD) score ≥ 2.50, 12 high-pH tolerance and 2 growth (body weight) QTLs were located. L. vannamei genomic scaffolds were used to assist with the detection of 21 stress- and 5 growth-related scaffold genes. According to the high-pH transcriptome data of our previous study, 6 candidate high-pH response genes were discovered, and 5 of these 6 genes were consistently expressed with the high-pH transcriptome data, validating the locations of the high-pH tolerance trait-related QTLs in this study. This paper is the first report of fine-mapping high-pH tolerance and growth (body weight) trait QTLs in one L. vannamei genetic map. Our results will further benefit marker-assisted selection work and might be useful for promoting genomic research on the shrimp L. vannamei.
Collapse
Affiliation(s)
- Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Chuhang Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinshang Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Jinyang Biotechnology co. LTD, Maoming, 525027, China
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Kaimin Cheng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Yuehai Feed Group co., LTD, Zhanjiang, 524017, China
| | - Huo Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- Guangdong Jinyang Biotechnology co. LTD, Maoming, 525027, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB)/Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Institution of South China Sea Ecology and Environmental Engineering (ISEE), Chinese Academy of Sciences, Guangzhou, 510301, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
68
|
Ivanizs L, Monostori I, Farkas A, Megyeri M, Mikó P, Türkösi E, Gaál E, Lenykó-Thegze A, Szőke-Pázsi K, Szakács É, Darkó É, Kiss T, Kilian A, Molnár I. Unlocking the Genetic Diversity and Population Structure of a Wild Gene Source of Wheat, Aegilops biuncialis Vis., and Its Relationship With the Heading Time. FRONTIERS IN PLANT SCIENCE 2019; 10:1531. [PMID: 31824545 PMCID: PMC6882925 DOI: 10.3389/fpls.2019.01531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/01/2019] [Indexed: 06/02/2023]
Abstract
Understanding the genetic diversity of Aegilops biuncialis, a valuable source of agronomical useful genes, may significantly facilitate the introgression breeding of wheat. The genetic diversity and population structure of 86 Ae. biuncialis genotypes were investigated by 32700 DArT markers with the simultaneous application of three statistical methods- neighbor-joining clustering, Principal Coordinate Analysis, and the Bayesian approach to classification. The collection of Ae. biuncialis accessions was divided into five groups that correlated well with their eco-geographic habitat: A (North Africa), B (mainly from Balkans), C (Kosovo and Near East), D (Turkey, Crimea, and Peloponnese), and E (Azerbaijan and the Levant region). The diversity between the Ae. biuncialis accessions for a phenological trait (heading time), which is of decisive importance in the adaptation of plants to different eco-geographical environments, was studied over 3 years. A comparison of the intraspecific variation in the heading time trait by means of analysis of variance and principal component analysis revealed four phenotypic categories showing association with the genetic structure and geographic distribution, except for minor differences. The detailed exploration of genetic and phenologic divergence provides an insight into the adaptation capacity of Ae. biuncialis, identifying promising genotypes that could be utilized for wheat improvement.
Collapse
Affiliation(s)
- László Ivanizs
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - István Monostori
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Mária Megyeri
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Péter Mikó
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Edina Türkösi
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Eszter Gaál
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | | | - Kitti Szőke-Pázsi
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Szakács
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Tibor Kiss
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Andrzej Kilian
- University of Canberra, Diversity Array Technologies, Canberra, ACT, Australia
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
- Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| |
Collapse
|
69
|
Badaeva ED, Fisenko AV, Surzhikov SA, Yankovskaya AA, Chikida NN, Zoshchuk SA, Belousova MK, Dragovich AY. Genetic Heterogeneity of a Diploid Grass Aegilops tauschii Revealed by Chromosome Banding Methods and Electrophoretic Analysis of the Seed Storage Proteins (Gliadins). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
70
|
Zhang C, Huang L, Zhang H, Hao Q, Lyu B, Wang M, Epstein L, Liu M, Kou C, Qi J, Chen F, Li M, Gao G, Ni F, Zhang L, Hao M, Wang J, Chen X, Luo MC, Zheng Y, Wu J, Liu D, Fu D. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat Commun 2019; 10:4023. [PMID: 31492844 PMCID: PMC6731223 DOI: 10.1038/s41467-019-11872-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a global threat to wheat production. Aegilops tauschii, one of the wheat progenitors, carries the YrAS2388 locus for resistance to Pst on chromosome 4DS. We reveal that YrAS2388 encodes a typical nucleotide oligomerization domain-like receptor (NLR). The Pst-resistant allele YrAS2388R has duplicated 3’ untranslated regions and is characterized by alternative splicing in the nucleotide-binding domain. Mutation of the YrAS2388R allele disrupts its resistance to Pst in synthetic hexaploid wheat; transgenic plants with YrAS2388R show resistance to eleven Pst races in common wheat and one race of P. striiformis f. sp. hordei in barley. The YrAS2388R allele occurs only in Ae. tauschii and the Ae. tauschii-derived synthetic wheat; it is absent in 100% (n = 461) of common wheat lines tested. The cloning of YrAS2388R will facilitate breeding for stripe rust resistance in wheat and other Triticeae species. Stripe rust is a serious threat to wheat production. Here, the authors reveal that the resistance gene, only present in the wheat progenitor Aegilops tauschii and its derived synthetic wheat, encodes a nucleotide oligomerization domain-like receptor and confers resistance in common wheat and barley.
Collapse
Affiliation(s)
- Chaozhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China.,Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Huifei Zhang
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Qunqun Hao
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Bo Lyu
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Miao Liu
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Chunlan Kou
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Juan Qi
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Fengjuan Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Mengkai Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Ge Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Fei Ni
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Xianming Chen
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA, 99164, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China. .,State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China.
| | - Daolin Fu
- Department of Plant Sciences, University of Idaho, Moscow, ID, 83844, USA.
| |
Collapse
|
71
|
Hao M, Zhang L, Zhao L, Dai S, Li A, Yang W, Xie D, Li Q, Ning S, Yan Z, Wu B, Lan X, Yuan Z, Huang L, Wang J, Zheng K, Chen W, Yu M, Chen X, Chen M, Wei Y, Zhang H, Kishii M, Hawkesford MJ, Mao L, Zheng Y, Liu D. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2285-2294. [PMID: 31049633 DOI: 10.1007/s00122-019-03354-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/25/2019] [Indexed: 05/15/2023]
Abstract
Introgressing one-eighth of synthetic hexaploid wheat genome through a double top-cross plus a two-phase selection is an effective strategy to develop high-yielding wheat varieties. The continued expansion of the world population and the likely onset of climate change combine to form a major crop breeding challenge. Genetic advances in most crop species to date have largely relied on recombination and reassortment within a relatively narrow gene pool. Here, we demonstrate an efficient wheat breeding strategy for improving yield potentials by introgression of multiple genomic regions of de novo synthesized wheat. The method relies on an initial double top-cross (DTC), in which one parent is synthetic hexaploid wheat (SHW), followed by a two-phase selection procedure. A genotypic analysis of three varieties (Shumai 580, Shumai 969 and Shumai 830) released from this program showed that each harbors a unique set of genomic regions inherited from the SHW parent. The first two varieties were generated from very small populations, whereas the third used a more conventional scale of selection since one of bread wheat parents was a pre-breeding material. The three varieties had remarkably enhanced yield potential compared to those developed by conventional breeding. A widely accepted consensus among crop breeders holds that introducing unadapted germplasm, such as landraces, as parents into a breeding program is a risky proposition, since the size of the breeding population required to overcome linkage drag becomes too daunting. However, the success of the proposed DTC strategy has demonstrated that novel variation harbored by SHWs can be accessed in a straightforward, effective manner. The strategy is in principle generalizable to any allopolyploid crop species where the identity of the progenitor species is known.
Collapse
Affiliation(s)
- Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China.
