51
|
Treatment of Experimental Autoimmune Encephalomyelitis with an Inhibitor of Phosphodiesterase-8 (PDE8). Cells 2022; 11:cells11040660. [PMID: 35203312 PMCID: PMC8870644 DOI: 10.3390/cells11040660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
After decades of development, inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice for the treatment of inflammatory disorders, with three PDE4 inhibitors being in clinical use as therapeutics for psoriasis, psoriatic arthritis, chronic obstructive pulmonary disease and atopic dermatitis. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. We have previously demonstrated a role for the PDE8A-Raf-1 kinase complex in the regulation of myelin oligodendrocyte glycoprotein peptide 35–55 (MOG35–55) activated CD4+ effector T cell adhesion and locomotion by a mechanism that differs from PDE4 activity. In this study, we explored the in vivo treatment of experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis (MS) induced in mice immunized with MOG using the PDE8-selective inhibitor PF-04957325. For treatment in vivo, mice with EAE were either subcutaneously (s.c.) injected three times daily (10 mg/kg/dose), or were implanted subcutaneously with Alzet mini-osmotic pumps to deliver the PDE8 inhibitor (15.5 mg/kg/day). The mice were scored daily for clinical signs of paresis and paralysis which were characteristic of EAE. We observed the suppression of the clinical signs of EAE and a reduction of inflammatory lesion formation in the CNS by histopathological analysis through the determination of the numbers of mononuclear cells isolated from the spinal cord of mice with EAE. The PDE8 inhibitor treatment reduces the accumulation of both encephalitogenic Th1 and Th17 T cells in the CNS. Our study demonstrates the efficacy of targeting PDE8 as a treatment of autoimmune inflammation in vivo by reducing the inflammatory lesion load.
Collapse
|
52
|
Liu Z, Liu M, Cao Z, Qiu P, Song G. Phosphodiesterase‑4 inhibitors: a review of current developments (2013-2021). Expert Opin Ther Pat 2022; 32:261-278. [PMID: 34986723 DOI: 10.1080/13543776.2022.2026328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterase 4 (PDE4) is responsible for the hydrolysis of cAMP, which has become an attractive therapeutic target for lung, skin, and severe neurological diseases. Here, we review the current status of development of PDE4 inhibitors since 2013 and discuss the applicability of novel medicinal-chemistry strategies for identifying more efficient and safer inhibitors. AREAS COVERED This review summarizes the clinical development of PDE4 inhibitors from 2013 to 2021, focused on their pharmacophores, the strategies to reduce the side effects of PDE4 inhibitors and the development of subfamily selective PDE4 inhibitors. EXPERT OPINION To date, great efforts have been made in the development of PDE4 inhibitors, and researchers have established a comprehensive preclinical database and collected some promising data from clinical trials. Although four small-molecule PDE4 inhibitors have been approved by FDA for the treatment of human diseases up to now, further development of other reported PDE4 inhibitors with strong potency has been hampered due to the occurrence of severe side effects. There are currently three main strategies for overcoming the dose limitation and systemic side effects, which provide new opportunities for the clinical development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
53
|
The potential value of amlexanox in the treatment of cancer: Molecular targets and therapeutic perspectives. Biochem Pharmacol 2021; 197:114895. [PMID: 34968491 DOI: 10.1016/j.bcp.2021.114895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023]
Abstract
Amlexanox (AMX) is an azoxanthone drug used for decades for the treatment of mouth aphthous ulcers and now considered for the treatment of diabetes and obesity. The drug is usually viewed as a dual inhibitor of the non-canonical IκB kinases IKK-ɛ (inhibitor-kappaB kinase epsilon) and TBK1 (TANK-binding kinase 1). But a detailed target profile analysis indicated that AMX binds directly to twelve protein targets, including different enzymes (IKK-ɛ, TBK1, GRK1, GRK5, PDE4B, 5- and 12-lipoxygenases) and non-enzyme proteins (FGF-1, HSP90, S100A4, S100A12, S100A13). AMX has been demonstrated to have marked anticancer effects in multiple models of xenografted tumors in mice, including breast, colon, lung and gastric cancers and in onco-hematological models. The anticancer potency is generally modest but largely enhanced upon combination with cytotoxic (temozolide, docetaxel), targeted (selumetinib) or biotherapeutic agents (anti-PD-1 and anti-CTLA4 antibodies). The multiple targets participate in the anticancer effects, chiefly IKK-ɛ/TBK1 but also S100A proteins and PDE4B. The review presents the molecular basis of the antitumor effects of AMX. The capacity of the drug to block nonsense-mediated mRNA decay (NMD) is also discussed, as well as AMX-induced reduction of cancer-related pain. Altogether, the analysis provides a survey of the anticancer action of AMX, with the implicated protein targets. The use of this well-tolerated drug to treat cancer should be further considered and the design of newer analogues encouraged.
