51
|
Fuchter P, Bloomfield-Gadêlha H. The three-dimensional coarse-graining formulation of interacting elastohydrodynamic filaments and multi-body microhydrodynamics. J R Soc Interface 2023; 20:20230021. [PMID: 37254703 PMCID: PMC10230328 DOI: 10.1098/rsif.2023.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Elastic filaments are vital to biological, physical and engineering systems, from cilia driving fluid in the lungs to artificial swimmers and micro-robotics. Simulating slender structures requires intricate balance of elastic, body, active and hydrodynamic moments, all in three dimensions. Here, we present a generalized three-dimensional (3D) coarse-graining formulation that is efficient, simple-to-implement, readily extendable and usable for a wide array of applications. Our method allows for simulation of collections of 3D elastic filaments, capable of full flexural and torsional deformations, coupled non-locally via hydrodynamic interactions, and including multi-body microhydrodynamics of structures with arbitrary geometry. The method exploits the exponential mapping of quaternions for tracking 3D rotations of each interacting element in the system, allowing for computation times up to 150 times faster than a direct quaternion implementation. Spheres are used as a 'building block' of both filaments and solid microstructures for straightforward and intuitive construction of arbitrary three-dimensional geometries present in the environment. We highlight the strengths of the method in a series of non-trivial applications including bi-flagellated swimming, sperm-egg scattering and particle transport by cilia arrays. Applications to lab-on-a-chip devices, multi-filaments, mono-to-multi flagellated microorganisms, Brownian polymers, and micro-robotics are straightforward. A Matlab code is provided for further customization and generalizations.
Collapse
Affiliation(s)
- Paul Fuchter
- Department of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol, UK
| | - Hermes Bloomfield-Gadêlha
- Department of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol, UK
| |
Collapse
|
52
|
Lv Y, Pu R, Tao Y, Yang X, Mu H, Wang H, Sun W. Applications and Future Prospects of Micro/Nanorobots Utilizing Diverse Biological Carriers. MICROMACHINES 2023; 14:mi14050983. [PMID: 37241607 DOI: 10.3390/mi14050983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
Targeted drug delivery using micro-nano robots (MNRs) is a rapidly advancing and promising field in biomedical research. MNRs enable precise delivery of drugs, addressing a wide range of healthcare needs. However, the application of MNRs in vivo is limited by power issues and specificity in different scenarios. Additionally, the controllability and biological safety of MNRs must be considered. To overcome these challenges, researchers have developed bio-hybrid micro-nano motors that offer improved accuracy, effectiveness, and safety for targeted therapies. These bio-hybrid micro-nano motors/robots (BMNRs) use a variety of biological carriers, blending the benefits of artificial materials with the unique features of different biological carriers to create tailored functions for specific needs. This review aims to give an overview of the current progress and application of MNRs with various biocarriers, while exploring the characteristics, advantages, and potential hurdles for future development of these bio-carrier MNRs.
Collapse
Affiliation(s)
- Yu Lv
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ruochen Pu
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yining Tao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiyu Yang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haoran Mu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Sun
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
53
|
Abstract
Untethered robots in the size range of micro/nano-scale offer unprecedented access to hard-to-reach areas of the body. In these challenging environments, autonomous task completion capabilities of micro/nanorobots have been the subject of research in recent years. However, most of the studies have presented preliminary in vitro results that can significantly differ under in vivo settings. Here, we focus on the studies conducted with animal models to reveal the current status of micro/nanorobotic applications in real-world conditions. By a categorization based on target locations, we highlight the main strategies employed in organs and other body parts. We also discuss key challenges that require interest before the successful translation of micro/nanorobots to the clinic.
Collapse
Affiliation(s)
- Cagatay M Oral
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, 61200, Brno, Czech Republic.
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. Listopadu 2172/15, 70800, Ostrava, Czech Republic
| |
Collapse
|
54
|
Yong J, Mellick AS, Whitelock J, Wang J, Liang K. A Biomolecular Toolbox for Precision Nanomotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205746. [PMID: 36055646 DOI: 10.1002/adma.202205746] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The application of nanomotors for cancer diagnosis and therapy is a new and exciting area of research, which when combined with precision nanomedicine, promises to solve many of the issues encountered by previous development of passive nanoparticles. The goal of this article is to introduce nanomotor and nanomedicine researchers to the deep pool of knowledge available regarding cancer cell biology and biochemistry, as well as provide a greater appreciation of the complexity of cell membrane compositions, extracellular surfaces, and their functional consequences. A short description of the nanomotor state-of-art for cancer therapy and diagnosis is first provided, as well as recommendations for future directions of the field. Then, a biomolecular targeting toolbox has been collated for researchers looking to apply their nanomaterial of choice to a biological setting, as well as providing a glimpse into currently available clinical therapies and technologies. This toolbox contains an overview of different classes of targeting molecules available for high affinity and specific targeting and cell surface targets to aid researchers in the selection of a clinical disease model and targeting methodology. It is hoped that this review will provide biological context, inspiration, and direction to future nanomotor and nanomedicine research.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, 2170, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| |
Collapse
|
55
|
Saadli M, Braunmiller DL, Mourran A, Crassous JJ. Thermally and Magnetically Programmable Hydrogel Microactuators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207035. [PMID: 36683216 DOI: 10.1002/smll.202207035] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The rapid development in micro-machinery enabled the investigation of smart materials that can embody fast response, programmable actuation, and flexibility to perform mechanical work. Soft magnetic actuators represent an interesting platform toward combining those properties. This study focuses on the synthesis of micro-actuators that respond to thermal and magnetic stimuli using micro-molding with a soft template as a fabrication technique. These microsystems consist of a hydrogel matrix loaded with anisotropic magnetic nanospindles. When a homogeneous magnetic field is applied, the nanospindles initially dispersed in monomer solution, align and assemble into dipolar chains. The ensuing UV-polymerization creates a network and conveniently arrests these nanostructures. Consequently, the magnetic dipole moment is coplanar with the microgel. Varying the shape, volume, and composition of the micro-actuators during synthesis provides a temperature-dependent control over the magnetic response and the polarizability. Beyond isotropic swelling, shaping the hydrogel as long thin ribbons with a passive layer on one side allows for differential swelling leading to bending and twisting deformations, for example, 2D- or 3D-spiral. These deformations involve a reversible amplification of the magnetic response and orientation of the hydrogels under magnetic field. Temperature control herewith determines the conformation and simultaneously the magnetic response of the micro-actuators.
Collapse
Affiliation(s)
- Meriem Saadli
- Institute of Physical Chemistry IPC, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Dominik L Braunmiller
- Institute of Physical Chemistry IPC, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Ahmed Mourran
- DWI - Leibniz-Institut für Interaktive Materialien e.V, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Jérôme J Crassous
- Institute of Physical Chemistry IPC, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| |
Collapse
|
56
|
Nsamela A, Garcia Zintzun AI, Montenegro-Johnson TD, Simmchen J. Colloidal Active Matter Mimics the Behavior of Biological Microorganisms-An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202685. [PMID: 35971193 DOI: 10.1002/smll.202202685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.