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China.
| | - Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Shoufen Dai
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Aili Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Die Xie
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Qingcheng Li
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Bihua Wu
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Xiujin Lan
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Lin Huang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Ke Zheng
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Wenshuai Chen
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Ma Yu
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Xuejiao Chen
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Mengping Chen
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Huaigang Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, People's Republic of China
| | - Masahiro Kishii
- International Maize and Wheat Improvement Center, 56237, Texcoco, Mexico
| | | | - Long Mao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
72
|
Cheng H, Liu J, Wen J, Nie X, Xu L, Chen N, Li Z, Wang Q, Zheng Z, Li M, Cui L, Liu Z, Bian J, Wang Z, Xu S, Yang Q, Appels R, Han D, Song W, Sun Q, Jiang Y. Frequent intra- and inter-species introgression shapes the landscape of genetic variation in bread wheat. Genome Biol 2019; 20:136. [PMID: 31300020 PMCID: PMC6624984 DOI: 10.1186/s13059-019-1744-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/22/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Bread wheat is one of the most important and broadly studied crops. However, due to the complexity of its genome and incomplete genome collection of wild populations, the bread wheat genome landscape and domestication history remain elusive. RESULTS By investigating the whole-genome resequencing data of 93 accessions from worldwide populations of bread wheat and its diploid and tetraploid progenitors, together with 90 published exome-capture data, we find that the B subgenome has more variations than A and D subgenomes, including SNPs and deletions. Population genetics analyses support a monophyletic origin of domesticated wheat from wild emmer in northern Levant, with substantial introgressed genomic fragments from southern Levant. Southern Levant contributes more than 676 Mb in AB subgenomes and enriched in the pericentromeric regions. The AB subgenome introgression happens at the early stage of wheat speciation and partially contributes to their greater genetic diversity. Furthermore, we detect massive alien introgressions that originated from distant species through natural and artificial hybridizations, resulting in the reintroduction of ~ 709 Mb and ~ 1577 Mb sequences into bread wheat landraces and varieties, respectively. A large fraction of these intra- and inter-introgression fragments are associated with quantitative trait loci of important traits, and selection events are also identified. CONCLUSION We reveal the significance of multiple introgressions from distant wild populations and alien species in shaping the genetic components of bread wheat, and provide important resources and new perspectives for future wheat breeding.
Collapse
Affiliation(s)
- Hong Cheng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jing Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Jia Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Luohao Xu
- Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Zhongxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Zhuqing Zheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Ming Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Zihua Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| | - Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Rudi Appels
- AgriBio, Centre for AgriBioscience, Department of Economic Development, Jobs, Transport, and Resources, La Trobe University, 5 Ring Road, Bundoora, VIC 3083 Australia
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
| | - Qixin Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100 China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193 China
| | - Yu Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 China
| |
Collapse
|
73
|
Wu X, Ding B, Zhang B, Feng J, Wang Y, Ning C, Wu H, Zhang F, Zhang Q, Li N, Zhang Z, Sun X, Zhang Q, Li W, Liu B, Cui Y, Gong L. Phylogenetic and population structural inference from genomic ancestry maintained in present-day common wheat Chinese landraces. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:201-215. [PMID: 31134682 DOI: 10.1111/tpj.14421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Hexaploid common wheat is one of the most important food crops worldwide. Common wheat domestication began in the Fertile Crescent of the Near East approximately 10 000 years ago and then spread west into Europe and eastward into East Asia and China. However, the possible spreading route into and within China is still unclear. In this study, we successfully extracted DNA from single ancient wheat seeds and sequenced the whole genome of seven ancient samples from Xiaohe and Gumugou cemeteries in Xinjiang, China. Genomic inference and morphological observation confirmed their identity as hexaploid common wheat grown in prehistoric China at least 3200 years before present (BP). Phylogenetic and admixture analyses with RNA-seq data of modern hexaploid wheat cultivars from both China and Western countries demonstrated a close kinship of the ancient wheat to extant common wheat landraces in southwestern China. The highly similar allelic frequencies in modern landraces of the Qinghai-Tibetan plateau with the ancient wheat support the previously suggested southwestern spreading route into highland China. A subsequent dispersal route from the Qinghai-Tibetan plateau margins to the Yangtze valley was proposed in this study. Furthermore, the common wheat populations grown in the Middle and Lower Yangtze valley wheat zones were also proposed to be established by population admixture with the wheat grown in the Upper Yangtze valley. Our study reports ancient common wheat sequences at a genome-wide scale, providing important information on the origin, dispersal, and genetic improvement under cultivation of present-day wheat landraces grown in China.
Collapse
Affiliation(s)
- Xiyan Wu
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Baoxu Ding
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Bingqi Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Jiaojiao Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yibing Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Chao Ning
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Haidan Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Fan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
| | - Qun Zhang
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Xuhan Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Quanchao Zhang
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Wenying Li
- Xinjiang Cultural Relics and Archaeology Institute, Ürümchi, 830000, PR China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, 130012, People's Republic of China
- Research Center for Chinese Frontier Archaeology, Jilin University, Changchun, 130012, People's Republic of China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, 130024, People's Republic of China
| |
Collapse
|
74
|
Kishii M. An Update of Recent Use of Aegilops Species in Wheat Breeding. FRONTIERS IN PLANT SCIENCE 2019; 10:585. [PMID: 31143197 PMCID: PMC6521781 DOI: 10.3389/fpls.2019.00585] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/18/2019] [Indexed: 05/16/2023]
Abstract
Aegilops species have significantly contributed to wheat breeding despite the difficulties involved in the handling of wild species, such as crossability and incompatibility. A number of biotic resistance genes have been identified and incorporated into wheat varieties from Aegilops species, and this genus is also contributing toward improvement of complex traits such as yield and abiotic tolerance for drought and heat. The D genome diploid species of Aegilops tauschii has been utilized most often in wheat breeding programs. Other Aegilops species are more difficult to utilize in the breeding because of lower meiotic recombination frequencies; generally they can be utilized only after extensive and time-consuming procedures in the form of translocation/introgression lines. After the emergence of Ug99 stem rust and wheat blast threats, Aegilops species gathered more attention as a form of new resistance sources. This article aims to update recent progress on Aegilops species, as well as to cover new topics around their use in wheat breeding.
Collapse
Affiliation(s)
- Masahiro Kishii
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
75
|
Mirzaghaderi G, Mason AS. Broadening the bread wheat D genome. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1295-1307. [PMID: 30739154 DOI: 10.1007/s00122-019-03299-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/02/2019] [Indexed: 05/21/2023]
Abstract
Although Ae. tauschii has been extensively utilised for wheat breeding, the D-genome-containing allopolyploids have largely remained unexploited. In this review, we discuss approaches that can be used to exploit the D genomes of the different Aegilops species for the improvement of bread wheat. The D genome of allohexaploid bread wheat (Triticum aestivum, 2n = AABBDD) is the least diverse of the three wheat genomes and is unarguably less diverse than that of diploid progenitor Aegilops tauschii (2n = DD). Useful genetic variation and phenotypic traits also exist within each of the wheat group species containing a copy of the D genome: allopolyploid Aegilops species Ae. cylindrica (2n = DcDcCcCc), Ae. crassa 4x (2n = D1D1XcrXcr), Ae. crassa 6x (2n = D1D1XcrXcrDcrDcr), Ae. ventricosa (2n = DvDvNvNv), Ae. vavilovii (2n = D1D1XcrXcrSvSv) and Ae. juvenalis (2n = D1D1XcrXcrUjUj). Although Ae. tauschii has been extensively utilised for wheat breeding, the D-genome-containing allopolyploids have largely remained unexploited. Some of these D genomes appear to be modified relative to the bread wheat and Ae. tauschii D genomes, and others present in the allopolyploids may also contain useful variation as a result of adaptation to an allopolyploid, multi-genome environment. We summarise the genetic relationships, karyotypic variation and phenotypic traits known to be present in each of the D genome species that could be of relevance for bread wheat improvement and discuss approaches that can be used to exploit the D genomes of the different Aegilops species for the improvement of bread wheat. Better understanding of factors controlling chromosome inheritance and recombination in wheat group interspecific hybrids, as well as effective utilisation of new and developing genetics and genomics technologies, have great potential to improve the agronomic potential of the bread wheat D genome.
Collapse
Affiliation(s)
- Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, P. O. Box 416, Sanandaj, Iran.
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, IFZ Research Centre for Biosystems, Land Use and Nutrition, Heinrich-Buff-Ring 26-32, Giessen, 35392, Germany
| |
Collapse
|
76
|
Pont C, Leroy T, Seidel M, Tondelli A, Duchemin W, Armisen D, Lang D, Bustos-Korts D, Goué N, Balfourier F, Molnár-Láng M, Lage J, Kilian B, Özkan H, Waite D, Dyer S, Letellier T, Alaux M, Russell J, Keller B, van Eeuwijk F, Spannagl M, Mayer KFX, Waugh R, Stein N, Cattivelli L, Haberer G, Charmet G, Salse J. Tracing the ancestry of modern bread wheats. Nat Genet 2019; 51:905-911. [PMID: 31043760 DOI: 10.1038/s41588-019-0393-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022]
Abstract
For more than 10,000 years, the selection of plant and animal traits that are better tailored for human use has shaped the development of civilizations. During this period, bread wheat (Triticum aestivum) emerged as one of the world's most important crops. We use exome sequencing of a worldwide panel of almost 500 genotypes selected from across the geographical range of the wheat species complex to explore how 10,000 years of hybridization, selection, adaptation and plant breeding has shaped the genetic makeup of modern bread wheats. We observe considerable genetic variation at the genic, chromosomal and subgenomic levels, and use this information to decipher the likely origins of modern day wheats, the consequences of range expansion and the allelic variants selected since its domestication. Our data support a reconciled model of wheat evolution and provide novel avenues for future breeding improvement.