Collapse
|
54
|
Assessment of PDE4 Inhibitor-Induced Hypothermia as a Correlate of Nausea in Mice. BIOLOGY 2021; 10:biology10121355. [PMID: 34943270 PMCID: PMC8698290 DOI: 10.3390/biology10121355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023]
Abstract
Simple Summary Type 4 cAMP-phosphodiesterases (PDE4s) comprise a family of four isoenzymes, PDE4A to D, that hydrolyze and inactivate the second messenger cAMP. Non/PAN-selective PDE4 inhibitors, which inhibit all four PDE4 subtypes simultaneously, produce many promising therapeutic benefits, such as anti-inflammatory or cognition- and memory-enhancing effects. However, unwanted side effects, principally, nausea, diarrhea, and emesis, have long hampered their clinical and commercial success. Targeting individual PDE4 subtypes has been proposed for developing drugs with an improved safety profile, but which PDE4 subtype(s) is/are actually responsible for nausea and emesis remains ill-defined. Based on the observation that nausea is often accompanied by hypothermia in humans and other mammals, we used the measurement of core body temperatures of mice as a potential correlate of nausea induced by PDE4 inhibitors in humans. We find that selective inactivation of any of the four PDE4 subtypes did not change the body temperature of mice, suggesting that PAN-PDE4 inhibitor-induced hypothermia (and hence nausea in humans) requires the simultaneous inhibition of multiple PDE4 subtypes. This finding contrasts with prior reports that proposed PDE4D as the subtype mediating these side effects of PDE4 inhibitors and suggests that subtype-selective inhibitors that target any individual PDE4 subtype, including PDE4D, may not cause nausea. Abstract Treatment with PAN-PDE4 inhibitors has been shown to produce hypothermia in multiple species. Given the growing body of evidence that links nausea and emesis to disturbances in thermoregulation in mammals, we explored PDE4 inhibitor-induced hypothermia as a novel correlate of nausea in mice. Using knockout mice for each of the four PDE4 subtypes, we show that selective inactivation of individual PDE4 subtypes per se does not produce hypothermia, which must instead require the concurrent inactivation of multiple (at least two) PDE4 subtypes. These findings contrast with the role of PDE4s in shortening the duration of α2-adrenoceptor-dependent anesthesia, a behavioral surrogate previously used to assess the emetic potential of PDE4 inhibitors, which is exclusively affected by inactivation of PDE4D. These different outcomes are rooted in the distinct molecular mechanisms that drive these two paradigms; acting as a physiologic α2-adrenoceptor antagonist produces the effect of PDE4/PDE4D inactivation on the duration of α2-adrenoceptor-dependent anesthesia, but does not mediate the effect of PDE4 inhibitors on body temperature in mice. Taken together, our findings suggest that selective inhibition of any individual PDE4 subtype, including inhibition of PDE4D, may be free of nausea and emesis.
Collapse
|
55
|
Ponsaerts L, Alders L, Schepers M, de Oliveira RMW, Prickaerts J, Vanmierlo T, Bronckaers A. Neuroinflammation in Ischemic Stroke: Inhibition of cAMP-Specific Phosphodiesterases (PDEs) to the Rescue. Biomedicines 2021; 9:703. [PMID: 34206420 PMCID: PMC8301462 DOI: 10.3390/biomedicines9070703] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Ischemic stroke is caused by a thromboembolic occlusion of a major cerebral artery, with the impaired blood flow triggering neuroinflammation and subsequent neuronal damage. Both the innate immune system (e.g., neutrophils, monocytes/macrophages) in the acute ischemic stroke phase and the adaptive immune system (e.g., T cells, B cells) in the chronic phase contribute to this neuroinflammatory process. Considering that the available therapeutic strategies are insufficiently successful, there is an urgent need for novel treatment options. It has been shown that increasing cAMP levels lowers neuroinflammation. By inhibiting cAMP-specific phosphodiesterases (PDEs), i.e., PDE4, 7, and 8, neuroinflammation can be tempered through elevating cAMP levels and, thereby, this can induce an improved functional recovery. This review discusses recent preclinical findings, clinical implications, and future perspectives of cAMP-specific PDE inhibition as a novel research interest for the treatment of ischemic stroke. In particular, PDE4 inhibition has been extensively studied, and is promising for the treatment of acute neuroinflammation following a stroke, whereas PDE7 and 8 inhibition more target the T cell component. In addition, more targeted PDE4 gene inhibition, or combined PDE4 and PDE7 or 8 inhibition, requires more extensive research.
Collapse
Affiliation(s)
- Laura Ponsaerts
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Lotte Alders
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| | - Melissa Schepers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Jos Prickaerts
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
- Department Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Annelies Bronckaers
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (L.P.); (L.A.); (M.S.)
- European Graduate School of Neuroscience (EURON), Universiteitssingel 40, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|