51
|
Khan MSS, Basnet R, Islam SA, Shu Q. Mutational Analysis of OsPLDα1 Reveals Its Involvement in Phytic Acid Biosynthesis in Rice Grains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11436-11443. [PMID: 31553599 DOI: 10.1021/acs.jafc.9b05052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Phospholipids and phytic acid are important phosphorus (P)-containing compounds in rice grains. Phytic acid is considered as a major antinutrient, because the negatively charged phytic acid chelates cations, including essential micronutrients, and decreases their bioavailability to human beings and monogastric animals. To gain an insight into the interplay of these two kinds of phosphorus-containing metabolites, we used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (OsPLDα1) and analyzed the mutational effect on metabolites, including phytic acid in rice grains. Metabolic profiling of two ospldα1 mutants revealed depletion in the phosphatidic acid production and lower accumulation of cytidine diphosphate diacylglycerol and phosphatidylinositol. The mutants also showed significantly reduced phytic acid content as compared to their wild-type parent, and the expression of the key genes involved in the phytic acid biosynthesis was altered in the mutants. These results demonstrate that OsPLDα1 not only plays an important role in phospholipid metabolism but also is involved in phytic acid biosynthesis, most probably through the lipid-dependent pathway, and thus revealed a potential new route to regulate phytic acid biosynthesis in rice.
Collapse
Affiliation(s)
- Muhammad Saad Shoaib Khan
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Rasbin Basnet
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Shah Ashadul Islam
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences , Zhejiang University , Hangzhou , China
- Hubei Collaborative Innovation Center for the Grain Industry , Yangtze University , Jingzhou , China
- Zhejiang Key Laboratory of Crop Germplasm Resources, College of Agriculture and Biotechnology , Zhejiang University , Hangzhou , China
| |
Collapse
|
52
|
Zhu J, Lau K, Puschmann R, Harmel RK, Zhang Y, Pries V, Gaugler P, Broger L, Dutta AK, Jessen HJ, Schaaf G, Fernie AR, Hothorn LA, Fiedler D, Hothorn M. Two bifunctional inositol pyrophosphate kinases/phosphatases control plant phosphate homeostasis. eLife 2019; 8:43582. [PMID: 31436531 PMCID: PMC6731061 DOI: 10.7554/elife.43582] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Many eukaryotic proteins regulating phosphate (Pi) homeostasis contain SPX domains that are receptors for inositol pyrophosphates (PP-InsP), suggesting that PP-InsPs may regulate Pi homeostasis. Here we report that deletion of two diphosphoinositol pentakisphosphate kinases VIH1/2 impairs plant growth and leads to constitutive Pi starvation responses. Deletion of phosphate starvation response transcription factors partially rescues vih1 vih2 mutant phenotypes, placing diphosphoinositol pentakisphosphate kinases in plant Pi signal transduction cascades. VIH1/2 are bifunctional enzymes able to generate and break-down PP-InsPs. Mutations in the kinase active site lead to increased Pi levels and constitutive Pi starvation responses. ATP levels change significantly in different Pi growth conditions. ATP-Mg2+ concentrations shift the relative kinase and phosphatase activities of diphosphoinositol pentakisphosphate kinases in vitro. Pi inhibits the phosphatase activity of the enzyme. Thus, VIH1 and VIH2 relay changes in cellular ATP and Pi concentrations to changes in PP-InsP levels, allowing plants to maintain sufficient Pi levels.
