51
|
Pálinkás Z, Furtmüller PG, Nagy A, Jakopitsch C, Pirker KF, Magierowski M, Jasnos K, Wallace JL, Obinger C, Nagy P. Interactions of hydrogen sulfide with myeloperoxidase. Br J Pharmacol 2014; 172:1516-32. [PMID: 24824874 DOI: 10.1111/bph.12769] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/24/2014] [Accepted: 04/22/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE The actions of hydrogen sulfide in human physiology have been extensively studied and, although it is an essential mediator of many biological functions, the underlying molecular mechanisms of its actions are ill-defined. To elucidate the roles of sulfide in inflammation, we have investigated its interactions with human myeloperoxidase (MPO), a major contributor to inflammatory oxidative stress. EXPERIMENTAL APPROACH The interactions of sulfide and MPO were investigated using electron paramagnetic resonance, electronic circular dichroism, UV-vis and stopped-flow spectroscopies. KEY RESULTS We found favourable reactions between sulfide and the native-ferric enzyme as well as the MPO redox intermediates, ferrous MPO, compound I and compound II. Sulfide was a potent reversible inhibitor of MPO enzymic activity with an IC50 of 1 µM. In addition, the measured second-order rate constants for the reactions of sulfide with compound I [k = (1.1 ± 0.06) × 10(6) M(-1) s(-1)] and compound II [k = (2.0 ± 0.03) × 10(5) M(-1) s(-1)] suggest that sulfide is a potential substrate for MPO in vivo. CONCLUSION AND IMPLICATIONS Endogenous levels of sulfide are likely to inhibit the activity of circulating and endothelium-bound MPO. The fully reversible inhibition suggests a mediatory role of sulfide on the oxidant-producing function of the enzyme. Furthermore, the efficient HOCl oxidation of sulfide to give polysulfides (recently recognized as important components of sulfide biology) together with MPO-catalysed sulfide oxidation and the lack of interaction between MPO and sulfide oxidation products, predict a modulatory role of MPO in sulfide signalling.
Collapse
Affiliation(s)
- Zoltán Pálinkás
- Department of Molecular Immunology and Toxicology, National Institute of Oncology, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Qabazard B, Li L, Gruber J, Peh MT, Ng LF, Kumar SD, Rose P, Tan CH, Dymock BW, Wei F, Swain SC, Halliwell B, Stürzenbaum SR, Moore PK. Hydrogen sulfide is an endogenous regulator of aging in Caenorhabditis elegans. Antioxid Redox Signal 2014; 20:2621-30. [PMID: 24093496 PMCID: PMC4025568 DOI: 10.1089/ars.2013.5448] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIMS To investigate the role of endogenous hydrogen sulfide (H2S) in the control of aging and healthspan of Caenorhabditis elegans. RESULTS We show that the model organism, C. elegans, synthesizes H2S. Three H2S-synthesizing enzymes are present in C. elegans, namely cystathionine γ lyase (CSE), cystathionine β synthetase, and 3-mercaptopyruvate transferase (MPST or 3-MST). Genetic deficiency of mpst-1 (3-MST orthologue 1), but not cth-2 (CSE orthologue), reduced the lifespan of C. elegans. This effect was reversed by a pharmacological H2S donor (GYY4137). GYY4137 also reduced detrimental age-dependent changes in a range of physiological indices, including pharyngeal contraction and defecation. Treatment of C. elegans with GYY4137 increased the expression of several age-related, stress response, and antioxidant genes, whereas MitoSOX Red fluorescence, indicative of reactive oxygen species generation, was increased in mpst-1 knockouts and decreased by GYY4137 treatment. GYY4137 additionally increased the lifespan in short-lived mev-1 mutants with elevated oxidative stress and protected wild-type C. elegans against paraquat poisoning. The lifespan-prolonging and health-promoting effects of H2S in C. elegans are likely due to the antioxidant action of this highly cell-permeable gas. INNOVATION The possibility that novel pharmacological agents based on the principle of H2S donation may be able to retard the onset of age-related disease by slowing the aging process warrants further study. CONCLUSION Our results show that H2S is an endogenous regulator of oxidative damage, metabolism, and aging in C. elegans and provide new insight into the mechanisms, which control aging in this model organism.