Collapse
Affiliation(s)
- Caroline Pont
- INRA-Université Clermont Auvergne, Clermont-Ferrand, France
| | - Thibault Leroy
- INRA-Université de Bordeaux, Cestas, France.,ISEM, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier, France
| | | | - Alessandro Tondelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | | | - David Armisen
- INRA-Université Clermont Auvergne, Clermont-Ferrand, France
| | - Daniel Lang
- PGSB, Helmholtz Center Munich, Neuherberg, Germany
| | - Daniela Bustos-Korts
- Wageningen University & Research, Biometris, Applied Statistics, Wageningen, the Netherlands
| | - Nadia Goué
- INRA-Université Clermont Auvergne, Clermont-Ferrand, France.,Plateforme Auvergne Bioinformatique, Mésocentre, Université Clermont Auvergne, Aubière, France
| | | | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | | | - Benjamin Kilian
- Global Crop Diversity Trust, Bonn, Germany.,Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Hakan Özkan
- University of Çukurova, Faculty of Agriculture, Department of Field Crops, Adana, Turkey
| | - Darren Waite
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Michael Alaux
- URGI, INRA, Université Paris-Saclay, Versailles, France
| | | | | | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Fred van Eeuwijk
- Wageningen University & Research, Biometris, Applied Statistics, Wageningen, the Netherlands
| | | | - Klaus F X Mayer
- PGSB, Helmholtz Center Munich, Neuherberg, Germany.,School of Life Sciences, Technical University Munich, Weihenstephan, Germany
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, UK.,The University of Dundee, Division of Plant Sciences, School of Life Sciences, Dundee, UK.,School of Agriculture, Food and Wine, University of Adelaide, Adelaide, South Australia, Australia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | | | - Gilles Charmet
- INRA-Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérôme Salse
- INRA-Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
77
|
Xu J, Dai X, Ramasamy RK, Wang L, Zhu T, McGuire PE, Jorgensen CM, Dehghani H, Gulick PJ, Luo MC, Müller HG, Dvorak J. Aegilops tauschii Genome Sequence: A Framework for Meta-analysis of Wheat QTLs. G3 (BETHESDA, MD.) 2019; 9:841-853. [PMID: 30670607 PMCID: PMC6404623 DOI: 10.1534/g3.118.200921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022]
Abstract
Numerous quantitative trait loci (QTL) have been mapped in tetraploid and hexaploid wheat and wheat relatives, mostly with simple sequence repeat (SSR) or single nucleotide polymorphism (SNP) markers. To conduct meta-analysis of QTL requires projecting them onto a common genomic framework, either a consensus genetic map or genomic sequence. The latter strategy is pursued here. Of 774 QTL mapped in wheat and wheat relatives found in the literature, 585 (75.6%) were successfully projected onto the Aegilops tauschii pseudomolecules. QTL mapped with SNP markers were more successfully projected (92.2%) than those mapped with SSR markers (66.2%). The QTL were not distributed homogeneously along chromosome arms. Their frequencies increased in the proximal-to-distal direction but declined in the most distal regions and were weakly correlated with recombination rates along the chromosome arms. Databases for projected SSR markers and QTL were constructed and incorporated into the Ae. tauschii JBrowse. To facilitate meta-QTL analysis, eight clusters of QTL were used to estimate standard deviations ([Formula: see text]) of independently mapped QTL projected onto the Ae. tauschii genome sequence. The standard deviations [Formula: see text] were modeled as an exponential decay function of recombination rates along the Ae. tauschii chromosomes. We implemented four hypothesis tests for determining the membership of query QTL. The hypothesis tests and estimation procedure for [Formula: see text] were implemented in a web portal for meta-analysis of projected QTL. Twenty-one QTL for Fusarium head blight resistance mapped on wheat chromosomes 3A, 3B, and 3D were analyzed to illustrate the use of the portal for meta-QTL analyses.
Collapse
Affiliation(s)
- Jiale Xu
- Department of Plant Sciences, University of California, Davis, California
| | - Xiongtao Dai
- Department of Statistics, Iowa State University, Iowa
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, California
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, California
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, California
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, California
| | - Chad M Jorgensen
- Department of Plant Sciences, University of California, Davis, California
| | - Hamid Dehghani
- Department of Plant Sciences, University of California, Davis, California
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran, and
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, California
| | - Hans-Georg Müller
- Department of Statistics, University of California, Davis, California
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, California,
| |
Collapse
|
78
|
Prediction of Subgenome Additive and Interaction Effects in Allohexaploid Wheat. G3-GENES GENOMES GENETICS 2019; 9:685-698. [PMID: 30455185 PMCID: PMC6404612 DOI: 10.1534/g3.118.200613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Whole genome duplications have played an important role in the evolution of angiosperms. These events often occur through hybridization between closely related species, resulting in an allopolyploid with multiple subgenomes. With the availability of affordable genotyping and a reference genome to locate markers, breeders of allopolyploids now have the opportunity to manipulate subgenomes independently. This also presents a unique opportunity to investigate epistatic interactions between homeologous orthologs across subgenomes. We present a statistical framework for partitioning genetic variance to the subgenomes of an allopolyploid, predicting breeding values for each subgenome, and determining the importance of inter-genomic epistasis. We demonstrate using an allohexaploid wheat breeding population evaluated in Ithaca, NY and an important wheat dataset from CIMMYT previously shown to demonstrate non-additive genetic variance. Subgenome covariance matrices were constructed and used to calculate subgenome interaction covariance matrices for variance component estimation and genomic prediction. We propose a method to extract population structure from all subgenomes at once before covariances are calculated to reduce collinearity between subgenome estimates. Variance parameter estimation was shown to be reliable for additive subgenome effects, but was less reliable for subgenome interaction components. Predictive ability was equivalent to current genomic prediction methods. Including only inter-genomic interactions resulted in the same increase in accuracy as modeling all pairwise marker interactions. Thus, we provide a new tool for breeders of allopolyploid crops to characterize the genetic architecture of existing populations, determine breeding goals, and develop new strategies for selection of additive effects and fixation of inter-genomic epistasis.
Collapse
|
79
|
Haas M, Schreiber M, Mascher M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:204-225. [PMID: 30414305 DOI: 10.1111/jipb.12737] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/27/2018] [Indexed: 05/02/2023]
Abstract
Wheat and barley are two of the founder crops of the agricultural revolution that took place 10,000 years ago in the Fertile Crescent and both crops remain among the world's most important crops. Domestication of these crops from their wild ancestors required the evolution of traits useful to humans, rather than survival in their natural environment. Of these traits, grain retention and threshability, yield improvement, changes to photoperiod sensitivity and nutritional value are most pronounced between wild and domesticated forms. Knowledge about the geographical origins of these crops and the genes responsible for domestication traits largely pre-dates the era of next-generation sequencing, although sequencing will lead to new insights. Molecular markers were initially used to calculate distance (relatedness), genetic diversity and to generate genetic maps which were useful in cloning major domestication genes. Both crops are characterized by large, complex genomes which were long thought to be beyond the scope of whole-genome sequencing. However, advances in sequencing technologies have improved the state of genomic resources for both wheat and barley. The availability of reference genomes for wheat and some of its progenitors, as well as for barley, sets the stage for answering unresolved questions in domestication genomics of wheat and barley.