Collapse
Affiliation(s)
- Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Kelvin Lau
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Robert Puschmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Youjun Zhang
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Verena Pries
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Philipp Gaugler
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Amit K Dutta
- Institute of Organic Chemistry, Freiburg im Breisgau, Germany
| | | | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, Bonn, Germany
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, Hannover, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
53
|
Yan H, Sheng M, Wang C, Liu Y, Yang J, Liu F, Xu W, Su Z. AtSPX1-mediated transcriptional regulation during leaf senescence in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:238-246. [PMID: 31128694 DOI: 10.1016/j.plantsci.2019.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Leaf senescence is the final stage of leaf growth, a highly coordinated and complicated process. Phosphorus as an essential macronutrient for plant growth is remobilized from senescing leaves to other vigorous parts of the plant. In this study, through data mining, we found some phosphate starvation induced genes such as AtSPX1, were significantly induced in aging leaves in Arabidopsis. We applied a reverse genetics approach to investigate the phenotypes of transgenic plants and mutant plants, and the results showed that the overexpression of AtSPX1 accelerated leaf senescence, suppressed Pi accumulation, promoted SA production and H2O2 levels in leaves, while the mutant lines of AtSPX1 showed slightly delayed leaf senescence. We conducted RNA-seq-based transcriptome analysis together with GO and GSEA enrichment analyses for transgenic vs. wild-type plants to elucidate the possible underlying regulatory mechanism. The 558 genes that were up-regulated in the overexpression plants 35S::AtSPX1/WT, were significantly enriched in the process of leaf senescence, Pi starvation responses and SA signaling pathways, as were the target genes of some transcription factors such as WRKYs and NACs. In a word, we characterized AtSPX1 as a key regulator, which mediated the crosstalks among leaf senescence, Pi starvation and SA signaling pathways in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hengyu Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minghao Sheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunchao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaotong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fengxia Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
54
|
Mutation of Inositol 1,3,4-trisphosphate 5/6-kinase6 Impairs Plant Growth and Phytic Acid Synthesis in Rice. PLANTS 2019; 8:plants8050114. [PMID: 31035443 PMCID: PMC6572258 DOI: 10.3390/plants8050114] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 01/07/2023]
Abstract
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK) is encoded by six genes in rice (OsITPK1-6). A previous study had shown that nucleotide substitutions of OsITPK6 could significantly lower the phytic acid content in rice grains. In the present study, the possibility of establishing a genome editing-based method for breeding low-phytic acid cultivars in rice was explored, in conjunction with the functional determination of OsITPK6. Four OsITPK6 mutant lines were generated by targeted mutagenesis of the gene’s first exon using the CRISPR/Cas9 method, one (ositpk6_1) with a 6-bp in-frame deletion, and other three with frameshift mutations (ositpk6_2, _3, and _4). The frameshift mutations severely impaired plant growth and reproduction, while the effect of ositpk6_1 was relatively limited. The mutant lines ositpk6_1 and _2 had significantly lower levels (−10.1% and −32.1%) of phytic acid and higher levels (4.12- and 5.18-fold) of inorganic phosphorus compared with the wild-type (WT) line. The line ositpk6_1 also showed less tolerance to osmotic stresses. Our research demonstrates that mutations of OsITPK6, while effectively reducing phytic acid biosynthesis in rice grain, could significantly impair plant growth and reproduction.
Collapse
|
55
|
Goßner S, Yuan F, Zhou C, Tan Y, Shu Q, Engel KH. Impact of Cross-Breeding of Low Phytic Acid MIPS1 and IPK1 Soybean ( Glycine max L. Merr.) Mutants on Their Contents of Inositol Phosphate Isomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:247-257. [PMID: 30541281 DOI: 10.1021/acs.jafc.8b06117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The knowledge on consequences of cross-breeding of induced low phytic acid ( lpa) soybean ( Glycine max L. Merr.) mutants on the contents of phytic acid (InsP6) and lower inositol phosphate isomers (InsP2-InsP5) in the resulting progenies is limited. Therefore, MIPS1 and IPK1 lpa soybean mutants were crossed with wild-type (WT) cultivars or among themselves to generate homozygous lpa and WT progenies and double lpa mutants. The lpa trait of the MIPS1 mutant was not altered by cross-breeding with a WT cultivar; lpa progenies had InsP6 reductions of about 44% compared to WT progenies. IPK1 progenies showed pronounced accumulations of specific InsP3-InsP5 isomers (up to 12.4 mg/g) compared to the progenitor lpa mutant (4.7 mg/g); the extent of InsP6 reduction (43-71%) was depending on the WT crossing parent. Double mutants exhibited the most pronounced InsP6 reductions (up to 87%), accompanied by moderate accumulations of InsP3-InsP5 (2.5 mg/g). Cross-breeding offers the potential to modulate the amounts of both InsP6 and InsP3-InsP5 contents in lpa soybean mutants and thus to improve their nutritional quality.