Collapse
Affiliation(s)
- Audrey Nsamela
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
- Elvesys SAS, 172 Rue de Charonne, Paris, 75011, France
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
| |
Collapse
|
57
|
Deng X, Su Y, Xu M, Gong D, Cai J, Akhter M, Chen K, Li S, Pan J, Gao C, Li D, Zhang W, Xu W. Magnetic Micro/nanorobots for biological detection and targeted delivery. Biosens Bioelectron 2023; 222:114960. [PMID: 36463650 DOI: 10.1016/j.bios.2022.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xue Deng
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuan Su
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Minghao Xu
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Muhammad Akhter
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Kehan Chen
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuting Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Jingwen Pan
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chao Gao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Daoliang Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
| | - Wenqiang Zhang
- College of Engineering, China Agricultural University, Beijing, 100083, China.
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health Institute of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism Food Safety MOA, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
58
|
Ji F, Wu Y, Pumera M, Zhang L. Collective Behaviors of Active Matter Learning from Natural Taxes Across Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203959. [PMID: 35986637 DOI: 10.1002/adma.202203959] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Taxis orientation is common in microorganisms, and it provides feasible strategies to operate active colloids as small-scale robots. Collective taxes involve numerous units that collectively perform taxis motion, whereby the collective cooperation between individuals enables the group to perform efficiently, adaptively, and robustly. Hence, analyzing and designing collectives is crucial for developing and advancing microswarm toward practical or clinical applications. In this review, natural taxis behaviors are categorized and synthetic microrobotic collectives are discussed as bio-inspired realizations, aiming at closing the gap between taxis strategies of living creatures and those of functional active microswarms. As collective behaviors emerge within a group, the global taxis to external stimuli guides the group to conduct overall tasks, whereas the local taxis between individuals induces synchronization and global patterns. By encoding the local orientations and programming the global stimuli, various paradigms can be introduced for coordinating and controlling such collective microrobots, from the viewpoints of fundamental science and practical applications. Therefore, by discussing the key points and difficulties associated with collective taxes of different paradigms, this review potentially offers insights into mimicking natural collective behaviors and constructing intelligent microrobotic systems for on-demand control and preassigned tasks.
Collapse
Affiliation(s)
- Fengtong Ji
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| | - Martin Pumera
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, China
| |
Collapse
|
59
|
Bio-inspired magnetic-driven folded diaphragm for biomimetic robot. Nat Commun 2023; 14:163. [PMID: 36631471 PMCID: PMC9834404 DOI: 10.1038/s41467-023-35905-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Functional soft materials, exhibiting multiple types of deformation, have shown their potential/abilities to achieve complicated biomimetic behaviors (soft robots). Inspired by the locomotion of earthworm, which is conducted through the contraction and stretching between body segments, this study proposes a type of one-piece-mold folded diaphragm, consisting of the structure of body segments with radial magnetization property, to achieve large 3D and bi-directional deformation with inside-volume change capability subjected to the low homogeneous magnetically driving field (40 mT). Moreover, the appearance based on the proposed magnetic-driven folded diaphragm is able to be easily customized to desired ones and then implanted into different untethered soft robotic systems as soft drivers. To verify the above points, we design the diaphragm pump providing unique properties of lightweight, powerful output and rapid response, and the soft robot including the bio-earthworm crawling robot and swimming robot inspired by squid to exhibit the flexible and rapid locomotion excited by single homogeneous magnetic fields.
Collapse
|
60
|
Pashirova TN, Shaihutdinova ZM, Mironov VF, Masson P. Biomedical Nanosystems for In Vivo Detoxification: From Passive Delivery Systems to Functional Nanodevices and Nanorobots. Acta Naturae 2023; 15:4-12. [PMID: 37153510 PMCID: PMC10154777 DOI: 10.32607/actanaturae.15681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/21/2023] [Indexed: 05/09/2023] Open
Abstract
The problem of low efficiency of nanotherapeutic drugs challenges the creation of new alternative biomedical nanosystems known as robotic nanodevices. In addition to encapsulating properties, nanodevices can perform different biomedical functions, such as precision surgery, in vivo detection and imaging, biosensing, targeted delivery, and, more recently, detoxification of endogenous and xenobiotic compounds. Nanodevices for detoxification are aimed at removing toxic molecules from biological tissues, using a chemical- and/or enzyme-containing nanocarrier for the toxicant to diffuse inside the nanobody. This strategy is opposite to drug delivery systems that focus on encapsulating drugs and releasing them under the influence of external factors. The review describes various kinds of nanodevices intended for detoxification that differ by the type of poisoning treatment they provide, as well as the type of materials and toxicants. The final part of the review is devoted to enzyme nanosystems, an emerging area of research that provides fast and effective neutralization of toxins in vivo.
Collapse
Affiliation(s)
- T. N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - Z. M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| | - V. F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Kazan, 420088 Russian Federation
| | - P. Masson
- Kazan (Volga Region) Federal University, Kazan, 420008 Russian Federation
| |
Collapse
|
61
|
Rajabasadi F, Moreno S, Fichna K, Aziz A, Appelhans D, Schmidt OG, Medina-Sánchez M. Multifunctional 4D-Printed Sperm-Hybrid Microcarriers for Assisted Reproduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204257. [PMID: 36189842 DOI: 10.1002/adma.202204257] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Remotely controllable microrobots are appealing for various biomedical in vivo applications. In particular, in recent years, our group has focused on developing sperm-microcarriers to assist sperm cells with motion deficiencies or low sperm count (two of the most prominent male infertility problems) to reach the oocyte toward in-vivo-assisted fertilization. Different sperm carriers, considering their motion in realistic media and confined environments, have been optimized. However, the already-reported sperm carriers have been mainly designed to transport single sperm cell, with limited functionality. Thus, to take a step forward, here, the development of a 4D-printed multifunctional microcarrier containing soft and smart materials is reported. These microcarriers can not only transport and deliver multiple motile sperm cells, but also release heparin and mediate local enzymatic reactions by hyaluronidase-loaded polymersomes (HYAL-Psomes). These multifunctional facets enable in situ sperm capacitation/hyperactivation, and the local degradation of the cumulus complex that surrounds the oocyte, both to facilitate the sperm-oocyte interaction for the ultimate goal of in vivo assisted fertilization.