Collapse
Affiliation(s)
- Matthew Haas
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
| | - Mona Schreiber
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
- Palaeogenetics Group, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
- German Center for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
80
|
Arora S, Cheema J, Poland J, Uauy C, Chhuneja P. Genome-Wide Association Mapping of Grain Micronutrients Concentration in Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2019; 10:54. [PMID: 30792723 PMCID: PMC6374599 DOI: 10.3389/fpls.2019.00054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/16/2019] [Indexed: 05/02/2023]
Abstract
Bread wheat is an important and the most consumed cereal worldwide. However, people with predominantly cereal-based diets are increasingly affected by micronutrient deficiencies, suggesting the need for biofortified wheat varieties. The limited genetic diversity in hexaploid wheat warrants exploring the wider variation present in wheat wild relatives, among these Aegilops tauschii, the wild progenitor of the bread wheat D genome. In this study, a panel of 167 Ae. tauschii accessions was phenotyped for grain Fe, Zn, Cu, and Mn concentrations for 3 years and was found to have wide variation for these micronutrients. Comparisons between the two genetic subpopulations of Ae. tauschii revealed that lineage 2 had higher mean values for Fe and Cu concentration than lineage 1. To identify potentially new genetic sources for improving grain micronutrient concentration, we performed a genome-wide association study (GWAS) on 114 non-redundant Ae. tauschii accessions using 5,249 genotyping-by-sequencing (GBS) markers. Best linear unbiased predictor (BLUP) values were calculated for all traits across the three growing seasons. A total of 19 SNP marker trait associations (MTAs) were detected for all traits after applying Bonferroni corrected threshold of -log10(P-value) ≥ 4.68. These MTAs were found on all seven chromosomes. For grain Fe, Zn, Cu, and Mn concentrations, five, four, three, and seven significant associations were detected, respectively. The associations were linked to the genes encoding transcription factor regulators, transporters, and phytosiderophore synthesis. The results demonstrate the utility of GWAS for understanding the genetic architecture of micronutrient accumulation in Ae. tauschii, and further efforts to validate these loci will aid in using them to diversify the D-genome of hexaploid wheat.
Collapse
Affiliation(s)
- Sanu Arora
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jitender Cheema
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jesse Poland
- Department of Plant Pathology and Agronomy, Wheat Genetics Resource Centre, Kansas State University, Manhattan, KS, United States
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
81
|
Singh N, Wu S, Tiwari V, Sehgal S, Raupp J, Wilson D, Abbasov M, Gill B, Poland J. Genomic Analysis Confirms Population Structure and Identifies Inter-Lineage Hybrids in Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2019; 10:9. [PMID: 30740115 PMCID: PMC6357674 DOI: 10.3389/fpls.2019.00009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/07/2019] [Indexed: 05/21/2023]
Abstract
Aegilops tauschii, the D-genome donor of bread wheat, Triticum aestivum, is a storehouse of genetic diversity, and an important resource for future wheat improvement. Genomic and population analysis of 549 Ae. tauschii and 103 wheat accessions was performed by using 13,135 high quality SNPs. Population structure, principal component, and cluster analysis confirmed the differentiation of Ae. tauschii into two lineages; lineage 1 (L1) and lineage 2 (L2), the latter being the wheat D-genome donor. Lineage L1 contributes only 2.7% of the total introgression from Ae. tauschii for a set of United States winter wheat lines, confirming the great amount of untapped genetic diversity in L1. Lineage L2 accessions had overall greater allelic diversity and wheat accessions had the least allelic diversity. Both lineages also showed intra-lineage differentiation with L1 being driven by longitudinal gradient and L2 differentiated by altitude. There has previously been little reported on natural hybridization between L1 and L2. We found nine putative inter-lineage hybrids in the population structure analysis, each containing numerous lineage-specific private alleles from both lineages. One hybrid was confirmed as a recombinant inbred between the two lineages, likely artificially post collection. Of the remaining eight putative hybrids, a group of seven from Georgia carry 713 SNPs with private alleles, which points to the possibility of a novel L1-L2 hybrid lineage. To facilitate the use of Ae. tauschii in wheat improvement, a MiniCore consisting of 29 L1 and 11 L2 accessions, has been developed based on genotypic, phenotypic and geographical data. MiniCore reduces the collection size by over 10-fold and captures 84% of the total allelic diversity in the whole collection.
Collapse
Affiliation(s)
- Narinder Singh
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Shuangye Wu
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Vijay Tiwari
- Department of Plant Science & Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Sunish Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - John Raupp
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Duane Wilson
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Mehraj Abbasov
- Genetic Resources Institute, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Bikram Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
82
|
Singh N, Wu S, Raupp WJ, Sehgal S, Arora S, Tiwari V, Vikram P, Singh S, Chhuneja P, Gill BS, Poland J. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Sci Rep 2019; 9:650. [PMID: 30679756 PMCID: PMC6346010 DOI: 10.1038/s41598-018-37269-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/30/2018] [Indexed: 01/03/2023] Open
Abstract
Genebanks are valuable resources for crop improvement through the acquisition, ex-situ conservation and sharing of unique germplasm among plant breeders and geneticists. With over seven million existing accessions and increasing storage demands and costs, genebanks need efficient characterization and curation to make them more accessible and usable and to reduce operating costs, so that the crop improvement community can most effectively leverage this vast resource of untapped novel genetic diversity. However, the sharing and inconsistent documentation of germplasm often results in unintentionally duplicated collections with poor characterization and many identical accessions that can be hard or impossible to identify without passport information and unmatched accession identifiers. Here we demonstrate the use of genotypic information from these accessions using a cost-effective next generation sequencing platform to find and remove duplications. We identify and characterize over 50% duplicated accessions both within and across genebank collections of Aegilops tauschii, an important wild relative of wheat and source of genetic diversity for wheat improvement. We present a pipeline to identify and remove identical accessions within and among genebanks and curate globally unique accessions. We also show how this approach can also be applied to future collection efforts to avoid the accumulation of identical material. When coordinated across global genebanks, this approach will ultimately allow for cost effective and efficient management of germplasm and better stewarding of these valuable resources.
Collapse
Affiliation(s)
- Narinder Singh
- Interdepartmental Genetics Program, Kansas State University, Manhattan, KS, 66506, USA.,Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Shuangye Wu
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - W John Raupp
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish Sehgal
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sanu Arora
- Crop Genetics, John Innes Center, Norwich, NR4 7UH, United Kingdom
| | - Vijay Tiwari
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.,Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Prashant Vikram
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Colonia El Batán, Texcoco, Edo, De México, CP, 56130, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Colonia El Batán, Texcoco, Edo, De México, CP, 56130, Mexico
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
83
|
Singh N, Wu S, Raupp WJ, Sehgal S, Arora S, Tiwari V, Vikram P, Singh S, Chhuneja P, Gill BS, Poland J. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Sci Rep 2019; 9:650. [PMID: 30679756 DOI: 10.1101/410779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/30/2018] [Indexed: 05/25/2023] Open
Abstract
Genebanks are valuable resources for crop improvement through the acquisition, ex-situ conservation and sharing of unique germplasm among plant breeders and geneticists. With over seven million existing accessions and increasing storage demands and costs, genebanks need efficient characterization and curation to make them more accessible and usable and to reduce operating costs, so that the crop improvement community can most effectively leverage this vast resource of untapped novel genetic diversity. However, the sharing and inconsistent documentation of germplasm often results in unintentionally duplicated collections with poor characterization and many identical accessions that can be hard or impossible to identify without passport information and unmatched accession identifiers. Here we demonstrate the use of genotypic information from these accessions using a cost-effective next generation sequencing platform to find and remove duplications. We identify and characterize over 50% duplicated accessions both within and across genebank collections of Aegilops tauschii, an important wild relative of wheat and source of genetic diversity for wheat improvement. We present a pipeline to identify and remove identical accessions within and among genebanks and curate globally unique accessions. We also show how this approach can also be applied to future collection efforts to avoid the accumulation of identical material. When coordinated across global genebanks, this approach will ultimately allow for cost effective and efficient management of germplasm and better stewarding of these valuable resources.
Collapse
Affiliation(s)
- Narinder Singh
- Interdepartmental Genetics Program, Kansas State University, Manhattan, KS, 66506, USA
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Shuangye Wu
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - W John Raupp
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Sunish Sehgal
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sanu Arora
- Crop Genetics, John Innes Center, Norwich, NR4 7UH, United Kingdom
| | - Vijay Tiwari
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Prashant Vikram
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Colonia El Batán, Texcoco, Edo, De México, CP, 56130, Mexico
| | - Sukhwinder Singh
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, Colonia El Batán, Texcoco, Edo, De México, CP, 56130, Mexico
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
84
|
Nishijima R, Yoshida K, Sakaguchi K, Yoshimura SI, Sato K, Takumi S. RNA Sequencing-Based Bulked Segregant Analysis Facilitates Efficient D-genome Marker Development for a Specific Chromosomal Region of Synthetic Hexaploid Wheat. Int J Mol Sci 2018; 19:E3749. [PMID: 30486239 PMCID: PMC6321645 DOI: 10.3390/ijms19123749] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 11/16/2022] Open
Abstract
Common wheat originated from interspecific hybridization between cultivated tetraploid wheat and its wild diploid relative Aegilops tauschii followed by amphidiploidization. This evolutionary process can be reproduced artificially, resulting in synthetic hexaploid wheat lines. Here we performed RNA sequencing (RNA-seq)-based bulked segregant analysis (BSA) using a bi-parental mapping population of two synthetic hexaploid wheat lines that shared identical A and B genomes but included with D-genomes of distinct origins. This analysis permitted identification of D-genome-specific polymorphisms around the Net2 gene, a causative locus to hybrid necrosis. The resulting single nucleotide polymorphisms (SNPs) were classified into homoeologous polymorphisms and D-genome allelic variations, based on the RNA-seq results of a parental tetraploid and two Ae. tauschii accessions. The difference in allele frequency at the D-genome-specific SNP sites between the contrasting bulks (ΔSNP-index) was higher on the target chromosome than on the other chromosomes. Several SNPs with the highest ΔSNP-indices were converted into molecular markers and assigned to the Net2 chromosomal region. These results indicated that RNA-seq-based BSA can be applied efficiently to a synthetic hexaploid wheat population to permit molecular marker development in a specific chromosomal region of the D genome.
