51
|
Kao CY, Tanimoto A, Arima N, Sasaguri Y, Padmanabhan R. Transactivation of the human cdc2 promoter by adenovirus E1A. E1A induces the expression and assembly of a heteromeric complex consisting of the CCAAT box binding factor, CBF/NF-Y, and a 110-kDa DNA-binding protein. J Biol Chem 1999; 274:23043-51. [PMID: 10438472 DOI: 10.1074/jbc.274.33.23043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play an important role in the eukaryotic cell cycle progression. Cdc2 (CDK1) is expressed in late G(1)/S phase and required for G(2) to M phase transition in higher eukaryotes. The oncoproteins, SV40 large T antigen and adenovirus E1A, induce a 110-kDa protein which specifically recognizes the two inverted CCAAT motifs of the cdc2 promoter in cycling cells and plays an essential role in transactivation of the human cdc2 promoter. Since these CCAAT motifs also conform to the consensus binding sites for the ubiquitous heterotrimeric transcription factor, CBF/NF-Y, the role of CBF/NF-Y in the transactivation of the cdc2 promoter was examined in this study. Our results indicate that CBF/NF-Y and the 110-kDa protein interact with the CCAAT box motif to form a heteromeric complex. However, mutagenesis of the pentanucleotide CCAAT motif or in the presence of urea greater than 2.5 M, no heteromeric complex was formed. In contrast, the 110-kDa protein could still bind the mutant CCAAT motif or with the wild type motif in the presence of 2.5 M urea. Furthermore, E1A.12S induced the gene expression of all three subunits of CBF/NF-Y. Coexpression of E1A and a dominant negative mutant NF-YA subunit significantly reduced the E1A-mediated transactivation of the cdc2 promoter in a dose-dependent manner. These results support the conclusion that E1A protein mediates optimal transactivation of the human cdc2 promoter by inducing the expression and assembly of a heteromeric complex consisting of the 110-kDa protein and the CBF/NF-Y which interacts with the two CCAAT motifs of the cdc2 promoter.
Collapse
Affiliation(s)
- C Y Kao
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160-7421, USA
| | | | | | | | | |
Collapse
|
52
|
Tanaka H, Ohshima N, Hidaka H. Isolation of cDNAs encoding cellular drug-binding proteins using a novel expression cloning procedure: drug-western. Mol Pharmacol 1999; 55:356-63. [PMID: 9927629 DOI: 10.1124/mol.55.2.356] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A rapid and convenient new method for isolating the genes encoding cellular drug-binding proteins is described. This method, drug-western, is based on the use of the drug conjugated with a marker molecule as a probe for the screening of a cDNA library. Unlike the other methods, this method allows us to identify the genes for trace amounts of cellular drug-binding proteins without purification. We have used this approach to isolate human cDNA clones encoding binding proteins of HMN-154 ((E)-4-[2-[2-(p-methoxy-benzene-sulfonamide) phenyl]ethenyl] pyridine), a novel benzenesulfonamide anticancer compound (Katoh and Hidaka 1997). The proteins encoded by two of the isolated clones are identical to NF-YB, B subunit of nuclear transcription factor NF-Y, and thymosin beta-10, respectively. Recombinants of both proteins bind specifically to HMN-154 in vitro. Comparison of amino acid sequences between these proteins shows the sequence similarity in a short amino acid stretch [K(X)AKXXK]. Deletion or mutation of this region causes the significant loss of binding of both proteins to HMN-154. Furthermore, HMN-154 inhibits DNA binding of NF-Y to the human major histocompatibility complex class II human leukocyte antigen DRA Y-box sequence in a dose-dependent manner. Interestingly, other binding proteins identified by this method also possess the same or a similar motif. These results clearly demonstrate that NF-YB and thymosin beta-10 are specific cellular binding proteins of HMN-154 and that this shared region is necessary for the binding to HMN-154. Hence, this new method is thought to be useful for the identification of drug-binding proteins.
Collapse
Affiliation(s)
- H Tanaka
- Department of Pharmacology, Nagoya University School of Medicine, Showa-ku, Nagoya, Japan.
