51
|
Subudhi PK, Garcia RS, Coronejo S, De Leon TB. A Novel Mutation of the NARROW LEAF 1 Gene Adversely Affects Plant Architecture in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21218106. [PMID: 33143090 PMCID: PMC7672626 DOI: 10.3390/ijms21218106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
Plant architecture is critical for enhancing the adaptability and productivity of crop plants. Mutants with an altered plant architecture allow researchers to elucidate the genetic network and the underlying mechanisms. In this study, we characterized a novel nal1 rice mutant with short height, small panicle, and narrow and thick deep green leaves that was identified from a cross between a rice cultivar and a weedy rice accession. Bulked segregant analysis coupled with genome re-sequencing and cosegregation analysis revealed that the overall mutant phenotype was caused by a 1395-bp deletion spanning over the last two exons including the transcriptional end site of the nal1 gene. This deletion resulted in chimeric transcripts involving nal1 and the adjacent gene, which were validated by a reference-guided assembly of transcripts followed by PCR amplification. A comparative transcriptome analysis of the mutant and the wild-type rice revealed 263 differentially expressed genes involved in cell division, cell expansion, photosynthesis, reproduction, and gibberellin (GA) and brassinosteroids (BR) signaling pathways, suggesting the important regulatory role of nal1. Our study indicated that nal1 controls plant architecture through the regulation of genes involved in the photosynthetic apparatus, cell cycle, and GA and BR signaling pathways.
Collapse
Affiliation(s)
- Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
- Correspondence: ; Tel.: +1-225-578-1303
| | - Richard S. Garcia
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
| | - Sapphire Coronejo
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; (R.S.G.); (S.C.)
| | - Teresa B. De Leon
- California Cooperative Rice Research Foundation, Inc., Biggs, CA 95917, USA;
| |
Collapse
|
52
|
Xu Q, Yu H, Xia S, Cui Y, Yu X, Liu H, Zeng D, Hu J, Zhang Q, Gao Z, Zhang G, Zhu L, Shen L, Guo L, Rao Y, Qian Q, Ren D. The C2H2 zinc-finger protein LACKING RUDIMENTARY GLUME 1 regulates spikelet development in rice. Sci Bull (Beijing) 2020; 65:753-764. [PMID: 36659109 DOI: 10.1016/j.scib.2020.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/21/2023]
Abstract
Rice (Oryza sativa) spikelets are a unique inflorescence structure and their development directly determines grain size and yield. Although many genes related to spikelet development have been reported, the molecular mechanisms underlying this process have not been fully elucidated. In this study, we identified a new recessive rice mutant, lacking rudimentary glume 1 (lrg1). The lrg1 spikelets only formed one rudimentary glume, which, along with the sterile lemmas, was homeotically transformed into lemma-like organs and acquired lemma identity. The transition from the spikelet to the floral meristem was delayed in the lrg1 mutant, resulting in the formation of an ectopic lemma-like organ between the sterile lemma and the terminal floret. In addition, we found that the abnormal lrg1 grain phenotype resulted from the alteration of cell numbers and the hull size. LRG1 encodes a ZOS4-06-C2H2 zinc-finger protein with the typical EAR motifs, and is expressed in all organs and tissues. LRG1 localizes to the nucleus and can interact with the TOPLESS-RELATED PROTEINs (TPRs) to repress the expressions of their downstream target genes. Taken together, our results reveal that LRG1 plays an important role in the regulation of spikelet organ identity and grain size.
Collapse
Affiliation(s)
- Qiankun Xu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Haiping Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Saisai Xia
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuanjiang Cui
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoqi Yu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - He Liu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dali Zeng
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Jiang Hu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Qiang Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhenyu Gao
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Guangheng Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Li Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lan Shen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Longbiao Guo
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuchun Rao
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Qian Qian
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Deyong Ren
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
53
|
Wang SS, Chung CL, Chen KY, Chen RK. A Novel Variation in the FRIZZLE PANICLE ( FZP) Gene Promoter Improves Grain Number and Yield in Rice. Genetics 2020; 215:243-252. [PMID: 32152046 PMCID: PMC7198282 DOI: 10.1534/genetics.119.302862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
Secondary branch number per panicle plays a crucial role in regulating grain number and yield in rice. Here, we report the positional cloning and functional characterization for SECONDARY BRANCH NUMBER7 (qSBN7), a quantitative trait locus affecting secondary branch per panicle and grain number. Our research revealed that the causative variants of qSBN7 are located in the distal promoter region of FRIZZLE PANICLE (FZP), a gene previously associated with the repression of axillary meristem development in rice spikelets. qSBN7 is a novel allele of FZP that causes an ∼56% decrease in its transcriptional level, leading to increased secondary branch and grain number, and reduced grain length. Field evaluations showed that qSBN7 increased grain yield by 10.9% in a temperate japonica variety, TN13, likely due to its positive effect on sink capacity. Our findings suggest that incorporation of qSBN7 can increase yield potential and improve the breeding of elite rice varieties.