Collapse
Affiliation(s)
- Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
| | - Kohei Sakaguchi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
| | - Shin-Ichi Yoshimura
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
85
|
Rawat N, Schoen A, Singh L, Mahlandt A, Wilson DL, Liu S, Lin G, Gill BS, Tiwari VK. TILL-D: An Aegilops tauschii TILLING Resource for Wheat Improvement. FRONTIERS IN PLANT SCIENCE 2018; 9:1665. [PMID: 30487809 PMCID: PMC6246738 DOI: 10.3389/fpls.2018.01665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/26/2018] [Indexed: 05/28/2023]
Abstract
Aegilops tauschii (2n = 2x = 14, genome DD), also known as Tausch's goatgrass, is the D genome donor of bread or hexaploid wheat Triticum aestivum (2n = 2x = 42, AABBDD genome). It is a rich reservoir of useful genes for biotic and abiotic stress tolerance for wheat improvement. We developed a TILLING (Targeting Induced Local Lesions In Genomes) resource for Ae. tauschii for discovery and validation of useful genes in the D genome of wheat. The population, referred to as TILL-D, was developed with ethyl methanesulfonate (EMS) mutagen. The survival rate in M1 generation was 73%, out of which 22% plants were sterile. In the M2 generation 25% of the planted seeds showed phenotypic mutations such as albinos, chlorinas, no germination, variegated, sterile and partially fertile events, and 2,656 produced fertile M2 plants. The waxy gene was used to calculate the mutation frequency (1/70 kb) of the developed population, which was found to be higher than known mutation frequencies for diploid plants (1/89-1/1000 kb), but lower than that for a polyploid species (1/24-1/51 kb). The TILL-D resource, together with the newly published Ae. tauschii reference genome sequence, will facilitate gene discoveries and validations of agronomically important traits and their eventual fine transfer in bread wheat.
Collapse
Affiliation(s)
- Nidhi Rawat
- Plant Science and Landscape Architecture Department, University of Maryland, College Park, College Park, MD, United States
| | - Adam Schoen
- Plant Science and Landscape Architecture Department, University of Maryland, College Park, College Park, MD, United States
| | - Lovepreet Singh
- Plant Science and Landscape Architecture Department, University of Maryland, College Park, College Park, MD, United States
| | - Alexander Mahlandt
- Plant Science and Landscape Architecture Department, University of Maryland, College Park, College Park, MD, United States
| | - Duane L. Wilson
- Plant Pathology Department, Kansas State University, Manhattan, KS, United States
| | - Sanzhen Liu
- Plant Pathology Department, Kansas State University, Manhattan, KS, United States
| | - Guifang Lin
- Plant Pathology Department, Kansas State University, Manhattan, KS, United States
| | - Bikram S. Gill
- Plant Pathology Department, Kansas State University, Manhattan, KS, United States
| | - Vijay K. Tiwari
- Plant Pathology Department, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
86
|
Dvorak J, Wang L, Zhu T, Jorgensen CM, Luo MC, Deal KR, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, McGuire PE. Reassessment of the evolution of wheat chromosomes 4A, 5A, and 7B. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2451-2462. [PMID: 30141064 PMCID: PMC6208953 DOI: 10.1007/s00122-018-3165-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/13/2018] [Indexed: 05/02/2023]
Abstract
Comparison of genome sequences of wild emmer wheat and Aegilops tauschii suggests a novel scenario of the evolution of rearranged wheat chromosomes 4A, 5A, and 7B. Past research suggested that wheat chromosome 4A was subjected to a reciprocal translocation T(4AL;5AL)1 that occurred in the diploid progenitor of the wheat A subgenome and to three major rearrangements that occurred in polyploid wheat: pericentric inversion Inv(4AS;4AL)1, paracentric inversion Inv(4AL;4AL)1, and reciprocal translocation T(4AL;7BS)1. Gene collinearity along the pseudomolecules of tetraploid wild emmer wheat (Triticum turgidum ssp. dicoccoides, subgenomes AABB) and diploid Aegilops tauschii (genomes DD) was employed to confirm these rearrangements and to analyze the breakpoints. The exchange of distal regions of chromosome arms 4AS and 4AL due to pericentric inversion Inv(4AS;4AL)1 was detected, and breakpoints were validated with an optical Bionano genome map. Both breakpoints contained satellite DNA. The breakpoints of reciprocal translocation T(4AL;7BS)1 were also found. However, the breakpoints that generated paracentric inversion Inv(4AL;4AL)1 appeared to be collocated with the 4AL breakpoints that had produced Inv(4AS;4AL)1 and T(4AL;7BS)1. Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 either originated sequentially, and Inv(4AL;4AL)1 was produced by recurrent chromosome breaks at the same breakpoints that generated Inv(4AS;4AL)1 and T(4AL;7BS)1, or Inv(4AS;4AL)1, Inv(4AL;4AL)1, and T(4AL;7BS)1 originated simultaneously. We prefer the latter hypothesis since it makes fewer assumptions about the sequence of events that produced these chromosome rearrangements.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Chad M. Jorgensen
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Karin R. Deal
- Department of Plant Sciences, University of California, Davis, CA USA
| | - Yong Q. Gu
- Crop Improvement and Genetics Research, USDA-ARS, Albany, CA USA
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS USA
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Katrien M. Devos
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA USA
- Department of Plant Biology, University of Georgia, Athens, GA USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA USA
- Department of Plant Biology, University of Georgia, Athens, GA USA
| | | |
Collapse
|
87
|
Thind AK, Wicker T, Müller T, Ackermann PM, Steuernagel B, Wulff BBH, Spannagl M, Twardziok SO, Felder M, Lux T, Mayer KFX, Keller B, Krattinger SG. Chromosome-scale comparative sequence analysis unravels molecular mechanisms of genome dynamics between two wheat cultivars. Genome Biol 2018; 19:104. [PMID: 30115097 PMCID: PMC6097286 DOI: 10.1186/s13059-018-1477-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent improvements in DNA sequencing and genome scaffolding have paved the way to generate high-quality de novo assemblies of pseudomolecules representing complete chromosomes of wheat and its wild relatives. These assemblies form the basis to compare the dynamics of wheat genomes on a megabase scale. RESULTS Here, we provide a comparative sequence analysis of the 700-megabase chromosome 2D between two bread wheat genotypes-the old landrace Chinese Spring and the elite Swiss spring wheat line 'CH Campala Lr22a'. Both chromosomes were assembled into megabase-sized scaffolds. There is a high degree of sequence conservation between the two chromosomes. Analysis of large structural variations reveals four large indels of more than 100 kb. Based on the molecular signatures at the breakpoints, unequal crossing over and double-strand break repair were identified as the molecular mechanisms that caused these indels. Three of the large indels affect copy number of NLRs, a gene family involved in plant immunity. Analysis of SNP density reveals four haploblocks of 4, 8, 9 and 48 Mb with a 35-fold increased SNP density compared to the rest of the chromosome. Gene content across the two chromosomes was highly conserved. Ninety-nine percent of the genic sequences were present in both genotypes and the fraction of unique genes ranged from 0.4 to 0.7%. CONCLUSIONS This comparative analysis of two high-quality chromosome assemblies enabled a comprehensive assessment of large structural variations and gene content. The insight obtained from this analysis will form the basis of future wheat pan-genome studies.
Collapse
Affiliation(s)
- Anupriya Kaur Thind
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Thomas Müller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Patrick M Ackermann
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | | | | | | | | | | | - Thomas Lux
- Helmholtz Zentrum Munich, Munich, Germany
| | - Klaus F X Mayer
- Helmholtz Zentrum Munich, Munich, Germany
- School of Life Sciences, Technical University Munich, Munich, Germany
- College of Science, King Saud University, Riad, Kingdom of Saudi Arabia
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland
| | - Simon G Krattinger
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, Zurich, Switzerland.