Collapse
Affiliation(s)
- Sophia Goßner
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , D-85354 Freising-Weihenstephan , Germany
| | - Fengjie Yuan
- Institute of Crop Science and Nuclear Technology Utilization , Zhejiang Academy of Agricultural Sciences , Hangzhou 310021 , China
| | - Chenguang Zhou
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , D-85354 Freising-Weihenstephan , Germany
| | - Yuanyuan Tan
- State Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Plant Germplasm, Institute of Crop Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Qingyao Shu
- State Key Laboratory of Rice Biology and Zhejiang Provincial Key Laboratory of Plant Germplasm, Institute of Crop Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Karl-Heinz Engel
- Chair of General Food Technology , Technical University of Munich , Maximus-von-Imhof-Forum 2 , D-85354 Freising-Weihenstephan , Germany
| |
Collapse
|
56
|
van Wijk R, Zhang Q, Zarza X, Lamers M, Marquez FR, Guardia A, Scuffi D, García-Mata C, Ligterink W, Haring MA, Laxalt AM, Munnik T. Role for Arabidopsis PLC7 in Stomatal Movement, Seed Mucilage Attachment, and Leaf Serration. FRONTIERS IN PLANT SCIENCE 2018; 9:1721. [PMID: 30542361 PMCID: PMC6278229 DOI: 10.3389/fpls.2018.01721] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/05/2018] [Indexed: 05/24/2023]
Abstract
Phospholipase C (PLC) has been suggested to play important roles in plant stress and development. To increase our understanding of PLC signaling in plants, we have started to analyze knock-out (KO), knock-down (KD) and overexpression mutants of Arabidopsis thaliana, which contains nine PLCs. Earlier, we characterized PLC2, PLC3 and PLC5. Here, the role of PLC7 is functionally addressed. Promoter-GUS analyses revealed that PLC7 is specifically expressed in the phloem of roots, leaves and flowers, and is also present in trichomes and hydathodes. Two T-DNA insertion mutants were obtained, i.e., plc7-3 being a KO- and plc7-4 a KD line. In contrast to earlier characterized phloem-expressed PLC mutants, i.e., plc3 and plc5, no defects in primary- or lateral root development were found for plc7 mutants. Like plc3 mutants, they were less sensitive to ABA during stomatal closure. Double-knockout plc3 plc7 lines were lethal, but plc5 plc7 (plc5/7) double mutants were viable, and revealed several new phenotypes, not observed earlier in the single mutants. These include a defect in seed mucilage, enhanced leaf serration, and an increased tolerance to drought. Overexpression of PLC7 enhanced drought tolerance too, similar to what was earlier found for PLC3-and PLC5 overexpression. In vivo 32Pi-labeling of seedlings and treatment with sorbitol to mimic drought stress, revealed stronger PIP2 responses in both drought-tolerant plc5/7 and PLC7-OE mutants. Together, these results show novel functions for PLC in plant stress and development. Potential molecular mechanisms are discussed.