Collapse
Affiliation(s)
- Fatemeh Rajabasadi
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
| | - Silvia Moreno
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Kristin Fichna
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Azaam Aziz
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
| | - Dietmar Appelhans
- Bioactive and Responsive Polymers, Leibniz Institute for Polymer Research, 01069, Dresden, Germany
| | - Oliver G Schmidt
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Research Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany
- Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Nanophysics, Faculty of Physics, School of Science, Dresden University of Technology, 01062, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Integrative Nanosciences, Leibniz Institute for Solid State and Materials Research (IFW), 01069, Dresden, Germany
- Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| |
Collapse
|
62
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
63
|
Zhang S, Ke X, Jiang Q, Chai Z, Wu Z, Ding H. Fabrication and Functionality Integration Technologies for Small-Scale Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200671. [PMID: 35732070 DOI: 10.1002/adma.202200671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Small-scale soft robots are attracting increasing interest for visible and potential applications owing to their safety and tolerance resulting from their intrinsic soft bodies or compliant structures. However, it is not sufficient that the soft bodies merely provide support or system protection. More importantly, to meet the increasing demands of controllable operation and real-time feedback in unstructured/complicated scenarios, these robots are required to perform simplex and multimodal functionalities for sensing, communicating, and interacting with external environments during large or dynamic deformation with the risk of mismatch or delamination. Challenges are encountered during fabrication and integration, including the selection and fabrication of composite/materials and structures, integration of active/passive functional modules with robust interfaces, particularly with highly deformable soft/stretchable bodies. Here, methods and strategies of fabricating structural soft bodies and integrating them with functional modules for developing small-scale soft robots are investigated. Utilizing templating, 3D printing, transfer printing, and swelling, small-scale soft robots can be endowed with several perceptual capabilities corresponding to diverse stimulus, such as light, heat, magnetism, and force. The integration of sensing and functionalities effectively enhances the agility, adaptability, and universality of soft robots when applied in various fields, including smart manufacturing, medical surgery, biomimetics, and other interdisciplinary sciences.
Collapse
Affiliation(s)
- Shuo Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xingxing Ke
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qin Jiang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhiping Chai
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Han Ding
- State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
64
|
Shah ZH, Wu B, Das S. Multistimuli-responsive microrobots: A comprehensive review. Front Robot AI 2022; 9:1027415. [PMID: 36420129 PMCID: PMC9676497 DOI: 10.3389/frobt.2022.1027415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2023] Open
Abstract
Untethered robots of the size of a few microns have attracted increasing attention for the potential to transform many aspects of manufacturing, medicine, health care, and bioengineering. Previously impenetrable environments have become available for high-resolution in situ and in vivo manipulations as the size of the untethered robots goes down to the microscale. Nevertheless, the independent navigation of several robots at the microscale is challenging as they cannot have onboard transducers, batteries, and control like other multi-agent systems, due to the size limitations. Therefore, various unconventional propulsion mechanisms have been explored to power motion at the nanoscale. Moreover, a variety of combinations of actuation methods has also been extensively studied to tackle different issues. In this survey, we present a thorough review of the recent developments of various dedicated ways to actuate and control multistimuli-enabled microrobots. We have also discussed existing challenges and evolving concepts associated with each technique.
Collapse
Affiliation(s)
| | | | - Sambeeta Das
- Department of Mechanical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
65
|
El Gohary NA, Mahmoud A, Ashraf Nazmy M, Zaabalawi R, El Zahar L, Khalil ISM, Mitwally ME. Magnetic polycaprolactone microspheres: drug encapsulation and control. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2132248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Nesrine Abdelrehim El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Abdelrahman Mahmoud
- Materials Engineering Department, Faculty of Engineering and Materials Science, German University in Cairo, Cairo, Egypt
| | | | - Rami Zaabalawi
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Loaa El Zahar
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo, Egypt
| | - Islam S. M. Khalil
- Department of Biomechanical Engineering, University of Twente, Enschede, the Netherlands
| | - Mohamed E. Mitwally
- Materials Engineering Department, Faculty of Engineering and Materials Science, German University in Cairo, Cairo, Egypt
| |
Collapse
|
66
|
Xia N, Zhu G, Wang X, Dong Y, Zhang L. Multicomponent and multifunctional integrated miniature soft robots. SOFT MATTER 2022; 18:7464-7485. [PMID: 36189642 DOI: 10.1039/d2sm00891b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Miniature soft robots with elaborate structures and programmable physical properties could conduct micromanipulation with high precision as well as access confined and tortuous spaces, which promise benefits in medical tasks and environmental monitoring. To improve the functionalities and adaptability of miniature soft robots, a variety of integrated design and fabrication strategies have been proposed for the development of miniaturized soft robotic systems integrated with multicomponents and multifunctionalities. Combining the latest advancement in fabrication technologies, intelligent materials and active control methods enable these integrated robotic systems to adapt to increasingly complex application scenarios including precision medicine, intelligent electronics, and environmental and proprioceptive sensing. Herein, this review delivers an overview of various integration strategies applicable for miniature soft robotic systems, including semiconductor and microelectronic techniques, modular assembly based on self-healing and welding, modular assembly based on bonding agents, laser machining techniques, template assisted methods with modular material design, and 3D printing techniques. Emerging applications of the integrated miniature soft robots and perspectives for the future design of small-scale intelligent robots are discussed.
Collapse
Affiliation(s)
- Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Guangda Zhu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Xin Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Yue Dong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, China.
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
67
|
Lu B, Hu E, Xie R, Yu K, Lu F, Bao R, Wang C, Lan G, Dai F. Microcluster colloidosomes for hemostat delivery into complex wounds: A platform inspired by the attack action of torpedoes. Bioact Mater 2022; 16:372-387. [PMID: 35415282 PMCID: PMC8965855 DOI: 10.1016/j.bioactmat.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/08/2021] [Accepted: 01/02/2022] [Indexed: 12/11/2022] Open
Abstract
Complex yet lethal wounds with uncontrollable bleeding hinder conventional hemostats from clotting blood at the source or deep sites of injury vasculature, thereby causing massive blood loss and significantly increased mortality. Inspired by the attack action of torpedoes, we synthesized microcluster (MC) colloidosomes equipped with magnetic-mediated navigation and "blast" systems to deliver hemostats into the cavity of vase-type wounds. CaCO3/Fe2O3 (CF) microparticles functionalized with Arg-Gly-Asp (RGD) modified polyelectrolyte multilayers were co-assembled with oppositely charged zwitterionic carbon dots (CDs) to form MC colloidosomes, which were loaded with thrombin and protonated tranexamic acid (TXA-NH3 +). The composite microparticles moved against blood flow under magnetic mediation and simultaneously disassembled for the burst release of thrombin stimulated by TXA-NH3 +. The CO2 bubbles generated during disassembly produced a "blast" that propelled thrombin into the wound cavity. Severe bleeding in a vase-type hemorrhage model in the rabbit liver was rapidly controlled within ∼60 s. Furthermore, in vivo subcutaneous muscle and liver implantation models demonstrated excellent biodegradability of MC colloidosomes. This study is the first to propose a novel strategy based on the principle of torpedoes for transporting hemostats into vase-type wounds to achieve rapid hemostasis, creating a new paradigm for combating trauma treatment.