- King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
88
|
Unlocking the novel genetic diversity and population structure of synthetic Hexaploid wheat. BMC Genomics 2018; 19:591. [PMID: 30081829 PMCID: PMC6090860 DOI: 10.1186/s12864-018-4969-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/30/2018] [Indexed: 02/01/2023] Open
Abstract
Background Synthetic hexaploid wheat (SHW) is a reconstitution of hexaploid wheat from its progenitors (Triticum turgidum ssp. durum L.; AABB x Aegilops tauschii Coss.; DD) and has novel sources of genetic diversity for broadening the genetic base of elite bread wheat (BW) germplasm (T. aestivum L). Understanding the diversity and population structure of SHWs will facilitate their use in wheat breeding programs. Our objectives were to understand the genetic diversity and population structure of SHWs and compare the genetic diversity of SHWs with elite BW cultivars and demonstrate the potential of SHWs to broaden the genetic base of modern wheat germplasm. Results The genotyping-by-sequencing of SHW provided 35,939 high-quality single nucleotide polymorphisms (SNPs) that were distributed across the A (33%), B (36%), and D (31%) genomes. The percentage of SNPs on the D genome was nearly same as the other two genomes, unlike in BW cultivars where the D genome polymorphism is generally much lower than the A and B genomes. This indicates the presence of high variation in the D genome in the SHWs. The D genome gene diversity of SHWs was 88.2% higher than that found in a sample of elite BW cultivars. Population structure analysis revealed that SHWs could be separated into two subgroups, mainly differentiated by geographical location of durum parents and growth habit of the crop (spring and winter type). Further population structure analysis of durum and Ae. parents separately identified two subgroups, mainly based on type of parents used. Although Ae. tauschii parents were divided into two sub-species: Ae. tauschii ssp. tauschii and ssp. strangulate, they were not clearly distinguished in the diversity analysis outcome. Population differentiation between SHWs (Spring_SHW and Winter_SHW) samples using analysis of molecular variance indicated 17.43% of genetic variance between populations and the remainder within populations. Conclusions SHWs were diverse and had a clearly distinguished population structure identified through GBS-derived SNPs. The results of this study will provide valuable information for wheat genetic improvement through inclusion of novel genetic variation and is a prerequisite for association mapping and genomic selection to unravel economically important marker-trait associations and for cultivar development. Electronic supplementary material The online version of this article (10.1186/s12864-018-4969-2) contains supplementary material, which is available to authorized users.
Collapse
|
89
|
Dvorak J, Wang L, Zhu T, Jorgensen CM, Deal KR, Dai X, Dawson MW, Müller HG, Luo MC, Ramasamy RK, Dehghani H, Gu YQ, Gill BS, Distelfeld A, Devos KM, Qi P, You FM, Gulick PJ, McGuire PE. Structural variation and rates of genome evolution in the grass family seen through comparison of sequences of genomes greatly differing in size. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:487-503. [PMID: 29770515 DOI: 10.1111/tpj.13964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 05/05/2023]
Abstract
Homology was searched with genes annotated in the Aegilops tauschii pseudomolecules against genes annotated in the pseudomolecules of tetraploid wild emmer wheat, Brachypodium distachyon, sorghum and rice. Similar searches were performed with genes annotated in the rice pseudomolecules. Matrices of collinear genes and rearrangements in their order were constructed. Optical BioNano genome maps were constructed and used to validate rearrangements unique to the wild emmer and Ae. tauschii genomes. Most common rearrangements were short paracentric inversions and short intrachromosomal translocations. Intrachromosomal translocations outnumbered segmental intrachromosomal duplications. The densities of paracentric inversion lengths were approximated by exponential distributions in all six genomes. Densities of collinear genes along the Ae. tauschii chromosomes were highly correlated with meiotic recombination rates but those of rearrangements were not, suggesting different causes of the erosion of gene collinearity and evolution of major chromosome rearrangements. Frequent rearrangements sharing breakpoints suggested that chromosomes have been rearranged recurrently at some sites. The distal 4 Mb of the short arms of rice chromosomes Os11 and Os12 and corresponding regions in the sorghum, B. distachyon and Triticeae genomes contain clusters of interstitial translocations including from 1 to 7 collinear genes. The rates of acquisition of major rearrangements were greater in the large wild emmer wheat and Ae. tauschii genomes than in the lineage preceding their divergence or in the B. distachyon, rice and sorghum lineages. It is suggested that synergy between large quantities of dynamic transposable elements and annual growth habit have been the primary causes of the fast evolution of the Triticeae genomes.
Collapse
Affiliation(s)
- Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Chad M Jorgensen
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Xiongtao Dai
- Department of Statistics, University of California, Davis, CA, USA
| | - Matthew W Dawson
- Department of Statistics, University of California, Davis, CA, USA
| | | | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Ramesh K Ramasamy
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Hamid Dehghani
- Department of Plant Sciences, University of California, Davis, CA, USA
- Department of Plant Breeding, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yong Q Gu
- Crop Improvement & Genetics Research, USDA-ARS, Albany, CA, USA
| | - Bikram S Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop & Soil Sciences), University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics (Department of Crop & Soil Sciences), University of Georgia, Athens, GA, USA
- Department of Plant Biology, University of Georgia, Athens, GA, USA
| | - Frank M You
- Agriculture & Agri-Food Canada, Morden, MB, Canada
| | - Patrick J Gulick
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Patrick E McGuire
- Department of Plant Sciences, University of California, Davis, CA, USA
| |
Collapse
|
90
|
Rasheed A, Mujeeb-Kazi A, Ogbonnaya FC, He Z, Rajaram S. Wheat genetic resources in the post-genomics era: promise and challenges. ANNALS OF BOTANY 2018; 121:603-616. [PMID: 29240874 PMCID: PMC5852999 DOI: 10.1093/aob/mcx148] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/13/2017] [Indexed: 05/18/2023]
Abstract
Background Wheat genetic resources have been used for genetic improvement since 1876, when Stephen Wilson (Transactions and Proceedings of the Botanical Society of Edinburgh 12: 286) consciously made the first wide hybrid involving wheat and rye in Scotland. Wide crossing continued with sporadic attempts in the first half of 19th century and became a sophisticated scientific discipline during the last few decades with considerable impact in farmers' fields. However, a large diversity of untapped genetic resources could contribute in meeting future wheat production challenges. Perspectives and Conclusion Recently the complete reference genome of hexaploid (Chinese Spring) and tetraploid (Triticum turgidum ssp. dicoccoides) wheat became publicly available coupled with on-going international efforts on wheat pan-genome sequencing. We anticipate that an objective appraisal is required in the post-genomics era to prioritize genetic resources for use in the improvement of wheat production if the goal of doubling yield by 2050 is to be met. Advances in genomics have resulted in the development of high-throughput genotyping arrays, improved and efficient methods of gene discovery, genomics-assisted selection and gene editing using endonucleases. Likewise, ongoing advances in rapid generation turnover, improved phenotyping, envirotyping and analytical methods will significantly accelerate exploitation of exotic genes and increase the rate of genetic gain in breeding. We argue that the integration of these advances will significantly improve the precision and targeted identification of potentially useful variation in the wild relatives of wheat, providing new opportunities to contribute to yield and quality improvement, tolerance to abiotic stresses, resistance to emerging biotic stresses and resilience to weather extremes.
Collapse
Affiliation(s)
- Awais Rasheed
- International Maize and Wheat Improvement Center (CIMMYT), c/o Chinese Academy of Agricultural Sciences (CAAS), China
- Institute of Crop Sciences, CAAS, China
| | | | | | - Zhonghu He
- International Maize and Wheat Improvement Center (CIMMYT), c/o Chinese Academy of Agricultural Sciences (CAAS), China
- Institute of Crop Sciences, CAAS, China
| | | |
Collapse
|
91
|
Goriewa-Duba K, Duba A, Kwiatek M, Wiśniewska H, Wachowska U, Wiwart M. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.). PLoS One 2018; 13:e0192862. [PMID: 29447228 PMCID: PMC5813972 DOI: 10.1371/journal.pone.0192862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Fluorescent in situ hybridization (FISH) relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines), to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.