Collapse
Affiliation(s)
- Bedoor Qabazard
- 1 School of Biomedical Science, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Polhemus DJ, Lefer DJ. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 2014; 114:730-7. [PMID: 24526678 DOI: 10.1161/circresaha.114.300505] [Citation(s) in RCA: 339] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long recognized as a malodorous and highly toxic gas, recent experimental studies have revealed that hydrogen sulfide (H2S) is produced enzymatically in all mammalian species including man and exerts several critical actions to promote cardiovascular homeostasis and health. During the past 15 years, scientists have determined that H2S is produced by 3 endogenous enzymes and exerts powerful effects on endothelial cells, smooth muscle cells, inflammatory cells, mitochondria, endoplasmic reticulum, and nuclear transcription factors. These effects have been reported in multiple organ systems, and the majority of data clearly indicate that H2S produced by the endogenous enzymes exerts cytoprotective actions. Recent preclinical studies investigating cardiovascular diseases have demonstrated that the administration of physiological or pharmacological levels of H2S attenuates myocardial injury, protects blood vessels, limits inflammation, and regulates blood pressure. H2S has emerged as a critical cardiovascular signaling molecule similar to nitric oxide and carbon monoxide with a profound effect on the heart and circulation. Our improved understanding of how H2S elicits protective actions, coupled with the rapid development of novel H2S-releasing agents, has resulted in heightened enthusiasm for the clinical translation of this ephemeral gaseous molecule. This review will examine our current state of knowledge about the actions of H2S within the cardiovascular system with an emphasis on the therapeutic potential and molecular cross talk between H2S, nitric oxide, and carbon monoxide.
Collapse
Affiliation(s)
- David J Polhemus
- From the Department of Pharmacology, LSU Health Sciences Center, New Orleans, LA (D.J.P., D.J.L.); and the LSU Cardiovascular Center of Excellence, New Orleans, LA (D.J.P., D.J.L.)
| | | |
Collapse
|
54
|
The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology. J Mol Cell Cardiol 2014; 71:62-70. [PMID: 24650874 DOI: 10.1016/j.yjmcc.2014.03.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 03/08/2014] [Accepted: 03/10/2014] [Indexed: 12/19/2022]
Abstract
Aging is accompanied by a progressive increase in the incidence and prevalence of cardiovascular disease (CVD). Prolonged exposure to cardiovascular risk factors, together with intrinsic age-dependent declines in cardiac functionality, increases the vulnerability of the heart to both endogenous and exogenous stressors, ultimately enhancing the susceptibility to developing CVD in late life. Both increased levels of oxidative damage and the accumulation of dysfunctional mitochondria have been observed in a wide range of cardiac diseases, which may therefore represent a common ground upon which many aspects of CVD develop. In this review, we summarize the current knowledge on the mechanisms whereby oxidative stress arising from mitochondrial dysfunction is involved in the process of cardiac aging and in the pathogenesis of CVD highly prevalent in late life (e.g., heart failure and ischemic heart disease). Special emphasis is placed on recent evidence about the role played by alterations in cellular quality control systems, in particular autophagy/mitophagy and mitochondrial dynamics (fusion and fission), and their interconnections in the context of age-related CVD. Cardioprotective interventions acting through the modulation of mitochondrial autophagy (calorie restriction, calorie restriction mimetics, and the gasotransmitter hydrogen sulfide) are also presented. This article is part of a Special Issue entitled "Protein Quality Control, the Ubiquitin Proteasome System, and Autophagy".
Collapse
|
55
|
Janko C, Filipović M, Munoz LE, Schorn C, Schett G, Ivanović-Burmazović I, Herrmann M. Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 2014; 20:1075-85. [PMID: 23373897 PMCID: PMC3928832 DOI: 10.1089/ars.2013.5179] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE In the cells' nuclei, high-mobility group box protein 1 (HMGB1) is a nonhistone chromatin-binding protein involved in the regulation of transcription. Extracellularly, HMGB1 acts as a danger molecule with properties of a proinflammatory cytokine. It can be actively secreted from myeloid cells or passively leak from any type of injured, necrotic cell. Increased serum levels of active HMGB1 are often found in pathogenic inflammatory conditions and correlate with worse prognoses in cancer, sepsis, and autoimmunity. By damaging cells, superoxide and peroxynitrite promote leakage of HMGB1. RECENT ADVANCES The activity of HMGB1 strongly depends on its redox state: Inflammatory-active HMGB1 requires an intramolecular disulfide bond (Cys23 and Cys45) and a reduced Cys106. Oxidation of the latter blocks its stimulatory activity and promotes immune tolerance. CRITICAL ISSUES Reactive oxygen and nitrogen species create an oxidative environment and can be detoxified by superoxide dismutase (SOD), catalase, and peroxidases. Modifications of the oxidative environment influence HMGB1 activity. FUTURE DIRECTIONS In this review, we hypothesize that manipulations of an oxidative environment by SOD mimics or by hydrogen sulfide are prone to decrease tissue damage. Both the concomitant decreased HMGB1 release and its redox chemical modifications ameliorate inflammation and tissue damage.
