51
|
Li Z, Li R, Pang C, Dong N, Wang J, Yu H, Chen F. 8.8 GHz Q-switched mode-locked waveguide lasers modulated by PtSe 2 saturable absorber. OPTICS EXPRESS 2019; 27:8727-8737. [PMID: 31052685 DOI: 10.1364/oe.27.008727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate high-repetition-rate fundamentally Q-switched mode-locked Nd:YAG waveguide laser modulated by platinum diselenide (PtSe2) saturable absorber. The laser operation platform is a femtosecond laser-written monolithic Nd:YAG waveguide, and the saturable absorber is large-area few-layer PtSe2 that possesses relatively lower saturation intensity and higher modulation depth in comparison with graphene. With the superb ultrafast nonlinear saturable absorption properties of as-synthesized PtSe2, the waveguide laser could operate at ~8.8 GHz repetition rate and ~27 ps pulse duration, while maintaining a relatively high slope efficiency of 26% and high stability with signal-to-noise ratio (SNR) up to 54 dB. Our work indicates the promising applications of laser-written Nd:YAG waveguides and atomically thin PtSe2 for on-chip integration of GHz laser sources toward higher repetition rates and shorter pulse duration.
Collapse
|
52
|
Wang CY, Gao J, Jiao ZQ, Qiao LF, Ren RJ, Feng Z, Chen Y, Yan ZQ, Wang Y, Tang H, Jin XM. Integrated measurement server for measurement-device-independent quantum key distribution network. OPTICS EXPRESS 2019; 27:5982-5989. [PMID: 30876192 DOI: 10.1364/oe.27.005982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Quantum key distribution (QKD), harnessing quantum physics and optoelectronics, may promise unconditionally secure information exchange in theory. Recently, theoretical and experimental advances in measurement-device-independent (MDI)-QKD have successfully closed the physical back door in detection terminals. However, the issues of scalability, stability, cost and loss prevent QKD systems from widespread application in practice. Here, we propose and experimentally demonstrate a solution to build a star-topology quantum access network with an integrated server. By using femtosecond laser direct writing techniques, we construct integrated circuits for all the elements of Bell state analyzer together and are able to integrate 10 such analyzer structures on a single photonic chip. The measured high-visibility Bell state analysis suggests the integrated server as a promising platform for the practical application of MDI-QKD network.
Collapse
|
53
|
Nguyen DT, Nolan DA, Borrelli NF. Localized quantum walks in quasi-periodic Fibonacci arrays of waveguides. OPTICS EXPRESS 2019; 27:886-898. [PMID: 30696167 DOI: 10.1364/oe.27.000886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
New quasi-periodic arrays of waveguides (AWs) constructed with Fibonacci sequences are proposed to realize localized quantum walks (LQWs). The proposed Fibonacci arrays of waveguides (FAWs) are simple and straightforward to make, but have a rich set of properties that are of potential use for applications in quantum communication. Our simulations show that, in contrast with randomly disordered AWs, LQWs in FAWs are highly controllable due to the deterministic disorder nature of quasi-periodic systems. Furthermore, unique LQWs with symmetrical probability distribution can be conveniently realized in the FAWs.
Collapse
|
54
|
Wang Y, Gao J, Pang XL, Jiao ZQ, Tang H, Chen Y, Qiao LF, Gao ZW, Dou JP, Yang AL, Jin XM. Parity-Induced Thermalization Gap in Disordered Ring Lattices. PHYSICAL REVIEW LETTERS 2019; 122:013903. [PMID: 31012669 DOI: 10.1103/physrevlett.122.013903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 06/09/2023]
Abstract
The gaps separating two different states widely exist in various physical systems: from the electrons in periodic lattices to the analogs in photonic, phononic, plasmonic systems, and even quasicrystals. Recently, a thermalization gap, an inaccessible range of photon statistics, was proposed for light in disordered structures [Nat. Phys. 11, 930 (2015)NPAHAX1745-247310.1038/nphys3482], which is intrinsically induced by the disorder-immune chiral symmetry and can be reflected by the photon statistics. The lattice topology was further identified as a decisive role in determining the photon statistics when the chiral symmetry is satisfied. Being very distinct from one-dimensional lattices, the photon statistics in ring lattices are dictated by its parity, i.e., odd or even sited. Here, we for the first time experimentally observe a parity-induced thermalization gap in strongly disordered ring photonic structures. In a limited scale, though the light tends to be localized, we are still able to find clear evidence of the parity-dependent disorder-immune chiral symmetry and the resulting thermalization gap by measuring photon statistics, while strong disorder-induced Anderson localization overwhelms such a phenomenon in larger-scale structures. Our results shed new light on the relation among symmetry, disorder, and localization, and may inspire new resources and artificial devices for information processing and quantum control on a photonic chip.
Collapse
Affiliation(s)
- Yao Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Gao
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Ling Pang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhi-Qiang Jiao
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Tang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lu-Feng Qiao
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Wei Gao
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Peng Dou
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ai-Lin Yang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xian-Min Jin
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
55
|
Chen HL, Wang G, Lee RK. Nearly complete survival of an entangled biphoton through bound states in continuum in disordered photonic lattices. OPTICS EXPRESS 2018; 26:33205-33214. [PMID: 30645476 DOI: 10.1364/oe.26.033205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Bound states in the continuum (BICs) of periodic lattices have been the recent focus in a variety of photonic nanostructures. Motivated by the recent results about the photons evolving in BIC structures, we investigate the quantum decay of entangled biphotons through disordered photonic lattices. We report that the persistence of bound states in disordered photonic lattices leads to an interplay between the BIC and disorder-induced Anderson localized states. We reveal a novel effect resulting from such an interplay: a nearly complete quantum survival for the entangled biphoton respecting the antisymmetric exchange symmetry. This is in contrast to the complete vanishment in a periodic photonic lattice.
Collapse
|