Collapse
Affiliation(s)
- Klaudia Goriewa-Duba
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Olsztyn, Warmian-Masurian Voivodeship, Poland
| | - Adrian Duba
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Olsztyn, Warmian-Masurian Voivodeship, Poland
| | - Michał Kwiatek
- Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Wielkopolskie Voivodeship, Poland
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Wielkopolskie Voivodeship, Poland
| | - Halina Wiśniewska
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Wielkopolskie Voivodeship, Poland
| | - Urszula Wachowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Olsztyn, Warmian-Masurian Voivodeship, Poland
| | - Marian Wiwart
- Department of Plant Breeding and Seed Production, University of Warmia and Mazury in Olsztyn, Olsztyn, Warmian-Masurian Voivodeship, Poland
| |
Collapse
|
92
|
Nishijima R, Tanaka C, Yoshida K, Takumi S. Genetic mapping of a novel recessive allele for non-glaucousness in wild diploid wheat Aegilops tauschii: implications for the evolution of common wheat. Genetica 2018; 146:249-254. [PMID: 29397498 DOI: 10.1007/s10709-018-0012-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/31/2018] [Indexed: 11/29/2022]
Abstract
Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish-whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.
Collapse
Affiliation(s)
- Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Chisa Tanaka
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Kentaro Yoshida
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.,Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
93
|
High throughput SNP discovery and genotyping in hexaploid wheat. PLoS One 2018; 13:e0186329. [PMID: 29293495 PMCID: PMC5749704 DOI: 10.1371/journal.pone.0186329] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/13/2017] [Indexed: 12/03/2022] Open
Abstract
Because of their abundance and their amenability to high-throughput genotyping techniques, Single Nucleotide Polymorphisms (SNPs) are powerful tools for efficient genetics and genomics studies, including characterization of genetic resources, genome-wide association studies and genomic selection. In wheat, most of the previous SNP discovery initiatives targeted the coding fraction, leaving almost 98% of the wheat genome largely unexploited. Here we report on the use of whole-genome resequencing data from eight wheat lines to mine for SNPs in the genic, the repetitive and non-repetitive intergenic fractions of the wheat genome. Eventually, we identified 3.3 million SNPs, 49% being located on the B-genome, 41% on the A-genome and 10% on the D-genome. We also describe the development of the TaBW280K high-throughput genotyping array containing 280,226 SNPs. Performance of this chip was examined by genotyping a set of 96 wheat accessions representing the worldwide diversity. Sixty-nine percent of the SNPs can be efficiently scored, half of them showing a diploid-like clustering. The TaBW280K was proven to be a very efficient tool for diversity analyses, as well as for breeding as it can discriminate between closely related elite varieties. Finally, the TaBW280K array was used to genotype a population derived from a cross between Chinese Spring and Renan, leading to the construction a dense genetic map comprising 83,721 markers. The results described here will provide the wheat community with powerful tools for both basic and applied research.
Collapse
|
94
|
Zhao L, Ning S, Yi Y, Zhang L, Yuan Z, Wang J, Zheng Y, Hao M, Liu D. Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii. BMC Genomics 2018; 19:3. [PMID: 29291709 PMCID: PMC5748962 DOI: 10.1186/s12864-017-4384-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/15/2017] [Indexed: 11/23/2022] Open
Abstract
Background Aegilops tauschii is the donor of the bread wheat D genome. Based on spike morphology, the taxon has conventionally been subdivided into ssp. tauschii and ssp. strangulata. The present study was intended to address the poor match between this whole plant morphology-based subdivision and genetic relationships inferred from genotyping by fluorescence in situ hybridization karyotyping a set of 31 Ae. tauschii accessions. Results The distribution of sites hybridizing to the two probes oligo-pTa-535 and (CTT)10 split the Ae. tauschii accessions into two clades, designated Dt and Ds, which corresponded perfectly with a previously assembled phylogeny based on marker genotype. The Dt cluster was populated exclusively by ssp. tauschii accessions, while the Ds cluster harbored both ssp. strangulata and morphologically intermediate accessions. As a result, it is proposed that Ae. tauschii ssp. tauschii is restricted to carriers of the Dt karyotype: their spikelets are regularly spaced along the rachis, at least in the central portion of their spike. Accessions classified as Ae. tauschii ssp. strangulata carry the Ds karyotype; their spikelets are irregularly spaced. Based on this criterion, forms formerly classified as ssp. tauschii var. meyeri have been re-designated ssp. strangulata var. meyeri. Conclusions According to the reworking of the taxon, the bread wheat D genome was most probably donated by ssp. strangulata var. meyeri. Chromosomal differentiation reveals intra-species taxon of Ae. tauschii. Ae. tauschii ssp. tauschii has more distant relationship with breed wheat than ssp. strangulata and can be used for breeding improving effectively.
Collapse
Affiliation(s)
- Laibin Zhao
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Shunzong Ning
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Yingjin Yi
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Zhongwei Yuan
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China.,Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China.,Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China.
| | - Dengcai Liu
- Triticeae Research Institute, Sichuan Agricultural University, No. 211 Huiming Rd, Wenjiang District, Chengdu City, Sichuan province, 611130, People's Republic of China. .,Key Laboratory of Crop Genetic Resources and Improvement, Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 625014, China.
| |
Collapse
|
95
|
Zhou Y, Chen Z, Cheng M, Chen J, Zhu T, Wang R, Liu Y, Qi P, Chen G, Jiang Q, Wei Y, Luo M, Nevo E, Allaby RG, Liu D, Wang J, Dvorák J, Zheng Y. Uncovering the dispersion history, adaptive evolution and selection of wheat in China. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:280-291. [PMID: 28635103 PMCID: PMC5785339 DOI: 10.1111/pbi.12770] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 05/18/2023]
Abstract
Wheat was introduced to China approximately 4500 years ago, where it adapted over a span of time to various environments in agro-ecological growing zones. We investigated 717 Chinese and 14 Iranian/Turkish geographically diverse, locally adapted wheat landraces with 27 933 DArTseq (for 717 landraces) and 312 831 Wheat660K (for a subset of 285 landraces) markers. This study highlights the adaptive evolutionary history of wheat cultivation in China. Environmental stresses and independent selection efforts have resulted in considerable genome-wide divergence at the population level in Chinese wheat landraces. In total, 148 regions of the wheat genome show signs of selection in at least one geographic area. Our data show adaptive events across geographic areas, from the xeric northwest to the mesic south, along and among homoeologous chromosomes, with fewer variations in the D genome than in the A and B genomes. Multiple variations in interdependent functional genes such as regulatory and metabolic genes controlling germination and flowering time were characterized, showing clear allelic frequency changes corresponding to the dispersion of wheat in China. Population structure and selection data reveal that Chinese wheat spread from the northwestern Caspian Sea region to South China, adapting during its agricultural trajectory to increasingly mesic and warm climatic areas.
Collapse
Affiliation(s)
- Yong Zhou
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Zhongxu Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Mengping Cheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Jian Chen
- Chengdu City Institute of ArchaeologyChengduSichuanChina
| | - Tingting Zhu
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Rui Wang
- State Key Lab of CAD&CGZhejiang UniversityHangzhouZhejiangChina
| | - Yaxi Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Pengfei Qi
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Guoyue Chen
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Qiantao Jiang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Yuming Wei
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Ming‐Cheng Luo
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Eviatar Nevo
- Institute of EvolutionUniversity of HaifaHaifaIsrael
| | | | - Dengcai Liu
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| | - Jirui Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| | - Jan Dvorák
- Department of Plant SciencesUniversity of CaliforniaDavisCAUSA
| | - Youliang Zheng
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuanChina
- Ministry of Education Key Laboratory for Crop Genetic Resources and Improvement in Southwest ChinaSichuan Agricultural UniversityYaanSichuanChina
| |
Collapse
|
96
|
Zhang D, Zhou Y, Zhao X, Lv L, Zhang C, Li J, Sun G, Li S, Song C. Development and Utilization of Introgression Lines Using Synthetic Octaploid Wheat ( Aegilops tauschii × Hexaploid Wheat) as Donor. FRONTIERS IN PLANT SCIENCE 2018; 9:1113. [PMID: 30123230 PMCID: PMC6085485 DOI: 10.3389/fpls.2018.01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/10/2018] [Indexed: 05/21/2023]
Abstract
As the diploid progenitor of common wheat, Aegilops tauschii Cosson (DD, 2n = 2x = 14) is considered to be a promising genetic resource for the improvement of common wheat. In this work, we demonstrated that the efficiency of transferring A. tauschii segments to common wheat was clearly improved through the use of synthetic octaploid wheat (AABBDDDD, 2n = 8x = 56) as a "bridge." The synthetic octaploid was obtained by chromosome doubling of hybrid F1 (A. tauschii T015 × common wheat Zhoumai 18). A set of introgression lines (BC1F8) containing 6016 A. tauschii segments was developed and displayed significant phenotype variance among lines. Twelve agronomic traits, including growth duration, panicle traits, grain traits, and plant height (PH), were evaluated. And transgressive segregation was identified in partial lines. Additionally, better agronomic traits could be observed in some lines, compared to the recurrent parent Zhoumai 18. To verify that the significant variance of those agronomic traits was supposedly controlled by A. tauschii segments, 14 quantitative trait loci (QTLs) for three important agronomic traits (thousand kernel weight, spike length, and PH) were further located in the two environments (Huixian and Zhongmou), indicating the introgression of favorable alleles from A. tauschii into common wheat. This study provides an ameliorated strategy to improve common wheat utilizing a single A. tauschii genome.