Collapse
Affiliation(s)
- Christina Janko
- 1 Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University of Erlangen-Nuremberg , Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Hydrogen sulphide (H(2)S) is the most recently discovered gasotransmitter. It is endogenously generated in mammalian vascular cells and attracts substantial interest by its function as physiological relevant signalling mediator, and by its dysfunction in metabolic diseases like obesity, type 2 diabetes and their associated complications. The purpose of this review is to highlight the novel findings on vascular H(2)S homeostasis, pathology-associated dysregulation, cell signalling, and therapeutic potential. The data bases searched were Medline and PubMed, from 2008 to 2012 (terms: hydrogen sulphide, sulfhydration). The new reports definitely assess the vasculoprotectant role of H(2)S in health, and its reduced biosynthesis/systemic levels in obesity, diabetes, atherosclerosis and hypertension. One of the mechanisms of H(2)S signalling discussed here is S-sulfhydration of catalytic cysteine residue of PTP1B, a negative regulator of insulin and leptin signalling. Finally, the review critically evaluates the compounds able to regulate vascular H(2)S bioavailability, and with potential in therapeutic exploitation.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology ''N. Simionescu'' of the Romanian Academy 8 , B.P. Hasdeu Street, Bucharest 050568 , Romania
| |
Collapse
|
57
|
Effects of post-resuscitation administration with sodium hydrosulfide on cardiac recovery in hypoxia-reoxygenated newborn piglets. Eur J Pharmacol 2013; 718:74-80. [PMID: 24056121 DOI: 10.1016/j.ejphar.2013.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 08/22/2013] [Accepted: 09/04/2013] [Indexed: 12/30/2022]
Abstract
Hydrogen sulfide may protect multiple organ systems against ischemic-reperfusion injuries. It is unknown if treatment with sodium hydrosulfide (NaHS, a hydrogen sulfide donor) will improve myocardial function and minimize oxidative stress in hypoxic-reoxygenated newborn piglets. Mixed breed piglets (1-5 day, 1.5-2.5 kg) were anesthetized and acutely instrumented for the measurement of systemic, pulmonary and regional (carotid, superior mesenteric and renal) hemodynamics and blood gas parameters. The piglets were induced with normocapnic alveolar hypoxia (10-15% oxygen, 2h) followed by reoxygenation with 100% (1h) then 21% oxygen (3h). At 10 min of reoxygenation, either NaHS (10mg/kg, 5 ml) or saline (5 ml) was administered intravenously for 30 min (5 min bolus followed by 25 min of continuous infusion) in a blinded, block-randomized fashion (n = 7/group). Plasma lactate and troponin I levels and tissue markers of myocardial oxidative stress were also determined. Two hours hypoxia caused cardiogenic shock (45 ± 3% of respective normoxic baseline), reduced regional perfusion with metabolic acidosis (pH 6.94 ± 0.02). NaHS infusion significantly improved recovery of cardiac index (84 ± 3% vs. 72 ± 5% in controls), systemic oxygen delivery (84 ± 3% vs. 72 ± 5% in controls) and systemic oxygen consumption (102 ± 5% vs. 84 ± 6% in controls) at 4h of reoxygenation. NaHS had no significant effect on systemic and pulmonary blood pressures, regional blood flows, plasma lactate and troponin I levels. The myocardial glutathionine ratio was reduced in piglets treated with NaHS (vs. controls, P<0.05). Post-resuscitation administration of NaHS improves cardiac function and systemic perfusion and attenuates myocardial oxidative stress in newborn piglets following hypoxia-reoxygenation.
