51
|
Nazarian S, Beinart R, Halperin HR. Magnetic Resonance Imaging and Implantable Devices. Circ Arrhythm Electrophysiol 2013; 6:419-28. [DOI: 10.1161/circep.113.000116] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Saman Nazarian
- From the Section of Cardiac Electrophysiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Roy Beinart
- From the Section of Cardiac Electrophysiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Henry R. Halperin
- From the Section of Cardiac Electrophysiology, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
52
|
Hamed A, Masamune K, Tse ZTH, Lamperth M, Dohi T. Magnetic resonance imaging-compatible tactile sensing device based on a piezoelectric array. Proc Inst Mech Eng H 2012; 226:565-75. [PMID: 22913103 DOI: 10.1177/0954411912444213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Minimally invasive surgery is a widely used medical technique, one of the drawbacks of which is the loss of direct sense of touch during the operation. Palpation is the use of fingertips to explore and make fast assessments of tissue morphology. Although technologies are developed to equip minimally invasive surgery tools with haptic feedback capabilities, the majority focus on tissue stiffness profiling and tool-tissue interaction force measurement. For greatly increased diagnostic capability, a magnetic resonance imaging-compatible tactile sensor design is proposed, which allows minimally invasive surgery to be performed under image guidance, combining the strong capability of magnetic resonance imaging soft tissue and intuitive palpation. The sensing unit is based on a piezoelectric sensor methodology, which conforms to the stringent mechanical and electrical design requirements imposed by the magnetic resonance environment The sensor mechanical design and the device integration to a 0.2 Tesla open magnetic resonance imaging scanner are described, together with the device's magnetic resonance compatibility testing. Its design limitations and potential future improvements are also discussed. A tactile sensing unit based on a piezoelectric sensor principle is proposed, which is designed for magnetic resonance imaging guided interventions.
Collapse
Affiliation(s)
- Abbi Hamed
- Mechatronics in Medicine Laboratory, Imperial College London, UK.
| | | | | | | | | |
Collapse
|
53
|
Laakso I, Tsuchida S, Hirata A, Kamimura Y. Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band. Phys Med Biol 2012; 57:4991-5002. [PMID: 22801053 DOI: 10.1088/0031-9155/57/15/4991] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study discusses a computational method for calculating the specific absorption rate (SAR) due to a wireless power transmission system in the 10 MHz frequency band. A two-step quasi-static method comprised of the method of moments and the scalar potential finite-difference method are proposed. The applicability of the quasi-static approximation for localized exposure in this frequency band is discussed by comparing the SAR in a lossy dielectric cylinder computed with a full-wave electromagnetic analysis and the quasi-static approximation. From the computational results, the input impedance of the resonant coils was affected by the existence of the cylinder. On the other hand, the magnetic field distribution in free space and considering the cylinder and an impedance matching circuit were in good agreement; the maximum difference in the amplitude of the magnetic field was 4.8%. For a cylinder-coil distance of 10 mm, the difference between the peak 10 g averaged SAR in the cylinder computed with the full-wave electromagnetic method and our quasi-static method was 7.8%. These results suggest that the quasi-static approach is applicable for conducting the dosimetry of wireless power transmission in the 10 MHz band. With our two-step quasi-static method, the SAR in the anatomically based model was computed for different exposure scenarios. From those computations, the allowable input power satisfying the limit of a peak 10 g averaged SAR of 2.0 W kg(-1) was 830 W in the worst case exposure scenario with a coil positioned at a distance of 30 mm from the chest.
Collapse
Affiliation(s)
- Ilkka Laakso
- Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | | | | | | |
Collapse
|
54
|
El-Sharkawy AMM, Qian D, Bottomley PA, Edelstein WA. A multichannel, real-time MRI RF power monitor for independent SAR determination. Med Phys 2012; 39:2334-41. [PMID: 22559603 DOI: 10.1118/1.3700169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI. METHODS A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz. The system was calibrated and used in two 3 T scanners to measure power applied to human subjects during MRI scans. The results were compared with the scanner-reported SAR. RESULTS The new power measurement system has highly linear performance over a 90 dB dynamic range and a wide range of MRI duty cycles. It has about 0.1 dB insertion loss that does not interfere with scanner operation. The measurements of whole-body SAR in volunteers showed that scanner-reported SAR was significantly overestimated by up to about 2.2 fold. CONCLUSIONS The new power monitor system can accurately and independently measure RF power deposition over the wide range of conditions routinely encountered during MRI. Scanner-reported SAR values are not appropriate for setting exposure limits during device or pulse sequence testing.