| | | | | |
Collapse
|
53
|
Thottassery JV, Sun D, Zambetti GP, Troutman A, Sukhatme VP, Schuetz EG, Schuetz JD. Sp1 and egr-1 have opposing effects on the regulation of the rat Pgp2/mdr1b gene. J Biol Chem 1999; 274:3199-206. [PMID: 9915860 DOI: 10.1074/jbc.274.5.3199] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promoter of the rat pgp2/mdr1b gene has a GC-rich region (pgp2GC) that is highly conserved in mdr genes and contains an consensus Sp1 site. Sp1's role in transactivation of the pgp2/mdr1b promoter was tested in Drosophila Schneider cells. The pgp2/mdr1b promoter was strongly activated by co-transfected wild type Sp1 but not mutant Sp1 and mutation of the Sp1 site abrogated Sp1-dependent transactivation. In gel shift assays, the same mutations abolished Sp1-DNA complex formation. Moreover, basal activity of the pgp2/mdr1b Sp1 mutant promoter was dramatically lower. Enforced ectopic overexpression of Sp1 in H35 rat hepatoma cells revealed that cell lines overexpressing Sp1 had increased endogenous pgp2/mdr1b mRNA, demonstrating that Sp1 activates the endogenous pgp2/mdr1b gene. Pgp2GC oligonucleotide also bound Egr-1 in gel shift assays and Egr-1 competitively displaced bound Sp1. In transient transfections of H35 cells (and human LS180 and HepG2 cells) Egr-1 potently and specifically suppressed pgp2/mdr1b promoter activity and mutations in the Egr-1 site decreased Egr-1 binding and correlated with pgp2/mdr1b up-regulation. Ectopic overexpression of Egr-1 in H35 cells decreased Pgp expression and selectively increased vinblastine sensitivity. In conclusion, Sp1 positively regulates while Egr-1 negatively regulates the rat pgp2/mdr1b gene. Moreover, competitive interactions between Sp1 and Egr-1 in all likelihood determine the constitutive expression of the pgp2/mdr1b gene in H35 cells.
Collapse
Affiliation(s)
- J V Thottassery
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Abstract
The emergence of resistance in a tumor population is most often associated with a disregulation of gene expression, usually at the level of transcription. A major goal in the field of cancer chemotherapy is to define the mechanisms underlying transcriptional regulation of drug resistance genes in an effort to identify targets for therapeutic intervention. Recently, considerable progress has been made in identifying the molecular mechanisms involved in the transcriptional regulation of the P-glycoprotein (Pgp) gene. When overexpressed in tumor cells, Pgp confers resistance to a variety of chemotherapeutic agents; this resistance has been termed MDR (multidrug resistance). Moreover, Pgp is a normal component of a variety of highly differentiated cell types and, as such, is regulated by both internal and external environmental stimuli. In this review, we will discuss the current knowledge regarding the DNA elements and protein factors involved in both constitutive and inducible regulation of Pgp transcription in normal and tumor cells.
Collapse
Affiliation(s)
- K W Scotto
- Memorial Sloan-Kettering Cancer Center, Program in Molecular Pharmacology and Experimental Therapeutics, 1275 York Avenue, New York, NY, 10021, U.S.A.,
| | | |
Collapse
|
55
|
Redell JB, Tempel BL. Multiple promoter elements interact to control the transcription of the potassium channel gene, KCNJ2. J Biol Chem 1998; 273:22807-18. [PMID: 9712915 DOI: 10.1074/jbc.273.35.22807] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potassium channels play important roles in shaping the electrical properties of excitable cells. Toward understanding the transcriptional regulation of a member of the inwardly rectifying potassium channel family, we have characterized the genomic structure and 5'-proximal promoter of the murine Kcnj2 gene (also referred to as IRK1 and Kir2.1). The Kcnj2 transcription unit is composed of two exons separated by a 5.5-kilobase pair intron. Deletion analysis of 5'-flanking sequences identified a promiscuously active 172-base pair minimal promoter, whereas expression from a construct containing additional upstream sequences was cell type-restricted. The minimal promoter contained an E box, a Y box, and three GC box consensus elements but lacked both TATA and CCAAT box elements. The activity of the minimal promoter was found to be controlled by a combination of the activities of the transcription factors Sp1, Sp3, and NF-Y. The interplay between Sp1, Sp3, and NF-Y within the architecture of the Kcnj2 promoter, the ubiquitous nature of these trans-acting factors, and the action of tissue-selective repressor element(s) may combine to enable a wide variety of cell types to differentially regulate Kcnj2 expression through transcriptional control.