Collapse
Affiliation(s)
- Sheng-Shan Wang
- Crop Improvement Division, Tainan District Agricultural Research and Extension Station, Tainan 71246, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Yi Chen
- Department of Agronomy, National Taiwan University, Taipei 10617, Taiwan
| | - Rong-Kuen Chen
- Chiayi Branch, Tainan District Agricultural Research and Extension Station, Tainan 71246, Taiwan
| |
Collapse
|
54
|
Sakuma S, Schnurbusch T. Of floral fortune: tinkering with the grain yield potential of cereal crops. THE NEW PHYTOLOGIST 2020; 225:1873-1882. [PMID: 31509613 DOI: 10.1111/nph.16189] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/28/2019] [Indexed: 05/19/2023]
Abstract
Enhancing the yield potential and stability of small-grain cereals, such as wheat (Triticum sp.), rice (Oryza sativa), and barley (Hordeum vulgare), is a priority for global food security. Over the last several decades, plant breeders have increased grain yield mainly by increasing the number of grains produced in each inflorescence. This trait is determined by the number of spikelets per spike and the number of fertile florets per spikelet. Recent genetic and genomic advances in cereal grass species have identified the molecular determinants of grain number and facilitated the exchange of information across genera. In this review, we focus on the genetic basis of inflorescence architecture in Triticeae crops, highlighting recent insights that have helped to improve grain yield by, for example, reducing the preprogrammed abortion of floral organs. The accumulating information on inflorescence development can be harnessed to enhance grain yield by comparative trait reconstruction and rational design to boost the yield potential of grain crops.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, 06466, Germany
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
55
|
Harrop TWR, Mantegazza O, Luong AM, Béthune K, Lorieux M, Jouannic S, Adam H. A set of AP2-like genes is associated with inflorescence branching and architecture in domesticated rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5617-5629. [PMID: 31346594 PMCID: PMC6812710 DOI: 10.1093/jxb/erz340] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/15/2019] [Indexed: 05/25/2023]
Abstract
Rice yield is influenced by inflorescence size and architecture, and inflorescences from domesticated rice accessions produce more branches and grains. Neither the molecular control of branching nor the developmental differences between wild and domesticated rice accessions are fully understood. We surveyed phenotypes related to branching, size, and grain yield across 91 wild and domesticated African and Asian accessions. Characteristics related to axillary meristem identity were the main phenotypic differences between inflorescences from wild and domesticated accessions. We used whole transcriptome sequencing in developing inflorescences to measure gene expression before and after the transition from branching axillary meristems to determinate spikelet meristems. We identified a core set of genes associated with axillary meristem identity in Asian and African rice, and another set associated with phenotypic variability between wild and domesticated accessions. AP2/EREBP-like genes were enriched in both sets, suggesting that they are key factors in inflorescence branching and rice domestication. Our work has identified new candidates in the molecular control of inflorescence development and grain yield, and provides a detailed description of the effects of domestication on phenotype and gene expression.
Collapse
Affiliation(s)
- Thomas W R Harrop
- Laboratory for Evolution and Development, Department of Biochemistry, University of Otago, Dunedin, Aotearoa, New Zealand
| | | | - Ai My Luong
- University of Montpellier, DIADE, IRD, France
| | | | - Mathias Lorieux
- Rice genetics and Genomics Laboratory, International Center for Tropical Agriculture, Cali 6713, Colombia
| | | | - Hélène Adam
- University of Montpellier, DIADE, IRD, France
| |
Collapse
|
56
|
Huang Y, Bai X, Luo M, Xing Y. Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:987-999. [PMID: 30302902 DOI: 10.1111/jipb.12729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 10/07/2018] [Indexed: 05/20/2023]
Abstract
Inflorescence architecture is a major determinant of spikelet numbers per panicle, a key component of grain yield in rice. In this study, Short Panicle 3 (SP3) was identified from a short panicle 3 (sp3) mutant in which T-DNA was inserted in the promoter of SP3, resulting in a knockdown mutation. SP3 encodes a DNA binding with one finger (Dof) transcriptional activator. Quantitative real time (qRT)-PCR and RNA in situ hybridization assays confirmed that SP3 is preferentially expressed in the young rice inflorescence, specifically in the branch primordial regions. SP3 acts as a negative regulator of inflorescence meristem abortion by upregulating APO2/RFL. SP3 both up- and downregulates expression of genes involved in cytokinin biosynthesis and catabolism, respectively. Consequently, cytokinin concentrations are decreased in young sp3 panicles, thereby leading to small panicles having fewer branches and spikelets. Our findings support a model in which SP3 regulates panicle architecture by modulating cytokinin homeostasis. Potential applications to rice breeding, through gene-editing of the SP3 promoter are assessed.