Collapse
Affiliation(s)
- Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing No. 69 Jialing Village, BeiBei District, Chongqing, 400715, China
| | - Chenhui Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, 55 South Daxuecheng Road, Chongqing, 401331, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
- Corresponding author. State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
- Corresponding author. State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
68
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
69
|
Mahato M, Hwang WJ, Tabassian R, Oh S, Nguyen VH, Nam S, Kim JS, Yoo H, Taseer AK, Lee MJ, Zhang H, Song TE, Oh IK. A Dual-Responsive Magnetoactive and Electro-Ionic Soft Actuator Derived from a Nickel-Based Metal-Organic Framework. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203613. [PMID: 35772104 DOI: 10.1002/adma.202203613] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
There is growing demand for multiresponsive soft actuators for the realization of natural, safe, and complex motions in robotic interactions. In particular, soft actuators simultaneously stimulated by electrical and magnetic fields are always under development owing to their simple controllability and reliability during operation. Herein, magnetically and electrically driven dual-responsive soft actuators (MESAs) derived from novel nickel-based metal-organic frameworks (Ni-MOFs-700C), are reported. Nanoscale Ni-MOFs-700C has excellent electrochemical and magnetic properties that allow it to be used as a multifunctional material under both magnetoactive and electro-ionic actuations. The dual-responsive MESA exhibits a bending displacement of 30 mm and an ultrafast rising time of 1.5 s under a very low input voltage of 1 V and also exerts a bending deflection of 12.5 mm at 50 mT under a high excitation frequency of 5 Hz. By utilizing a dual-responsive MESA, the hovering motion of a hummingbird robot is demonstrated under magnetic and electrical stimuli.
Collapse
Affiliation(s)
- Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Won-Jun Hwang
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Rassoul Tabassian
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Mechanical and Production Engineering, Aarhus University, Nordre Ringgade 1, Aarhus C, 8000, Denmark
| | - Saewoong Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sanghee Nam
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Seok Kim
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunjoon Yoo
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ashhad Kamal Taseer
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Myung-Joon Lee
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Huapeng Zhang
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Tae-Eun Song
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Mechanical Engineering, Georgia Institute of Technology, North Avenue, Atlanta, GA, 30332, USA
| |
Collapse
|
70
|
Middelhoek K, Magdanz V, Abelmann L, Khalil I. Drug-loaded IRONSperm clusters: modeling, wireless actuation, and ultrasound imaging. Biomed Mater 2022; 17. [PMID: 35985314 DOI: 10.1088/1748-605x/ac8b4b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/19/2022] [Indexed: 11/12/2022]
Abstract
Individual biohybrid microrobots have the potential to perform biomedical in vivo tasks such as remote-controlled drug and cell delivery and minimally invasive surgery. This work demonstrates the formation of biohybrid sperm-templated clusters under the influence of an external magnetic field and essential functionalities for wireless actuation and drug delivery. Ferromagnetic nanoparticles are electrostatically assembled around dead sperm cells, and the resulting nanoparticle-coated cells are magnetically assembled into threedimensional biohybrid clusters. The aim of this clustering is threefold: First, to enable rolling locomotion on a nearby solid boundary using a rotating magnetic field; second, to allow for noninvasive localization; third, to load the cells inside the cluster with drugs for targeted delivery. A magneto-hydrodynamic model captures the rotational response of the clusters in a viscous fluid, and predicts an upper bound for their step-out frequency, which is independent of their volume or aspect ratio. Below the step-out frequency, the rolling velocity of the clusters increases nonlinearly with their perimeter and actuation frequency. During rolling locomotion, the clusters are localized using ultrasound at a relatively large distance, which makes these biohybrid clusters promising for deep-tissue applications. Finally, we show that the estimated drug load scales with the number of cells in the cluster and can be retained for more than 10 hours. The aggregation of microrobots enables them to collectively roll in a predictable way in response to an external rotating magnetic field, and enhances ultrasound detectability and drug loading capacity compared to the individual microrobots. The favorable features of biohybrid microrobot clusters place emphasis on the importance of the investigation and development of collective microrobots and their potential for in vivo applications.
Collapse
Affiliation(s)
- Kaz Middelhoek
- Biomechanical Engineering , University of Twente, University of Twente, Enschede, Enschede, 7500 AE, NETHERLANDS
| | - Veronika Magdanz
- Barcelona Institute of Science and Technology, Institute for Bioengineering in Catalonia, Barcelona, Barcelona, Catalunya, 08028, SPAIN
| | - Leon Abelmann
- MESA Research Institute, University of Twente, SMI, PO Box 217, 7500 AE Enschede, THE NETHERLANDS, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Islam Khalil
- Biomechanical Engineering , University of Twente, University of Twente, Enschede, Enschede, 7500 AE, NETHERLANDS
| |
Collapse
|
71
|
Wang J, Soto F, Ma P, Ahmed R, Yang H, Chen S, Wang J, Liu C, Akin D, Fu K, Cao X, Chen P, Hsu EC, Soh HT, Stoyanova T, Wu JC, Demirci U. Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots. ACS NANO 2022; 16:10219-10230. [PMID: 35671037 DOI: 10.1021/acsnano.2c01908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Fernando Soto
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Peng Ma
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Rajib Ahmed
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Sihan Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Jibo Wang
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Demir Akin
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Kaiyu Fu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - En-Chi Hsu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Hyongsok Tom Soh
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Utkan Demirci
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| |
Collapse
|
72
|
Song X, Fu W, Cheang UK. Immunomodulation and delivery of macrophages using nano-smooth drug-loaded magnetic microrobots for dual targeting cancer therapy. iScience 2022; 25:104507. [PMID: 35720266 PMCID: PMC9201018 DOI: 10.1016/j.isci.2022.104507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
To realize the potential to use micro/nanorobots for targeted cancer therapy, it is important to improve their biocompatibility and targeting ability. Here, we report on drug-loaded magnetic microrobots capable of polarizing macrophages into the antitumor phenotype to target and inhibit cancer cells. In vitro tests demonstrated that the microrobots have good biocompatibility with normal cells and immune cells. Positively charged DOX was loaded onto the surface of microrobots via electrostatic interactions and exhibited pH-responsive release behavior. The nano-smooth surfaces of the microrobots activated M1 polarization of macrophages, thus activating their intrinsic targeting and antitumor abilities toward cancer cells. Through dual targeting from magnetic guidance and M1 macrophages, the microrobots were able to target and kill cancer cells in a 3D tumor spheroid culture assay. These findings demonstrate a way to improve the tumor-targeting and antitumor abilities of microrobots through the combined use of magnetic control, macrophages, and pH-responsive drug release.
Collapse
Affiliation(s)
- Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Fu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
73
|
Gupta A, Soni S, Chauhan N, Khanuja M, Jain U. Nanobots-based advancement in targeted drug delivery and imaging: An update. J Control Release 2022; 349:97-108. [PMID: 35718213 DOI: 10.1016/j.jconrel.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 10/17/2022]
Abstract
Manipulation and targeted navigation of nanobots in complex biological conditions can be achieved by chemical reactions, by applying external forces, and via motile cells. Several studies have applied fuel-based and fuel-free propulsion mechanisms for nanobots movements in environmental sciences and robotics. However, their applications in biomedical sciences are still in the budding phase. Therefore, the current review introduces the fundamentals of different propulsion strategies based on the advantageous features of applied nanomaterials or cellular components. Furthermore, the recent developments reported in various literatures on next-generation nanobots, such as Xenobots with applications of in-vitro and in-vivo drug delivery and imaging were also explored in detail. The challenges and the future prospects are also highlighted with corresponding advantages and limitations of nanobots in biomedical applications. This review concludes that with ever booming research enthusiasm in this field and increasing multidisciplinary cooperation, micro-/nanorobots with intelligence and multifunctions will emerge in the near future, which would have a profound impact on the treatment of diseases.