Collapse
|
58
|
Zhang Q, Fu H, Zhang H, Xu F, Zou Z, Liu M, Wang Q, Miao M, Shi X. Hydrogen sulfide preconditioning protects rat liver against ischemia/reperfusion injury by activating Akt-GSK-3β signaling and inhibiting mitochondrial permeability transition. PLoS One 2013; 8:e74422. [PMID: 24058562 PMCID: PMC3772845 DOI: 10.1371/journal.pone.0074422] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/02/2013] [Indexed: 01/23/2023] Open
Abstract
Hydrogen sulfide (H2S) is the third most common endogenously produced gaseous signaling molecule, but its impact on hepatic ischemia/reperfusion (I/R) injury, especially on mitochondrial function, remains unclear. In this study, rats were randomized into Sham, I/R, ischemia preconditioning (IPC) or sodium hydrosulfide (NaHS, an H2S donor) preconditioning groups. To establish a model of segmental (70%) warm hepatic ischemia, the hepatic artery, left portal vein and median liver lobes were occluded for 60 min and then unclamped to allow reperfusion. Preconditioning with 12.5, 25 or 50 μmol/kg NaHS prior to the I/R insult significantly increased serum H2S levels, and, similar to IPC, NaHS preconditioning decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in the plasma and prevented hepatocytes from undergoing I/R-induced necrosis. Moreover, a sub-toxic dose of NaHS (25 μmol/kg) did not disrupt the systemic hemodynamics but dramatically inhibited mitochondrial permeability transition pore (MPTP) opening and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that NaHS preconditioning markedly increased the expression of phosphorylated protein kinase B (p-Akt), phosphorylated glycogen synthase kinase-3 beta (p-GSK-3β) and B-cell lymphoma-2 (Bcl-2) and decreased the release of mitochondrial cytochrome c and cleaved caspase-3/9 levels. Therefore, NaHS administration prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through the inhibition of MPTP opening and the activation of Akt-GSK-3β signaling. Furthermore, this study provides experimental evidence for the clinical use of H2S to reduce liver damage after perioperative I/R injury.
Collapse
Affiliation(s)
- Qingqing Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hailong Fu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fengying Xu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zui Zou
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Liu
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Quanxing Wang
- National Key Laboratory of Medical Immunology and Department of Immunology, Second Military Medical University, Shanghai, China
| | - Mingyong Miao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Xueyin Shi
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
59
|
Li Q, Lancaster JR. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 2013; 35:21-34. [PMID: 23850631 DOI: 10.1016/j.niox.2013.07.001] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/22/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field.
Collapse
Affiliation(s)
- Qian Li
- Department of Anesthesiology, University of Alabama at Birmingham, United States; Center for Free Radical Biology, University of Alabama at Birmingham, United States.
| | | |
Collapse
|
60
|
Kim JI, Choi SH, Jung KJ, Lee E, Kim HY, Park KM. Protective role of methionine sulfoxide reductase A against ischemia/reperfusion injury in mouse kidney and its involvement in the regulation of trans-sulfuration pathway. Antioxid Redox Signal 2013; 18:2241-50. [PMID: 22657153 PMCID: PMC3638512 DOI: 10.1089/ars.2012.4598] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIMS Methionine sulfoxide reductase A (MsrA) and methionine metabolism are associated with oxidative stress, a principal cause of ischemia/reperfusion (I/R) injury. Herein, we investigated the protective role of MsrA against kidney I/R injury and the involvement of MsrA in methionine metabolism and the trans-sulfuration pathway during I/R. RESULTS We found that MsrA gene-deleted mice (MsrA(-/-)) were more susceptible to kidney I/R injury than wild-type mice (MsrA(+/+)). Deletion of MsrA enhanced renal functional and morphological impairments, congestion, inflammatory responses, and oxidative stress under I/R conditions. Concentrations of homocysteine and H(2)S in the plasma of control MsrA(-/-) mice were significantly lower than those in control MsrA(+/+) mice. I/R reduced the levels of homocysteine and H(2)S in both MsrA(+/+) and MsrA(-/-) mice, and these reductions were significantly more profound in MsrA(-/-) than in MsrA(+/+) mice. I/R reduced the expression and activities of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), both of which are H(2)S-producing enzymes, in the kidneys. These reductions were more profound in the MsrA(-/-) mice than in the MsrA(+/+)mice. INNOVATION The data provided herein constitute the first in vivo evidence for the involvement of MsrA in regulating methionine metabolism and the trans-sulfuration pathway under normal and I/R conditions. CONCLUSION Our data demonstrate that MsrA protects the kidney against I/R injury, and that this protection is associated with reduced oxidative stress and inflammatory responses. The data indicate that MsrA regulates H(2)S production during I/R by modulating the expression and activity of the CBS and CSE enzymes.
