51
|
Rui Z, Li-Ying P, Jia-Fei Q, Ying-Ying H, Feng C, Tie-Jun L. Smoothened gene alterations in keratocystic odontogenic tumors. Head Face Med 2014; 10:36. [PMID: 25189937 PMCID: PMC4166020 DOI: 10.1186/1746-160x-10-36] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/29/2014] [Indexed: 12/27/2022] Open
Abstract
Background It has been widely demonstrated that the hedgehog pathway is strongly associated with basal cell carcinoma of the skin (NBCCS). To assess potential DNA alterations related to keratocystic odontogenic tumors (KCOTs), we sequenced smoothened (SMO) genes in 12 sporadic KCOTs. Methods Polymerase chain reaction (PCR), capillary electrophoresis and dideoxy chain-termination sequencing were used to examine potential DNA alterations in sporadic KCOTs. Results Five alterations in SMO genes were detected. Four of these mutations consisted of two synonymous and three missense mutations; two of which have not been reported to date (c.T776A, c.T1281G). Conclusions SMO genes may play an important role in the sonic hedgehog (SHH) pathway and could also be responsible for generating KCOTs and NBCCS. However, their influence on SHH signaling remains to be elucidated.
Collapse
Affiliation(s)
| | | | | | | | - Chen Feng
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China.
| | | |
Collapse
|
52
|
Teperino R, Aberger F, Esterbauer H, Riobo N, Pospisilik JA. Canonical and non-canonical Hedgehog signalling and the control of metabolism. Semin Cell Dev Biol 2014; 33:81-92. [PMID: 24862854 DOI: 10.1016/j.semcdb.2014.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes represent key healthcare challenges of our day, affecting upwards of one billion people worldwide. These individuals are at higher risk for cancer, stroke, blindness, heart and cardiovascular disease, and to date, have no effective long-term treatment options available. Recent and accumulating evidence has implicated the developmental morphogen Hedgehog and its downstream signalling in metabolic control. Generally thought to be quiescent in adults, Hedgehog is associated with several human cancers, and as such, has already emerged as a therapeutic target in oncology. Here, we attempt to give a comprehensive overview of the key signalling events associated with both canonical and non-canonical Hedgehog signalling, and highlight the increasingly complex regulatory modalities that appear to link Hedgehog and control metabolism. We highlight these key findings and discuss their impact for therapeutic development, cancer and metabolic disease.
Collapse
Affiliation(s)
- Raffaele Teperino
- Department of Epigenetics, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fritz Aberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Natalia Riobo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John Andrew Pospisilik
- Department of Epigenetics, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
53
|
G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin Cell Dev Biol 2014; 33:63-72. [PMID: 24845016 DOI: 10.1016/j.semcdb.2014.05.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) pathway has become an important model to study the cell biology of primary cilia, and reciprocally, the study of ciliary processes provides an opportunity to solve longstanding mysteries in the mechanism of vertebrate Hh signal transduction. The cilium is emerging as an unique compartment for G-protein-coupled receptor (GPCR) signaling in many systems. Two members of the GPCR family, Smoothened and Gpr161, play important roles in the Hh pathway. We review the current understanding of how these proteins may function to regulate Hh signaling and also highlight some of the critical unanswered questions being tackled by the field. Uncovering GPCR-regulated mechanisms important in Hh signaling may provide therapeutic strategies against the Hh pathway that plays important roles in development, regeneration and cancer.
Collapse
|
54
|
Ruat M, Hoch L, Faure H, Rognan D. Targeting of Smoothened for therapeutic gain. Trends Pharmacol Sci 2014; 35:237-46. [DOI: 10.1016/j.tips.2014.03.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/26/2014] [Accepted: 03/04/2014] [Indexed: 02/06/2023]
|
55
|
Disruption of G-protein γ5 subtype causes embryonic lethality in mice. PLoS One 2014; 9:e90970. [PMID: 24599258 PMCID: PMC3944967 DOI: 10.1371/journal.pone.0090970] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 02/06/2014] [Indexed: 12/01/2022] Open
Abstract
Heterotrimeric G-proteins modulate many processes essential for embryonic development including cellular proliferation, migration, differentiation, and survival. Although most research has focused on identifying the roles of the various αsubtypes, there is growing recognition that similarly divergent βγ dimers also regulate these processes. In this paper, we show that targeted disruption of the mouse Gng5 gene encoding the γ5 subtype produces embryonic lethality associated with severe head and heart defects. Collectively, these results add to a growing body of data that identify critical roles for the γ subunits in directing the assembly of functionally distinct G-αβγ trimers that are responsible for regulating diverse biological processes. Specifically, the finding that loss of the G-γ5 subtype is associated with a reduced number of cardiac precursor cells not only provides a causal basis for the mouse phenotype but also raises the possibility that G-βγ5 dependent signaling contributes to the pathogenesis of human congenital heart problems.
Collapse
|
56
|
Mahoney WM, Gunaje J, Daum G, Dong XR, Majesky MW. Regulator of G-protein signaling - 5 (RGS5) is a novel repressor of hedgehog signaling. PLoS One 2013; 8:e61421. [PMID: 23637832 PMCID: PMC3630190 DOI: 10.1371/journal.pone.0061421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/10/2013] [Indexed: 01/11/2023] Open
Abstract
Hedgehog (Hh) signaling plays fundamental roles in morphogenesis, tissue repair, and human disease. Initiation of Hh signaling is controlled by the interaction of two multipass membrane proteins, patched (Ptc) and smoothened (Smo). Recent studies identify Smo as a G-protein coupled receptor (GPCR)-like protein that signals through large G-protein complexes which contain the Gαi subunit. We hypothesize Regulator of G-Protein Signaling (RGS) proteins, and specifically RGS5, are endogenous repressors of Hh signaling via their ability to act as GTPase activating proteins (GAPs) for GTP-bound Gαi, downstream of Smo. In support of this hypothesis, we demonstrate that RGS5 over-expression inhibits sonic hedgehog (Shh)-mediated signaling and osteogenesis in C3H10T1/2 cells. Conversely, signaling is potentiated by siRNA-mediated knock-down of RGS5 expression, but not RGS4 expression. Furthermore, using immuohistochemical analysis and co-immunoprecipitation (Co-IP), we demonstrate that RGS5 is present with Smo in primary cilia. This organelle is required for canonical Hh signaling in mammalian cells, and RGS5 is found in a physical complex with Smo in these cells. We therefore conclude that RGS5 is an endogenous regulator of Hh-mediated signaling and that RGS proteins are potential targets for novel therapeutics in Hh-mediated diseases.
Collapse
Affiliation(s)
- William M. Mahoney
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail: (WMM); (MWM)
| | - Jagadambika Gunaje
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
| | - Guenter Daum
- Department of Surgery, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
| | - Xiu Rong Dong
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, United States of America
| | - Mark W. Majesky
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
- Seattle Children’s Research Institute, University of Washington, Seattle, Washington, United States of America
- * E-mail: (WMM); (MWM)
| |
Collapse
|