Collapse
Affiliation(s)
- Abhinandan Gupta
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Shringika Soni
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India
| | - Manika Khanuja
- Centre for Nanoscience & Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida 201313, India.
| |
Collapse
|
74
|
Wang W, Wu Z, Yang L, Si T, He Q. Rational Design of Polymer Conical Nanoswimmers with Upstream Motility. ACS NANO 2022; 16:9317-9328. [PMID: 35576530 DOI: 10.1021/acsnano.2c01979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Utilizing bottom-up controllable molecular assembly, the bio-inspired polyelectrolyte multilayer conical nanoswimmers with gold-nanoshell functionalization on different segments are presented to achieve the optimal upstream propulsion performance. The experimental investigation reveals that the presence of the gold nanoshells on the big openings of the nanoswimmers could not only bestow efficient directional propulsion but could also minimize the impact from the external flow. The gold nanoshells at the big openings of nanoswimmers facilitate the acoustically powered propulsion against a flow velocity of up to 2.00 mm s-1, which is higher than the blood velocity in capillaries and thus provides a proof-of-concept design for upstream nanoswimmers.
Collapse
Affiliation(s)
- Wei Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Zhiguang Wu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Tieyan Si
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| | - Qiang He
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing (Ministry of Education), Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150080, China
| |
Collapse
|
75
|
Noh S, Jeon S, Kim E, Oh U, Park D, Park SH, Kim SW, Pané S, Nelson BJ, Kim JY, Choi H. A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells with Mass Production Capability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107888. [PMID: 35607749 DOI: 10.1002/smll.202107888] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
A great deal of research has focused on small-scale robots for biomedical applications and minimally invasive delivery of therapeutics (e.g., cells, drugs, and genes) to a target area. Conventional fabrication methods, such as two-photon polymerization, can be used to build sophisticated micro- and nanorobots, but the long fabrication cycle for a single microrobot has limited its practical use. This study proposes a biodegradable spherical gelatin methacrylate (GelMA) microrobot for mass production in a microfluidic channel. The proposed microrobot is fabricated in a flow-focusing droplet generator by shearing a mixture of GelMA, photoinitiator, and superparamagnetic iron oxide nanoparticles (SPIONs) with a mixture of oil and surfactant. Human nasal turbinate stem cells (hNTSCs) are loaded on the GelMA microrobot, and the hNTSC-loaded microrobot shows precise rolling motion in response to an external rotating magnetic field. The microrobot is enzymatically degraded by collagenase, and released hNTSCs are proliferated and differentiated into neuronal cells. In addition, the feasibility of the GelMA microrobot as a cell therapeutic delivery system is investigated by measuring electrophysiological activity on a multielectrode array. Such a versatile and fully biodegradable microrobot has the potential for targeted stem cell delivery, proliferation, and differentiation for stem cell-based therapy.
Collapse
Affiliation(s)
- Seungmin Noh
- Department of Robotics Engineering, DGIST-ETH Microrobotics Research Center Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | | | - Eunhee Kim
- IMsystem Co., Ltd., Daegu, 42988, Republic of Korea
| | - Untaek Oh
- Department of Robotics Engineering, DGIST-ETH Microrobotics Research Center Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Danbi Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sun Hwa Park
- Postech-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University, Seoul, 06591, Republic of Korea
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, CH-8092, Switzerland
| | - Jin-Young Kim
- Department of Robotics Engineering, DGIST-ETH Microrobotics Research Center Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics Engineering, DGIST-ETH Microrobotics Research Center Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Robotics Research Center, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
76
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
77
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
78
|
Yang L, Zhang T, Tan R, Yang X, Guo D, Feng Y, Ren H, Tang Y, Shang W, Shen Y. Functionalized Spiral-Rolling Millirobot for Upstream Swimming in Blood Vessel. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200342. [PMID: 35355442 PMCID: PMC9165508 DOI: 10.1002/advs.202200342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/24/2022] [Indexed: 05/11/2023]
Abstract
Untethered small robots with multiple functions show considerable potential as next-generation catheter-free systems for biomedical applications. However, owing to dynamic blood flow, even effective upstream swimming in blood vessels remains a challenge for the robot, let alone performing medical tasks. This paper presents an untethered millirobot with a streamlined shape that integrates the engine, delivery, and biopsy modules. Based on the proposed spiral-rolling strategy, this robot can move upstream at a record-breaking speed of ≈14 mm s-1 against a blood phantom flow of 136 mm s-1 . Moreover, benefiting from the bioinspired self-sealing orifice and easy-open auto-closed biopsy needle sheath, this robot facilitates several biomedical tasks in blood vessels, such as in vivo drug delivery, tissue and liquid biopsy, and cell transportation in rabbit arteries. This study will benefit the development of wireless millirobots for controllable, minimally invasive, highly integrated, and multifunctional endovascular interventions and will inspire new designs of miniature devices for biomedical applications.
Collapse
Affiliation(s)
- Liu Yang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Tieshan Zhang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Rong Tan
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Xiong Yang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Dong Guo
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yu Feng
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Hao Ren
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yifeng Tang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Wanfeng Shang
- CAS Key Laboratory of Human‐Machine Intelligence‐Synergy SystemsShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518057China
- Guangdong Provincial Key Laboratory of Robotics and Intelligent SystemShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518057China
| | - Yajing Shen
- Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
- Shenzhen Research InstituteCity University of Hong KongShenzhen518057China
| |
Collapse
|
79
|
Chattopadhyay P, Magdanz V, Hernández-Meliá M, Borchert KBL, Schwarz D, Simmchen J. Size‐Dependent Inhibition of Sperm Motility by Copper Particles as a Path toward Male Contraception. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | - Veronika Magdanz
- Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute for Science and Technology 08028 Barcelona Spain
| | - María Hernández-Meliá
- Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute for Science and Technology 08028 Barcelona Spain
| | - Konstantin B. L. Borchert
- Nanostructured Materials Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Dana Schwarz
- Nanostructured Materials Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | | |
Collapse
|
80
|
Quashie D, Benhal P, Chen Z, Wang Z, Mu X, Song X, Jiang T, Zhong Y, Cheang UK, Ali J. Magnetic bio-hybrid micro actuators. NANOSCALE 2022; 14:4364-4379. [PMID: 35262134 DOI: 10.1039/d2nr00152g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past two decades, there has been a growing body of work on wireless devices that can operate on the length scales of biological cells and even smaller. A class of these devices receiving increasing attention are referred to as bio-hybrid actuators: tools that integrate biological cells or subcellular parts with synthetic or inorganic components. These devices are commonly controlled through magnetic manipulation as magnetic fields and gradients can be generated with a high level of control. Recent work has demonstrated that magnetic bio-hybrid actuators can address common challenges in small scale fabrication, control, and localization. Additionally, it is becoming apparent that these magnetically driven bio-hybrid devices can display high efficiency and, in many cases, have the potential for self-repair and even self-replication. Combining these properties with magnetically driven forces and torques, which can be transmitted over significant distances, can be highly controlled, and are biologically safe, gives magnetic bio-hybrid actuators significant advantages over other classes of small scale actuators. In this review, we describe the theory and mechanisms required for magnetic actuation, classify bio-hybrid actuators by their diverse organic components, and discuss their current limitations. Insights into the future of coupling cells and cell-derived components with magnetic materials to fabricate multi-functional actuators are also provided.