Collapse
Affiliation(s)
- Ringo van Wijk
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Qianqian Zhang
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Xavier Zarza
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Mart Lamers
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
| | | | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Michel A. Haring
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
| | - Ana M. Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, University of Amsterdam, Amsterdam, Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
57
|
Zhang Q, van Wijk R, Zarza X, Shahbaz M, van Hooren M, Guardia A, Scuffi D, García-Mata C, Van den Ende W, Hoffmann-Benning S, Haring MA, Laxalt AM, Munnik T. Knock-Down of Arabidopsis PLC5 Reduces Primary Root Growth and Secondary Root Formation While Overexpression Improves Drought Tolerance and Causes Stunted Root Hair Growth. PLANT & CELL PHYSIOLOGY 2018; 59:2004-2019. [PMID: 30107538 DOI: 10.1093/pcp/pcy120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/14/2018] [Indexed: 05/12/2023]
Abstract
Phospholipase C (PLC) is a well-known signaling enzyme in metazoans that hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate and diacylglycerol as second messengers involved in mutiple processes. Plants contain PLC too, but relatively little is known about its function there. The model system Arabidopsis thaliana contains nine PLC genes. Reversed genetics have implicated several roles for PLCs in plant development and stress signaling. Here, PLC5 is functionally addressed. Promoter-β-glucuronidase (GUS) analyses revealed expression in roots, leaves and flowers, predominantly in vascular tissue, most probably phloem companion cells, but also in guard cells, trichomes and root apical meristem. Only one plc5-1 knock-down mutant was obtained, which developed normally but grew more slowly and exhibited reduced primary root growth and decreased lateral root numbers. These phenotypes could be complemented by expressing the wild-type gene behind its own promoter. Overexpression of PLC5 (PLC5-OE) using the UBQ10 promoter resulted in reduced primary and secondary root growth, stunted root hairs, decreased stomatal aperture and improved drought tolerance. PLC5-OE lines exhibited strongly reduced phosphatidylinositol 4-monophosphate (PIP) and PIP2 levels and increased amounts of phosphatidic acid, indicating enhanced PLC activity in vivo. Reduced PIP2 levels and stunted root hair growth of PLC5-OE seedlings could be recovered by inducible overexpression of a root hair-specific PIP 5-kinase, PIP5K3. Our results show that PLC5 is involved in primary and secondary root growth and that its overexpression improves drought tolerance. Independently, we provide new evidence that PIP2 is essential for the polar tip growth of root hairs.
Collapse
Affiliation(s)
- Qianqian Zhang
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ringo van Wijk
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Xavier Zarza
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Muhammad Shahbaz
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Max van Hooren
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Aisha Guardia
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Denise Scuffi
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, University of Leuven, Leuven, Belgium
| | - Susanne Hoffmann-Benning
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Michel A Haring
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| | - Ana M Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Teun Munnik
- Section Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
- Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, XH, The Netherlands
| |
Collapse
|
58
|
Whitfield H, Gilmartin M, Baker K, Riley AM, Godage HY, Potter BVL, Hemmings AM, Brearley CA. A Fluorescent Probe Identifies Active Site Ligands of Inositol Pentakisphosphate 2-Kinase. J Med Chem 2018; 61:8838-8846. [PMID: 30160967 DOI: 10.1021/acs.jmedchem.8b01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inositol pentakisphosphate 2-kinase catalyzes the phosphorylation of the axial 2-OH of myo-inositol 1,3,4,5,6-pentakisphosphate for de novo synthesis of myo-inositol hexakisphosphate. Disruption of inositol pentakisphosphate 2-kinase profoundly influences cellular processes, from nuclear mRNA export and phosphate homeostasis in yeast and plants to establishment of left-right asymmetry in zebrafish. We elaborate an active site fluorescent probe that allows high throughput screening of Arabidopsis inositol pentakisphosphate 2-kinase. We show that the probe has a binding constant comparable to the Km values of inositol phosphate substrates of this enzyme and can be used to prospect for novel substrates and inhibitors of inositol phosphate kinases. We identify several micromolar Ki inhibitors and validate this approach by solving the crystal structure of protein in complex with purpurogallin. We additionally solve structures of protein in complexes with epimeric higher inositol phosphates. This probe may find utility in characterization of a wide family of inositol phosphate kinases.
Collapse
Affiliation(s)
- Hayley Whitfield
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Megan Gilmartin
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Kendall Baker
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , U.K
| | - H Y Godage
- Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology , University of Oxford , Mansfield Road , Oxford OX1 3QT , U.K.,Medicinal Chemistry, Department of Pharmacy and Pharmacology , University of Bath , Claverton Down , Bath BA2 7AY , U.K
| | - Andrew M Hemmings
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| | - Charles A Brearley
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , U.K
| |
Collapse
|