Collapse
Affiliation(s)
- Dale Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Yun Zhou
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xinpeng Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Linlin Lv
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Cancan Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Junhua Li
- School of Life Sciences, Henan Normal University, Xinxiang, China
| | - Guiling Sun
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Suoping Li
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Suoping Li, ; Chunpeng Song,
| | - Chunpeng Song
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Suoping Li, ; Chunpeng Song,
| |
Collapse
|
97
|
Li H, Deal KR, Luo MC, Ji W, Distelfeld A, Dvorak J. Introgression of the Aegilops speltoides Su1-Ph1 Suppressor into Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:2163. [PMID: 29326749 PMCID: PMC5742420 DOI: 10.3389/fpls.2017.02163] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/07/2017] [Indexed: 05/19/2023]
Abstract
Meiotic pairing between homoeologous chromosomes in polyploid wheat is inhibited by the Ph1 locus on the long arm of chromosome 5 in the B genome. Aegilops speltoides (genomes SS), the closest relative of the progenitor of the wheat B genome, is polymorphic for genetic suppression of Ph1. Using this polymorphism, two major suppressor loci, Su1-Ph1 and Su2-Ph1, have been mapped in Ae. speltoides. Su1-Ph1 is located in the distal, high-recombination region of the long arm of the Ae. speltoides chromosome 3S. Its location and tight linkage to marker Xpsr1205-3S makes Su1-Ph1 a suitable target for introgression into wheat. Here, Xpsr1205-3S was introgressed into hexaploid bread wheat cv. Chinese Spring (CS) and from there into tetraploid durum wheat cv. Langdon (LDN). Sequential fluorescence in situ hybridization and genomic in situ hybridization showed that an Ae. speltoides segment with Xpsr1205-3S replaced the distal end of the long arm of chromosome 3A. In the CS genetic background, the chromosome induced homoeologous chromosome pairing in interspecific hybrids with Ae. peregrina but not in progenies from crosses involving alien disomic substitution lines. In the LDN genetic background, the chromosome induced homoeologous chromosome pairing in both interspecific hybrids and progenies from crosses involving alien disomic substitution lines. We conclude that the recombined chromosome harbors Su1-Ph1 but its expression requires expression of complementary gene that is present in LDN but absent in CS. We suggest that it is unlikely that Su1-Ph1 and ZIP4-1, a paralog of Ph1 located on wheat chromosomes 3A and 3B and Ae. tauschii chromosome 3D, are equivalent. The utility of Su1-Ph1 for induction of recombination between homoeologous chromosomes in wheat is illustrated.
Collapse
Affiliation(s)
- Hao Li
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Karin R. Deal
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Wanquan Ji
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Assaf Distelfeld
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
98
|
Dale Z, Jie H, Luyu H, Cancan Z, Yun Z, Yarui S, Suoping L. An Advanced Backcross Population through Synthetic Octaploid Wheat as a "Bridge": Development and QTL Detection for Seed Dormancy. FRONTIERS IN PLANT SCIENCE 2017; 8:2123. [PMID: 29321790 PMCID: PMC5733556 DOI: 10.3389/fpls.2017.02123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
The seed dormancy characteristic is regarded as one of the most critical factors for pre-harvest sprouting (PHS) resistance. As a wild wheat relative species, Aegilops tauschii is a potential genetic resource for improving common wheat. In this study, an advanced backcross population (201 strains) containing only Ae. tauschii segments was developed by means of synthetic octaploid wheat (hexaploid wheat Zhoumai 18 × Ae. tauschii T093). Subsequently, seed dormancy rate (Dor) in the advanced backcross population was evaluated on the day 3, 5 and 7, in which 2 major QTLs (QDor-2D and QDor-3D) were observed on chromosomes 2D and 3D with phenotypic variance explained values (PVEs) of 10.25 and 20.40%, respectively. Further investigation revealed significant correlation between QDor-3D and Tamyb10 gene, while no association was found between the former and TaVp1 gene, implying that QDor-3D site could be of closer position to Tamyb10. The obtained quantitative trait locus sites (QTLs) in this work could be applied to develop wheat cultivars with PHS resistance.
Collapse
Affiliation(s)
- Zhang Dale
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - He Jie
- School of Life Science, Henan University, Kaifeng, China
| | - Huang Luyu
- School of Life Science, Henan University, Kaifeng, China
| | - Zhang Cancan
- School of Life Science, Henan University, Kaifeng, China
| | - Zhou Yun
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Su Yarui
- School of Life Science, Henan University, Kaifeng, China
| | - Li Suoping
- School of Life Science, Henan University, Kaifeng, China
- Institute of Plant Stress Biology, Henan University, Kaifeng, China
| |
Collapse
|
99
|
Tavakol E. Virus-Induced Gene Silencing (VIGS) in Aegilops tauschii and Its Use in Functional Analysis of AetDREB2. Mol Biotechnol 2017; 60:41-48. [PMID: 29196985 DOI: 10.1007/s12033-017-0042-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Among the available reverse genetic approaches for studying gene function, virus-induced gene silencing (VIGS) has several advantages. It allows rapid characterization of gene function independent of stable transformation, which is basically difficult to achieve in monocots, and offers the potential to silence individual or multiple genes of a gene family. In order to establish a VIGS system in Aegilops tauschii, modified vectors derived from Barley stripe mosaic virus (BSMV) were used for silencing a phytoene desaturase gene that provides a convenient visual reporter for silencing. The results demonstrated a high efficiency of BSMV-VIGS in A. tauschii. Moreover, the BSMV-VIGS system was used to target a 354 bp specific region of the Dehydration-responsive element-binding (AetDreb2) gene, resulting in successful silencing of the gene in A. tauschii plants, as verified by real-time qRT-PCR. Indeed, in comparison with plants that were inoculated with an empty vector (BSMV:00), a faster rate of wilting and a lower relative water content were observed in plants inoculated with BSMV:AetDreb2 when they were exposed to drought stress. Therefore, BSMV-VIGS can be efficiently employed as a novel tool for reverse genetics in A. tauschii. It can also be used to study the effects of polyploidization on the gene function by a comparative analysis between bread wheat and its diploid progenitor.
Collapse
Affiliation(s)
- Elahe Tavakol
- Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, 7144165186, Shiraz, Iran.
| |
Collapse
|
100
|
The role of reproductive isolation in allopolyploid speciation patterns: empirical insights from the progenitors of common wheat. Sci Rep 2017; 7:16004. [PMID: 29167543 PMCID: PMC5700127 DOI: 10.1038/s41598-017-15919-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/03/2017] [Indexed: 11/15/2022] Open
Abstract
The ability to cause reproductive isolation often varies among individuals within a plant species. We addressed whether such polymorphism influenced speciation of the allopolyploid common wheat (Triticum aestivum L., AABBDD genome) by evaluating the expression of pre-pollination (outcrossing potential) and post-pollination (crossability) barriers in Aegilops tauschii Coss. (the D genome progenitor). In total, 201 Ae. tauschii accessions representing the entire natural habitat range of the species were used for anther length measurement and artificial crosses with a Triticum turgidum L. (the AB genome progenitor) tester. Intraspecific comparisons showed that both barriers were more strongly expressed in the TauL1 lineage than in the TauL2 lineage. The ability of Ae. tauschii to cause reproductive isolation in the hybridisation with T. turgidum might have markedly influenced common wheat’s speciation by inducing lineage-associated patterns of gene flow. The TauL2 accessions with high potential for natural hybridisation with T. turgidum clustered in the southern coastal Caspian region. This provided phenotypic support for the derivation of the D genome of common wheat from southern Caspian populations. The present study underscored the importance of approaches that incorporate the genealogical and geographic structure of the parental species’ reproductive isolation in understanding the mechanism of plant allopolyploid speciation.
Collapse
|