Collapse
Affiliation(s)
- J B Redell
- Department of Pharmacology, and the Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
56
|
Jin S, Scotto KW. Transcriptional regulation of the MDR1 gene by histone acetyltransferase and deacetylase is mediated by NF-Y. Mol Cell Biol 1998; 18:4377-84. [PMID: 9632821 PMCID: PMC109021 DOI: 10.1128/mcb.18.7.4377] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1997] [Accepted: 04/21/1998] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown that the histone-modifying enzymes histone acetyltransferase (HAT) and histone deacetylase (HDAC) are involved in transcriptional activation and repression, respectively. However, little is known about the endogenous genes that are regulated by these enzymes or how specificity is achieved. In the present report, we demonstrate that HAT and HDAC activities modulate transcription of the P-glycoprotein-encoding gene, MDR1. Incubation of human colon carcinoma SW620 cells in 100-ng/ml trichostatin A (TSA), a specific HDAC inhibitor, increased the steady-state level of MDR1 mRNA 20-fold. Furthermore, TSA treatment of cells transfected with a wild-type MDR1 promoter/luciferase construct resulted in a 10- to 15-fold induction of promoter activity. Deletion and point mutation analysis determined that an inverted CCAAT box was essential for this activation. Consistent with this observation, overexpression of p300/CREB binding protein-associated factor (P/CAF), a transcriptional coactivator with intrinsic HAT activity, activated the wild-type MDR1 promoter but not a promoter containing a mutation in the CCAAT box; deletion of the P/CAF HAT domain abolished activation. Gel shift and supershift analyses identified NF-Y as the CCAAT-box binding protein in these cells, and cotransfection of a dominant negative NF-Y expression vector decreased the activation of the MDR1 promoter by TSA. Moreover, NF-YA and P/CAF were shown to interact in vitro. This is the first report of a natural promoter that is modulated by HAT and HDAC activities in which the transcription factor mediating this regulation has been identified.
Collapse
Affiliation(s)
- S Jin
- Molecular Pharmacology and Experimental Therapeutics Program, Memorial Sloan-Kettering Cancer Center and Cornell University Graduate School of Medical Sciences, New York, New York 10021, USA
| | | |
Collapse
|
57
|
Kauffmann HM, Schrenk D. Sequence analysis and functional characterization of the 5'-flanking region of the rat multidrug resistance protein 2 (mrp2) gene. Biochem Biophys Res Commun 1998; 245:325-31. [PMID: 9571149 DOI: 10.1006/bbrc.1998.8340] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gene expression of the canalicular conjugate transporter mrp2 is inducible by treatment with the DNA-damaging agents 2-acetylaminofluorene (50 and 100 microM), and cisplatin (20 microM) in primary rat hepatocytes as well as in the rat hepatoma cell line H4IIE. Furthermore, phenobarbital (1 and 2 mM) induces mrp2 gene expression, probably explaining the increase in bile-salt-independent bile flow caused by phenobarbital, while the cholestatic drug ethinyl estradiol (10(-6) M) leads to an increase in mrp2 mRNA but decreases Mrp2 protein level probably via a posttranscriptional mechanism. The 5'-flanking region of the rat mrp2 gene was sequenced and cloned into a luciferase reporter vector. Transient transfection assays with reporter vectors containing unidirectionally deleted 5'-flanking regions using H4IIE cells indicate that two different sequences of 17 and 37 bases comprising a Y-Box and a GC-Box are required for mrp2 gene basal expression. Sequences mediating 2-AAF induction are located within a region 250 bases upstream of the translation start site while the inducing effect of phenobarbital seems to be mediated by another domain located further upstream.
Collapse
Affiliation(s)
- H M Kauffmann
- Institute of Food Chemistry and Environmental Toxicology, University of Kaiserslautern, Germany
| | | |
Collapse
|
58
|
Ohga T, Uchiumi T, Makino Y, Koike K, Wada M, Kuwano M, Kohno K. Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene. J Biol Chem 1998; 273:5997-6000. [PMID: 9497311 DOI: 10.1074/jbc.273.11.5997] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human multidrug resistance 1 (MDR1) gene encoding P-glycoprotein is often overexpressed in various human tumors after chemotherapy. During treatment with various chemotherapeutic agents, the MDR1 gene is activated at the transcriptional level and/or amplified, resulting in overexpression. Our previous studies demonstrated that an inverted CCAAT box (Y-box) might be a critical cis-regulatory element regulating UV or drug-induced MDR1 gene expression. We have now established various cell lines from human head and neck cancer KB cells which were stably transfected with the chloramphenicol acetyltransferase (CAT) reporter gene driven by various MDR1 promoter deletion constructs. Transient transfection of antisense YB-1 expression constructs resulted in a decrease of both YB-1 protein levels and DNA binding activity to the inverted CCAAT box, as determined by Western blot and gel mobility shift assays. The limited expression and binding activity due to expression of antisense YB-1 constructs were also observed when cells were treated with UV. CAT activity of constructs containing the Y-box was enhanced after treatment with UV irradiation as well as genotoxic agents such as cisplatin and etoposide. Moreover, this activation was reduced by 50-80% by transfection of antisense YB-1 expression constructs. In contrast, transfection of antisense YB-1 expression constructs had no effect on CAT activity driven by MDR1 promoter constructs not containing the Y-box. These data indicate that YB-1 is directly involved in MDR1 gene activation in response to genotoxic stress.
Collapse
Affiliation(s)
- T Ohga
- Department of Biochemistry, Kyushu University, School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-82, Japan.
| | | | | | | | | | | | | |
Collapse
|