Collapse
Affiliation(s)
- Abdel-Monem M El-Sharkawy
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins, University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
55
|
Nordbeck P, Fidler F, Friedrich MT, Weiss I, Warmuth M, Gensler D, Herold V, Geistert W, Jakob PM, Ertl G, Ritter O, Ladd ME, Bauer WR, Quick HH. Reducing RF-related heating of cardiac pacemaker leads in MRI: implementation and experimental verification of practical design changes. Magn Reson Med 2012; 68:1963-72. [PMID: 22383393 DOI: 10.1002/mrm.24197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 01/04/2012] [Accepted: 01/13/2012] [Indexed: 11/08/2022]
Abstract
There are serious concerns regarding safety when performing magnetic resonance imaging in patients with implanted conductive medical devices, such as cardiac pacemakers, and associated leads, as severe incidents have occurred in the past. In this study, several approaches for altering an implant's lead design were systematically developed and evaluated to enhance the safety of implanted medical devices in a magnetic resonance imaging environment. The individual impact of each design change on radiofrequency heating was then systematically investigated in functional lead prototypes at 1.5 T. Radiofrequency-induced heating could be successfully reduced by three basic changes in conventional pacemaker lead design: (1) increasing the lead tip area, (2) increasing the lead conductor resistance, and (3) increasing outer lead insulation conductivity. The findings show that radiofrequency energy pickup in magnetic resonance imaging can be reduced and, therefore, patient safety can be improved with dedicated construction changes according to a "safe by design" strategy. Incorporation of the described alterations into implantable medical devices such as pacemaker leads can be used to help achieve favorable risk-benefit-ratios when performing magnetic resonance imaging in the respective patient group.
Collapse
Affiliation(s)
- Peter Nordbeck
- Department of Internal Medicine I-Cardiology, University Hospital Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Ertürk MA, El-Sharkawy AMM, Bottomley PA. Interventional loopless antenna at 7 T. Magn Reson Med 2011; 68:980-8. [PMID: 22161992 DOI: 10.1002/mrm.23280] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 09/02/2011] [Accepted: 10/10/2011] [Indexed: 11/12/2022]
Abstract
The loopless antenna magnetic resonance imaging detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at submillimeter diameters for interventional use in guidewires, catheters, or needles. Prior work up to 4.7 T suggests a near-quadratic gain in signal-to-noise ratio with field strength and safe operation at 3 T. Here, for the first time, the signal-to-noise ratio performance and radiofrequency safety of the loopless antenna are investigated both theoretically, using the electromagnetic method-of-moments, and experimentally in a standard 7 T human scanner. The results are compared with equivalent 3 T devices. An absolute signal-to-noise ratio gain of 5.7 ± 1.5-fold was realized at 7 T vs. 3 T: more than 20-fold higher than at 1.5 T. The effective field-of-view area also increased approximately 10-fold compared with 3 T. Testing in a saline gel phantom suggested that safe operation is possible with maximum local 1-g average specific absorption rates of <12 W kg(-1) and temperature increases of <1.9°C, normalized to a 4 W kg(-1) radiofrequency field exposure at 7 T. The antenna did not affect the power applied to the scanner's transmit coil. The signal-to-noise ratio gain enabled magnetic resonance imaging microscopy at 40-50 μm resolution in diseased human arterial specimens, offering the potential of high-resolution large-field-of-view or endoscopic magnetic resonance imaging for targeted intervention in focal disease.