Collapse
Affiliation(s)
- David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| | - Zhi Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Zihan Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xueliang Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Teng Jiang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Yukun Zhong
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China, 518055
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida, USA, 32310.
- National High Magnetic Field Laboratory, Tallahassee, Florida, USA, 32310
| |
Collapse
|
81
|
Xiao Y, Zhang J, Fang B, Zhao X, Hao N. Acoustics-Actuated Microrobots. MICROMACHINES 2022; 13:481. [PMID: 35334771 PMCID: PMC8949854 DOI: 10.3390/mi13030481] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023]
Abstract
Microrobots can operate in tiny areas that traditional bulk robots cannot reach. The combination of acoustic actuation with microrobots extensively expands the application areas of microrobots due to their desirable miniaturization, flexibility, and biocompatibility features. Herein, an overview of the research and development of acoustics-actuated microrobots is provided. We first introduce the currently established manufacturing methods (3D printing and photolithography). Then, according to their different working principles, we divide acoustics-actuated microrobots into three categories including bubble propulsion, sharp-edge propulsion, and in-situ microrotor. Next, we summarize their established applications from targeted drug delivery to microfluidics operation to microsurgery. Finally, we illustrate current challenges and future perspectives to guide research in this field. This work not only gives a comprehensive overview of the latest technology of acoustics-actuated microrobots, but also provides an in-depth understanding of acoustic actuation for inspiring the next generation of advanced robotic devices.
Collapse
Affiliation(s)
- Yaxuan Xiao
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Jinhua Zhang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Bin Fang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China; (Y.X.); (B.F.)
| | - Xiong Zhao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| | - Nanjing Hao
- Laboratory of Microscale Green Chemical Process Intensification, School of Chemical Engineering and Technology, Xi’an Jiaotong University, 28 Xianning West Road, Xi’an 710049, China;
| |
Collapse
|
82
|
Abstract
In conventional classification, soft robots feature mechanical compliance as the main distinguishing factor from traditional robots made of rigid materials. Recent advances in functional soft materials have facilitated the emergence of a new class of soft robots capable of tether-free actuation in response to external stimuli such as heat, light, solvent, or electric or magnetic field. Among the various types of stimuli-responsive materials, magnetic soft materials have shown remarkable progress in their design and fabrication, leading to the development of magnetic soft robots with unique advantages and potential for many important applications. However, the field of magnetic soft robots is still in its infancy and requires further advancements in terms of design principles, fabrication methods, control mechanisms, and sensing modalities. Successful future development of magnetic soft robots would require a comprehensive understanding of the fundamental principle of magnetic actuation, as well as the physical properties and behavior of magnetic soft materials. In this review, we discuss recent progress in the design and fabrication, modeling and simulation, and actuation and control of magnetic soft materials and robots. We then give a set of design guidelines for optimal actuation performance of magnetic soft materials. Lastly, we summarize potential biomedical applications of magnetic soft robots and provide our perspectives on next-generation magnetic soft robots.
Collapse
Affiliation(s)
- Yoonho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
83
|
Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. NATURE REVIEWS. MATERIALS 2022; 7:235-249. [PMID: 35474944 PMCID: PMC7612659 DOI: 10.1038/s41578-021-00389-7] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness. We examine how performance can be improved and multifunctionality implemented by using programmable soft materials, and highlight important real-world applications of soft actuators. Finally, we discuss the challenges and opportunities for next-generation soft actuators, including physical intelligence, adaptability, manufacturing scalability and reproducibility, extended lifetime and end-of-life strategies.
Collapse
Affiliation(s)
- Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Abdon Pena-Francesch
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey
| |
Collapse
|
84
|
Zhang Z, Wang L, Chan TKF, Chen Z, Ip M, Chan PKS, Sung JJY, Zhang L. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities. Adv Healthc Mater 2022; 11:e2101991. [PMID: 34907671 DOI: 10.1002/adhm.202101991] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/24/2021] [Indexed: 12/13/2022]
Abstract
The evolution of drug-resistant pathogenic bacteria remains one of the most urgent threats to public health worldwide. Even worse, the bacterial cells commonly form biofilms through aggregation and adhesion, preventing antibiotic penetration and resisting environmental stress. Moreover, biofilms tend to grow in some hard-to-reach regions, bringing difficulty for antibiotic delivery at the infected site. The drug-resistant pathogenic bacteria and intractable biofilm give rise to chronic and recurrent infections, exacerbating the challenge in combating bacterial infections. Micro/nanorobots (MNRs) are capable of active cargo delivery, targeted treatment with high precision, and motion-assisted mechanical force, which enable transport and enhance penetration of antibacterial agents into the targeted site, thus showing great promise in emerging as an attractive alternative to conventional antibacterial therapies. This review summarizes the recent advances in micro-/nanorobots for antibacterial applications, with emphasis on those novel strategies for drug-resistance bacterium and stubborn biofilm infections. Insights on the future development of MNRs with good functionality and biosafety offer promising approaches to address infections in the clinic setting.
Collapse
Affiliation(s)
- Zifeng Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Lu Wang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Tony K. F. Chan
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Zigui Chen
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Margaret Ip
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Paul K. S. Chan
- Department of Microbiology The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Stanley Ho Centre for Emerging Infectious Diseases Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
| | - Joseph J. Y. Sung
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore 636921 Singapore
| | - Li Zhang
- Department of Mechanical and Automation Engineering The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Chow Yuk Ho Technology Center for Innovative Medicine The Chinese University of Hong Kong Hong Kong SAR 999077 China
- CUHK T Stone Robotics Institute The Chinese University of Hong Kong Hong Kong SAR 999077 China
- Department of Surgery The Chinese University of Hong Kong Hong Kong SAR 999077 China
| |
Collapse
|
85
|
Dias JMS, Estima D, Punte H, Klingner A, Marques L, Magdanz V, Khalil ISM. Modeling and Characterization of the Passive Bending Stiffness of Nanoparticle‐Coated Sperm Cells using Magnetic Excitation. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202100438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- João M. S. Dias
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
- Institute of Systems and Robotics University of Coimbra Coimbra 3030‐194 Portugal
| | - Daniel Estima
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| | - Harmen Punte
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| | - Anke Klingner
- Department of Physics The German University in Cairo Cairo 11835 Egypt
| | - Lino Marques
- Institute of Systems and Robotics University of Coimbra Coimbra 3030‐194 Portugal
| | - Veronika Magdanz
- Institute of Bioengineering of Catalonia Smart Nanobiodevices group Barcelona 08028 Spain
| | - Islam S. M. Khalil
- Department of Biomechanical Engineering University of Twente Enschede 7522 NB The Netherlands
| |
Collapse
|
86
|
Pané S, Wendel-Garcia P, Belce Y, Chen XZ, Puigmartí-Luis J. Powering and Fabrication of Small-Scale Robotics Systems. CURRENT ROBOTICS REPORTS 2022; 2:427-440. [PMID: 35036926 PMCID: PMC8721937 DOI: 10.1007/s43154-021-00066-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review The increasing number of contributions in the field of small-scale robotics is significantly associated with the progress in material science and process engineering during the last half century. With the objective of integrating the most optimal materials for the propulsion of these motile micro- and nanosystems, several manufacturing strategies have been adopted or specifically developed. This brief review covers some recent advances in materials and fabrication of small-scale robots with a focus on the materials serving as components for their motion and actuation. Recent Findings Integration of a wealth of materials is now possible in several micro- and nanorobotic designs owing to the advances in micro- and nanofabrication and chemical synthesis. Regarding light-driven swimmers, novel photocatalytic materials and deformable liquid crystal elastomers have been recently reported. Acoustic swimmers are also gaining attention, with several prominent examples of acoustic bubble-based 3D swimmers being recently reported. Magnetic micro- and nanorobots are increasingly investigated for their prospective use in biomedical applications. The adoption of different materials and novel fabrication strategies based on 3D printing, template-assisted electrodeposition, or electrospinning is briefly discussed. Summary A brief review on fabrication and powering of small-scale robotics is presented. First, a concise introduction to the world of small-scale robotics and their propulsion by means of magnetic fields, ultrasound, and light is provided. Recent examples of materials and fabrication methodologies for the realization of these devices follow thereafter.