Collapse
Affiliation(s)
- Jee In Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | | | | | |
Collapse
|
61
|
Zhao Y, Bhushan S, Yang C, Otsuka H, Stein JD, Pacheco A, Peng B, Devarie-Baez NO, Aguilar HC, Lefer DJ, Xian M. Controllable hydrogen sulfide donors and their activity against myocardial ischemia-reperfusion injury. ACS Chem Biol 2013; 8:1283-90. [PMID: 23547844 DOI: 10.1021/cb400090d] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S), known as an important cellular signaling molecule, plays critical roles in many physiological and/or pathological processes. Modulation of H2S levels could have tremendous therapeutic value. However, the study on H2S has been hindered due to the lack of controllable H2S releasing agents that could mimic the slow and moderate H2S release in vivo. In this work we report the design, synthesis, and biological evaluation of a new class of controllable H2S donors. Twenty-five donors were prepared and tested. Their structures were based on a perthiol template, which was suggested to be involved in H2S biosynthesis. H2S release mechanism from these donors was studied and proved to be thiol-dependent. We also developed a series of cell-based assays to access their H2S-related activities. H9c2 cardiac myocytes were used in these experiments. We tested lead donors' cytotoxicity and confirmed their H2S production in cells. Finally we demonstrated that selected donors showed potent protective effects in an in vivo murine model of myocardial ischemia-reperfusion injury, through a H2S-related mechanism.
Collapse
Affiliation(s)
| | - Shashi Bhushan
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | - Chuntao Yang
- Department of Physiology, Guangzhou Medical University, Guangzhou 510182, China
| | - Hiroyuki Otsuka
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | | | | | | | | | | | - David J. Lefer
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser
Heart Center, Atlanta, Georgia 30308, United States
| | | |
Collapse
|
62
|
Bates MN, Garrett N, Crane J, Balmes JR. Associations of ambient hydrogen sulfide exposure with self-reported asthma and asthma symptoms. ENVIRONMENTAL RESEARCH 2013; 122:81-7. [PMID: 23453847 PMCID: PMC3594811 DOI: 10.1016/j.envres.2013.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 12/17/2012] [Accepted: 02/01/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Whether long-term, low-level hydrogen sulfide (H2S) gas is a cause of health effects, including asthma, is uncertain. Rotorua city, New Zealand, has the largest population exposed, from geothermal sources, to relatively high ambient levels of H2S. In a cross-sectional study, the authors investigated associations with asthma in this population. METHODS A total of 1637 adults, aged 18-65 years, were enrolled during 2008-2010. Residences and workplaces were geocoded. H2S exposures at homes and workplaces were estimated using city-wide networks of passive H2S samplers and kriging to create exposure surfaces. Exposure metrics were based on (1) time-weighted exposures at home and work; and (2) the maximum exposure (home or work). Exposure estimates were entered as quartiles into regression models, with covariate data. RESULTS Neither exposure metric showed evidence of increased asthma risk from H2S. However, some suggestion of exposure-related reduced risks for diagnosed asthma and asthma symptoms, particularly wheezing during the last 12 months, emerged. With the maximum exposure metric, the prevalence ratio for wheeze in the highest exposure quartile was 0.80 (0.65, 0.99) and, for current asthma treatment, 0.75 (0.52, 1.08). There was no evidence that this was caused by a "survivor effect". CONCLUSIONS The study provided no evidence that asthma risk increases with H2S exposure. Suggestions of a reduced risk in the higher exposure areas are consistent with recent evidence that H2S has signaling functions in the body, including induction of smooth muscle relaxation and reduction of inflammation. Study limitations, including possible confounding, preclude definitive conclusions.