Collapse
Affiliation(s)
- Yong Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xufeng Bai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Meifang Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
57
|
Lin L, Zhao Y, Liu F, Chen Q, Qi J. Narrow leaf 1 (NAL1) regulates leaf shape by affecting cell expansion in rice (Oryza sativa L.). Biochem Biophys Res Commun 2019; 516:957-962. [PMID: 31272720 DOI: 10.1016/j.bbrc.2019.06.142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 02/04/2023]
Abstract
The narrow leaf1 (nal1) mutant of rice (Oryza sativa L.) exhibits a narrow leaf phenotype. Previous studies have shown that NAL1 modulates leaf size by affecting vein patterning and cell division; however, the underlying mechanism remains unclear. Here, we report that the nal1 mutant shows reduced size of the leaf abaxial epidermal cells and culm parenchyma cells compared with the wild type (WT), indicating that NAL1 also regulates cell expansion. To understand the molecular mechanism of the reduced cell size phenotype, leaves of 40-day-old nal1 mutant and WT seedlings were subjected to RNA-Seq analysis, which has identified 4277 differentially expressed genes (DEGs) between WT and the nal1 mutant. Gene ontology (GO) enrichment analysis revealed a large number of genes down-regulated in the nal1 mutant were involved in cell wall formation. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that NAL1-regulated DEGs, such as ARFs and SAURs, were mapped in auxin signal transduction and auxin-regulated cell expansion pathways. A combination of RNA-Seq analysis and gene expression validation using RT-qPCR suggested that NAL1 is involved in the regulation of auxin-mediated acid growth in rice. These results indicate that, in addition to controlling cell division, NAL1 controls leaf width, at least partially, through its effect on cell expansion, probably via the acid growth mechanism.
Collapse
Affiliation(s)
- Lihao Lin
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yunfeng Zhao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Fang Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Qian Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Juncang Qi
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, 832003, China.
| |
Collapse
|
58
|
Ustyantsev KV, Goncharov NP. Homology of Genes Controlling Architectonics of Vegetative and Generative Organs in Barley and Rice and Their Application for Wheat Biodiversity Expansion and Breeding. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
59
|
Zhong Z, Lin L, Chen M, Lin L, Chen X, Lin Y, Chen X, Wang Z, Norvienyeku J, Zheng H. Expression Divergence as an Evolutionary Alternative Mechanism Adopted by Two Rice Subspecies Against Rice Blast Infection. RICE (NEW YORK, N.Y.) 2019; 12:12. [PMID: 30825020 PMCID: PMC6397267 DOI: 10.1186/s12284-019-0270-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops that serves as staple food for ~ 50% of the human population worldwide. Some important agronomic traits that allow rice to cope with numerous abiotic and biotic stresses have been selected and fixed during domestication. Knowledge on how expression divergence of genes gradually contributes to phenotypic differentiation in response to biotic stress and their contribution to rice population speciation is still limited. RESULTS Here, we explored gene expression divergence between a japonica rice cultivar Nipponbare and an indica rice cultivar 93-11 in response to invasion by the filamentous ascomycete fungus Magnaporthe oryzae (Pyricularia oryzae), a plant pathogen that causes significant loss to rice production worldwide. We investigated differentially expressed genes in the two cultivars and observed that evolutionarily conserved orthologous genes showed highly variable expression patterns under rice blast infection. Analysis of promoter region of these differentially expressed orthologous genes revealed the existence of cis-regulatory elements associated with the differentiated expression pattern of these genes in the two rice cultivars. Further comparison of these regions in global rice population indicated their fixation and close relationship with rice population divergence. CONCLUSION We proposed that variation in the expression patterns of these orthologous genes mediated by cis-regulatory elements in the two rice cultivars, may constitute an alternative evolutionary mechanism that distinguishes these two genetically and ecologically divergent rice cultivars in response to M. oryzae infection.
Collapse
Affiliation(s)
- Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meilian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaofeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yahong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
60
|
Koppolu R, Schnurbusch T. Developmental pathways for shaping spike inflorescence architecture in barley and wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:278-295. [PMID: 30609316 DOI: 10.1111/jipb.12771] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/18/2018] [Indexed: 05/19/2023]
Abstract
Grass species display a wide array of inflorescences ranging from highly branched compound/panicle inflorescences to unbranched spike inflorescences. The unbranched spike is a characteristic feature of the species of tribe Triticeae, including economically important crops, such as wheat and barley. In this review, we describe two important developmental genetic mechanisms regulating spike inflorescence architecture in barley and wheat. These include genetic regulation of (i) row-type pathway specific to Hordeum species and (ii) unbranched spike development in barley and wheat. For a comparative understanding, we describe the branched inflorescence phenotypes of rice and maize along with unbranched Triticeae inflorescences. In the end, we propose a simplified model describing a probable mechanism leading to unbranched spike formation in Triticeae species.
Collapse
Affiliation(s)
- Ravi Koppolu
- Independant HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Independant HEISENBERG-Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University, Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
61
|
Dong Z, Alexander M, Chuck G. Understanding Grass Domestication through Maize Mutants. Trends Genet 2019; 35:118-128. [DOI: 10.1016/j.tig.2018.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 11/28/2022]
|