Collapse
Affiliation(s)
- Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Pedro Wendel-Garcia
- Institute of Intensive Care Medicine, University Hospital of Zürich, Zürich, Switzerland
| | - Yonca Belce
- Departament de Ciència Dels Materials I Química Física, Institut de Química Teòrica I Computacional, 08028 Barcelona, Spain
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, CH-8092 Zurich, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència Dels Materials I Química Física, Institut de Química Teòrica I Computacional, 08028 Barcelona, Spain
| |
Collapse
|
87
|
Wang Z, Xu Z, Zhu B, Zhang Y, Lin J, Wu Y, Wu D. Design, fabrication and application of magnetically actuated micro/nanorobots: a review. NANOTECHNOLOGY 2022; 33:152001. [PMID: 34915458 DOI: 10.1088/1361-6528/ac43e6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Magnetically actuated micro/nanorobots are typical micro- and nanoscale artificial devices with favorable attributes of quick response, remote and contactless control, harmless human-machine interaction and high economic efficiency. Under external magnetic actuation strategies, they are capable of achieving elaborate manipulation and navigation in extreme biomedical environments. This review focuses on state-of-the-art progresses in design strategies, fabrication techniques and applications of magnetically actuated micro/nanorobots. Firstly, recent advances of various robot designs, including helical robots, surface walkers, ciliary robots, scaffold robots and biohybrid robots, are discussed separately. Secondly, the main progresses of common fabrication techniques are respectively introduced, and application achievements on these robots in targeted drug delivery, minimally invasive surgery and cell manipulation are also presented. Finally, a short summary is made, and the current challenges and future work for magnetically actuated micro/nanorobots are discussed.
Collapse
Affiliation(s)
- Zhongbao Wang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Zhenjin Xu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Bin Zhu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Yang Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Jiawei Lin
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Yigen Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| | - Dezhi Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518057, People's Republic of China
| |
Collapse
|
88
|
Abstract
Living things in nature have evolved with unique morphologies, structures, materials, behaviors, and functions to survive in complex natural environments. Nature has inspired the design ideas, preparation methods, and applications of versatile micro/nanomotors. This review summarizes diverse nature-inspired micro/nanomotors, which can be divided into five groups: (i) natural morphology-inspired micro/nanomotors, whose shapes are designed to imitate the morphologies of plants, animals, and objects in nature. (ii) Natural structure-inspired micro/nanomotors, which use structures from plants, red blood cells, and platelet cells as components of micro/nanomotors, or directly use sperm cells and microorganisms as the engines of micro/nanomotors. (iii) Natural behavior-inspired micro/nanomotors, which are proposed to mimic natural behaviors such as motion behavior, swarm behavior, and communication behavior between individuals. (iv) Micro/nanomotors inspired by both natural morphology and behavior. Nature makes it possible for synthetic micro/nanomotors to possess interesting morphologies, novel preparation methods, new propulsion modes, innovative functions, and broad applications. The nature-inspired micro/nanomotors could provide a promising platform for various practical fields.
Collapse
Affiliation(s)
- Xiaocong Chang
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, China
| | - Yiwen Feng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Bin Guo
- Key Laboratory of Micro-systems and Micro-Structures Manufacturing (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
89
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
90
|
Liu Y, Lin G, Bao G, Guan M, Yang L, Liu Y, Wang D, Zhang X, Liao J, Fang G, Di X, Huang G, Zhou J, Cheng YY, Jin D. Stratified Disk Microrobots with Dynamic Maneuverability and Proton-Activatable Luminescence for in Vivo Imaging. ACS NANO 2021; 15:19924-19937. [PMID: 34714044 DOI: 10.1021/acsnano.1c07431] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microrobots can expand our abilities to access remote, confined, and enclosed spaces. Their potential applications inside our body are obvious, e.g., to diagnose diseases, deliver medicine, and monitor treatment efficacy. However, critical requirements exist in relation to their operations in gastrointestinal environments, including resistance to strong gastric acid, responsivity to a narrow proton variation window, and locomotion in confined cavities with hierarchical terrains. Here, we report a proton-activatable microrobot to enable real-time, repeated, and site-selective pH sensing and monitoring in physiological relevant environments. This is achieved by stratifying a hydrogel disk to combine a range of functional nanomaterials, including proton-responsive molecular switches, upconversion nanoparticles, and near-infrared (NIR) emitters. By leveraging the 3D magnetic gradient fields and the anisotropic composition, the microrobot can be steered to locomote as a gyrating "Euler's disk", i.e., aslant relative to the surface and along its low-friction outer circumference, exhibiting a high motility of up to 60 body lengths/s. The enhanced magnetomotility can boost the pH-sensing kinetics by 2-fold. The fluorescence of the molecular switch can respond to pH variations with over 600-fold enhancement when the pH decreases from 8 to 1, and the integration of upconversion nanoparticles further allows both the efficient sensitization of NIR light through deep tissue and energy transfer to activate the pH probes. Moreover, the embedded down-shifting NIR emitters provide sufficient contrast for imaging of a single microrobot inside a live mouse. This work suggests great potential in developing multifunctional microrobots to perform generic site-selective tasks in vivo.