Collapse
Affiliation(s)
- Michael N Bates
- School of Public Health, University of California, Berkeley, CA 94720-7367, USA.
| | | | | | | |
Collapse
|
63
|
Stein A, Bailey SM. Redox Biology of Hydrogen Sulfide: Implications for Physiology, Pathophysiology, and Pharmacology. Redox Biol 2013; 1:32-39. [PMID: 23795345 PMCID: PMC3685875 DOI: 10.1016/j.redox.2012.11.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) has emerged as a critical mediator of multiple physiological processes in mammalian systems. The pathways involved in the production, consumption, and mechanism of action of H2S appear to be sensitive to alterations in the cellular redox state and O2 tension. Indeed, the catabolism of H2S through a putative oxidation pathway, the sulfide quinone oxido-reductase system, is highly dependent on O2 tension. Dysregulation of H2S homeostasis has also been implicated in numerous pathological conditions and diseases. In this review, the chemistry and the main physiological actions of H2S are presented. Some examples highlighting the cytoprotective actions of H2S within the context of cardiovascular disease are also reported. Elucidation of the redox biology of H2S will enable the development of new pharmacological agents based on this intriguing new redox cellular signal.
Collapse
Affiliation(s)
- Asaf Stein
- Departments of Environmental Health Sciences and Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL USA
| | | |
Collapse
|
64
|
Iranon NN, Miller DL. Interactions between oxygen homeostasis, food availability, and hydrogen sulfide signaling. Front Genet 2012; 3:257. [PMID: 23233860 PMCID: PMC3516179 DOI: 10.3389/fgene.2012.00257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/04/2012] [Indexed: 12/19/2022] Open
Abstract
The ability to sense and respond to stressful conditions is essential to maintain organismal homeostasis. It has long been recognized that stress response factors that improve survival in changing conditions can also influence longevity. In this review, we discuss different strategies used by animals in response to decreased O(2) (hypoxia) to maintain O(2) homeostasis, and consider interactions between hypoxia responses, nutritional status, and H(2)S signaling. O(2) is an essential environmental nutrient for almost all metazoans as it plays a fundamental role in development and cellular metabolism. However, the physiological response(s) to hypoxia depend greatly on the amount of O(2) available. Animals must sense declining O(2) availability to coordinate fundamental metabolic and signaling pathways. It is not surprising that factors involved in the response to hypoxia are also involved in responding to other key environmental signals, particularly food availability. Recent studies in mammals have also shown that the small gaseous signaling molecule hydrogen sulfide (H(2)S) protects against cellular damage and death in hypoxia. These results suggest that H(2)S signaling also integrates with hypoxia response(s). Many of the signaling pathways that mediate the effects of hypoxia, food deprivation, and H(2)S signaling have also been implicated in the control of lifespan. Understanding how these pathways are coordinated therefore has the potential to reveal new cellular and organismal homeostatic mechanisms that contribute to longevity assurance in animals.
Collapse
Affiliation(s)
- Nicole N Iranon
- Department of Biochemistry, University of Washington School of Medicine Seattle, WA, USA ; Molecular and Cellular Biology Graduate Program, University of Washington School of Medicine Seattle, WA, USA
| | | |
Collapse
|
65
|
Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras. Biochem Pharmacol 2012; 85:689-703. [PMID: 23103569 DOI: 10.1016/j.bcp.2012.10.019] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 12/20/2022]
Abstract
Hydrogen sulfide, H2S, is a colorless gas with a strong odor that until recently was only considered to be a toxic environmental pollutant with little or no physiological significance. However, the past few years have demonstrated its role in many biological systems and it is becoming increasingly clear that H2S is likely to join nitric oxide (NO) and carbon monoxide (CO) as a major player in mammalian biology. In this review, we have provided an overview of the chemistry and biology of H2S and have summarized the chemistry and biological activity of some natural and synthetic H2S-donating compounds. The naturally occurring compounds discussed include, garlic, sulforaphane, erucin, and iberin. The synthetic H2S donors reviewed include, GYY4137; cysteine analogs; S-propyl cysteine, S-allyl cysteine, S-propargyl cysteine, and N-acetyl cysteine. Dithiolethione and its NSAID and other chimeras such as, L-DOPA, sildenafil, aspirin, diclofenac, naproxen, ibuprofen, indomethacin, and mesalamine have also been reviewed in detail. The newly reported NOSH-aspirin that releases both NO and H2S has also been discussed.