Collapse
Affiliation(s)
- Mehmet Arcan Ertürk
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | | |
Collapse
|
57
|
Acikel V, Atalar E. Modeling of radio-frequency induced currents on lead wires during MR imaging using a modified transmission line method. Med Phys 2011; 38:6623-32. [DOI: 10.1118/1.3662865] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
58
|
Saikus CE, Ratnayaka K, Barbash IM, Colyer JH, Kocaturk O, Faranesh AZ, Lederman RJ. MRI-guided vascular access with an active visualization needle. J Magn Reson Imaging 2011; 34:1159-66. [PMID: 22006552 PMCID: PMC3201741 DOI: 10.1002/jmri.22715] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To develop an approach to vascular access under magnetic resonance imaging (MRI), as a component of comprehensive MRI-guided cardiovascular catheterization and intervention. MATERIALS AND METHODS We attempted jugular vein access in healthy pigs as a model of "difficult" vascular access. Procedures were performed under real-time MRI guidance using reduced field of view imaging. We developed an "active" MRI antenna-needle having an open-lumen, distinct tip appearance and indicators of depth and trajectory in order to enhance MRI visibility during the procedure. We compared performance of the active needle against an unmodified commercial passively visualized needle, measured by procedure success among operators with different levels of experience. RESULTS MRI-guided central vein access was feasible using both the active needle and the unmodified passive needle. The active needle required less time (88 vs. 244 sec, P = 0.022) and fewer needle passes (4.5 vs. 9.1, P = 0.028), irrespective of operator experience. CONCLUSION MRI-guided access to central veins is feasible in our animal model. When image guidance is necessary for vascular access, performing this component under MRI will allow wholly MRI-guided catheterization procedures that do not require adjunctive imaging facilities such as x-ray or ultrasound. The active needle design showed enhanced visibility, as expected. These capabilities may permit more complex catheter-based cardiovascular interventional procedures enabled by enhanced image guidance.
Collapse
Affiliation(s)
- Christina E Saikus
- Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1061, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Shinbane JS, Colletti PM, Shellock FG. Magnetic resonance imaging in patients with cardiac pacemakers: era of "MR Conditional" designs. J Cardiovasc Magn Reson 2011; 13:63. [PMID: 22032338 PMCID: PMC3219582 DOI: 10.1186/1532-429x-13-63] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/27/2011] [Indexed: 11/24/2022] Open
Abstract
Advances in cardiac device technology have led to the first generation of magnetic resonance imaging (MRI) conditional devices, providing more diagnostic imaging options for patients with these devices, but also new controversies. Prior studies of pacemakers in patients undergoing MRI procedures have provided groundwork for design improvements. Factors related to magnetic field interactions and transfer of electromagnetic energy led to specific design changes. Ferromagnetic content was minimized. Reed switches were modified. Leads were redesigned to reduce induced currents/heating. Circuitry filters and shielding were implemented to impede or limit the transfer of certain unwanted electromagnetic effects. Prospective multicenter clinical trials to assess the safety and efficacy of the first generation of MR conditional cardiac pacemakers demonstrated no significant alterations in pacing parameters compared to controls. There were no reported complications through the one month visit including no arrhythmias, electrical reset, inhibition of generator output, or adverse sensations. The safe implementation of these new technologies requires an understanding of the well-defined patient and MR system conditions. Although scanning a patient with an MR conditional device following the strictly defined patient and MR system conditions appears straightforward, issues related to patients with pre-existing devices remain complex. Until MR conditional devices are the routine platform for all of these devices, there will still be challenging decisions regarding imaging patients with pre-existing devices where MRI is required to diagnose and manage a potentially life threatening or serious scenario. A range of other devices including ICDs, biventricular devices, and implantable physiologic monitors as well as guidance of medical procedures using MRI technology will require further biomedical device design changes and testing. The development and implementation of cardiac MR conditional devices will continue to require the expertise and collaboration of multiple disciplines and will need to prove safety, effectiveness, and cost effectiveness in patient care.
Collapse
Affiliation(s)
- Jerold S Shinbane
- Division of Cardiovascular Medicine/Cardiovascular and Thoracic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Patrick M Colletti
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| | - Frank G Shellock
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA90033, USA
| |
Collapse
|
60
|
Ballweg V, Eibofner F, Graf H. RF tissue-heating near metallic implants during magnetic resonance examinations: An approach in the ac limit. Med Phys 2011; 38:5522-9. [DOI: 10.1118/1.3637495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
61
|
Mattei E, Calcagnini G, Censi F, Triventi M, Bartolini P. Role of the lead structure in MRI-induced heating: In vitro measurements on 30 commercial pacemaker/defibrillator leads. Magn Reson Med 2011; 67:925-35. [DOI: 10.1002/mrm.23067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 05/04/2011] [Accepted: 05/28/2011] [Indexed: 11/12/2022]
|
62
|
Lederman RJ, Faranesh AZ. Getting closer for high-resolution vascular MRI. JACC Cardiovasc Imaging 2011; 3:1166-7. [PMID: 21071005 DOI: 10.1016/j.jcmg.2010.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/25/2022]
|