Collapse
|
66
|
Schoenfeld MP, Ansari RR, Nakao A, Wink D. A hypothesis on biological protection from space radiation through the use of new therapeutic gases as medical counter measures. Med Gas Res 2012; 2:8. [PMID: 22475015 PMCID: PMC3348081 DOI: 10.1186/2045-9912-2-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 04/04/2012] [Indexed: 12/26/2022] Open
Abstract
Radiation exposure to astronauts could be a significant obstacle for long duration manned space exploration because of current uncertainties regarding the extent of biological effects. Furthermore, concepts for protective shielding also pose a technically challenging issue due to the nature of cosmic radiation and current mass and power constraints with modern exploration technology. The concern regarding exposure to cosmic radiation is biological damage that is associated with increased oxidative stress. It is therefore important and would be enabling to mitigate and/or prevent oxidative stress prior to the development of clinical symptoms and disease. This paper hypothesizes a "systems biology" approach in which a combination of chemical and biological mitigation techniques are used conjunctively. It proposes using new, therapeutic, medical gases as chemical radioprotectors for radical scavenging and as biological signaling molecules for management of the body's response to exposure. From reviewing radiochemistry of water, biological effects of CO, H2, NO, and H2S gas, and mechanisms of radiation biology, it can be concluded that this approach may have therapeutic potential for radiation exposure. Furthermore, it also appears to have similar potential for curtailing the pathogenesis of other diseases in which oxidative stress has been implicated including cardiovascular disease, cancer, chronic inflammatory disease, hypertension, ischemia/reperfusion (IR) injury, acute respiratory distress syndrome, Parkinson's and Alzheimer's disease, cataracts, and aging. We envision applying these therapies through inhalation of gas mixtures or ingestion of water with dissolved gases.
Collapse
Affiliation(s)
- Michael P Schoenfeld
- National Aeronautics and Space Administration Marshall Space Flight Center, Huntsville, Alabama, USA.
| | | | | | | |
Collapse
|
67
|
Stein A, Mao Z, Morrison JP, Fanucchi MV, Postlethwait EM, Patel RP, Kraus DW, Doeller JE, Bailey SM. Metabolic and cardiac signaling effects of inhaled hydrogen sulfide and low oxygen in male rats. J Appl Physiol (1985) 2012; 112:1659-69. [PMID: 22403348 DOI: 10.1152/japplphysiol.01598.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low concentrations of inhaled hydrogen sulfide (H(2)S) induce hypometabolism in mice. Biological effects of H(2)S in in vitro systems are augmented by lowering O(2) tension. Based on this, we hypothesized that reduced O(2) tension would increase H(2)S-mediated hypometabolism in vivo. To test this, male Sprague-Dawley rats were exposed to 80 ppm H(2)S at 21% O(2) or 10.5% O(2) for 6 h followed by 1 h recovery at room air. Rats exposed to H(2)S in 10.5% O(2) had significantly decreased body temperature and respiration compared with preexposure levels. Heart rate was decreased by H(2)S administered under both O(2) levels and did not return to preexposure levels after 1 h recovery. Inhaled H(2)S caused epithelial exfoliation in the lungs and increased plasma creatine kinase-MB activity. The effect of inhaled H(2)S on prosurvival signaling was also measured in heart and liver. H(2)S in 21% O(2) increased Akt-P(Ser473) and GSK-3β-P(Ser9) in the heart whereas phosphorylation was decreased by H(2)S in 10.5% O(2), indicating O(2) dependence in regulating cardiac signaling pathways. Inhaled H(2)S and low O(2) had no effect on liver Akt. In summary, we found that lower O(2) was needed for H(2)S-dependent hypometabolism in rats compared with previous findings in mice. This highlights the possibility of species differences in physiological responses to H(2)S. Inhaled H(2)S exposure also caused tissue injury to the lung and heart, which raises concerns about the therapeutic safety of inhaled H(2)S. In conclusion, these findings demonstrate the importance of O(2) in influencing physiological and signaling effects of H(2)S in mammalian systems.
Collapse
Affiliation(s)
- Asaf Stein
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
|