Collapse
Affiliation(s)
- Yuan Liu
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Gungun Lin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guochen Bao
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Ming Guan
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Liu Yang
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Yongtao Liu
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Dejiang Wang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xun Zhang
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| | - Jiayan Liao
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guocheng Fang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Guan Huang
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Yuen Yee Cheng
- Asbestos Diseases Research Institute, Sydney, NSW 2139, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan Qu, Shenzhen 518055, China
| |
Collapse
|
91
|
Chen Q, Tang S, Li Y, Cong Z, Lu D, Yang Q, Zhang X, Wu S. Multifunctional Metal-Organic Framework Exoskeletons Protect Biohybrid Sperm Microrobots for Active Drug Delivery from the Surrounding Threats. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58382-58392. [PMID: 34860489 DOI: 10.1021/acsami.1c18597] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Utilizing spermatozoa as the engine unit of robotic systems at a microscale has brought revolutionized inspirations and strategies to the biomedical community. However, the motility of sperms is impaired by the surrounding threats. For example, the antisperm antibody (AsA) can specifically bind with surface antigens on the sperm membrane and adversely affect their propulsion, hindering the operation of sperm-based microrobots in practical environments. In the present work, we report a biohybrid sperm microrobot by encapsulating sperm cells within metal-organic frameworks (MOFs) and zeolitic imidazolate framework-8 (ZIF-8) nanoparticles (NPs) (ZIFSpermbot), capable of active drug delivery and cytoprotection from the biological threats of AsA. ZIF-8 NPs can be facilely coated on the sperm membrane through complexation with tannic acid. Such cell surface engineering has a negligible impact on sperm motility under optimized conditions. The selective permeability of the resulting porous ZIF-8 wrappings protects ZIFSpermbots from the specific binding of AsA, enabling the preservation of intrinsic propulsion of the sperm engine. Besides, ZIF-8 wrappings sustainably release zinc ions and attenuate the oxidative damage generated in sperm cells, allowing the maintenance of sperm movement. Combining the effective protection of sperm propulsion with the drug-loading capacity of ZIF-8 NPs provides new applicability to ZIFSpermbots in risky surroundings with AsA, exhibiting rapid migration in a microfluidic device for active drug delivery with enhanced therapeutic efficacy due to their retained effective propulsion. Imparting bioengine-based microrobots with multifunctional wrappings holds great promise for designing adaptive cell robots that endure harsh environments toward locally extended and diverse operations, facilitating their use in practical and clinical applications.
Collapse
Affiliation(s)
- Qiwei Chen
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Songsong Tang
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Yangyang Li
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Zhaoqing Cong
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Dongdong Lu
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Qingxin Yang
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen 518060, P. R. China
| | - Song Wu
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou 515000, P. R. China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, P. R. China
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen 518000, P. R. China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, P. R. China
| |
Collapse
|
92
|
Fraser B, Peters AE, Sutherland JM, Liang M, Rebourcet D, Nixon B, Aitken RJ. Biocompatible Nanomaterials as an Emerging Technology in Reproductive Health; a Focus on the Male. Front Physiol 2021; 12:753686. [PMID: 34858208 PMCID: PMC8632065 DOI: 10.3389/fphys.2021.753686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
A growing body of research has confirmed that nanoparticle (NP) systems can enhance delivery of therapeutic and imaging agents as well as prevent potentially damaging systemic exposure to these agents by modifying the kinetics of their release. With a wide choice of NP materials possessing different properties and surface modification options with unique targeting agents, bespoke nanosystems have been developed for applications varying from cancer therapeutics and genetic modification to cell imaging. Although there remain many challenges for the clinical application of nanoparticles, including toxicity within the reproductive system, some of these may be overcome with the recent development of biodegradable nanoparticles that offer increased biocompatibility. In recognition of this potential, this review seeks to present recent NP research with a focus on the exciting possibilities posed by the application of biocompatible nanomaterials within the fields of male reproductive medicine, health, and research.
Collapse
Affiliation(s)
- Barbara Fraser
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Alexandra E Peters
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Jessie M Sutherland
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Mingtao Liang
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Priority Research Centre for Reproductive Science, School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Diane Rebourcet
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Robert J Aitken
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
93
|
Dynamic tracking of a magnetic micro-roller using ultrasound phase analysis. Sci Rep 2021; 11:23239. [PMID: 34853369 PMCID: PMC8636564 DOI: 10.1038/s41598-021-02553-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/18/2021] [Indexed: 12/30/2022] Open
Abstract
Microrobots (MRs) have attracted significant interest for their potentialities in diagnosis and non-invasive intervention in hard-to-reach body areas. Fine control of biomedical MRs requires real-time feedback on their position and configuration. Ultrasound (US) imaging stands as a mature and advantageous technology for MRs tracking, but it suffers from disturbances due to low contrast resolution. To overcome these limitations and make US imaging suitable for monitoring and tracking MRs, we propose a US contrast enhancement mechanism for MR visualization in echogenic backgrounds (e.g., tissue). Our technique exploits the specific acoustic phase modulation produced by the MR characteristic motions. By applying this principle, we performed real-time visualization and position tracking of a magnetic MR rolling on a lumen boundary, both in static flow and opposing flow conditions, with an average error of 0.25 body-lengths. Overall, the reported results unveil countless possibilities to exploit the proposed approach as a robust feedback strategy for monitoring and tracking biomedical MRs in-vivo.
Collapse
|
94
|
Dillinger C, Nama N, Ahmed D. Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish. Nat Commun 2021; 12:6455. [PMID: 34753910 PMCID: PMC8578555 DOI: 10.1038/s41467-021-26607-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 10/01/2021] [Indexed: 01/03/2023] Open
Abstract
Cilia are short, hair-like appendages ubiquitous in various biological systems, which have evolved to manipulate and gather food in liquids at regimes where viscosity dominates inertia. Inspired by these natural systems, synthetic cilia have been developed and utilized in microfluidics and microrobotics to achieve functionalities such as propulsion, liquid pumping and mixing, and particle manipulation. Here, we demonstrate ultrasound-activated synthetic ciliary bands that mimic the natural arrangements of ciliary bands on the surface of starfish larva. Our system leverages nonlinear acoustics at microscales to drive bulk fluid motion via acoustically actuated small-amplitude oscillations of synthetic cilia. By arranging the planar ciliary bands angled towards (+) or away (-) from each other, we achieve bulk fluid motion akin to a flow source or sink. We further combine these flow characteristics with a physical principle to circumvent the scallop theorem and realize acoustic-based propulsion at microscales. Finally, inspired by the feeding mechanism of a starfish larva, we demonstrate an analogous microparticle trap by arranging + and - ciliary bands adjacent to each other.
Collapse
Affiliation(s)
- Cornel Dillinger
- grid.5801.c0000 0001 2156 2780Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Nitesh Nama
- grid.24434.350000 0004 1937 0060Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
95
|
Celi N, Gong D, Cai J. Artificial flexible sperm-like nanorobot based on self-assembly and its bidirectional propulsion in precessing magnetic fields. Sci Rep 2021; 11:21728. [PMID: 34741063 PMCID: PMC8571375 DOI: 10.1038/s41598-021-00902-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
Sperm cells can move at a high speed in biofluids based on the flexible flagella, which inspire novel flagellar micro-/nanorobots to be designed. Despite progress in fabricating sperm-type robots at micro scale, mass fabrication of vivid sperm-like nanorobots with flagellar flexibility is still challenging. In this work, a facile and efficient strategy is proposed to produce flexible sperm-like nanorobots with self-assembled head-to-tail structure, and its bidirectional propulsion property was studied in detail. The nanorobots were composed of a superparamagnetic head and a flexible Au/PPy flagellum, which were covalently linked via biotin-streptavidin bonding with a high yield. Under precessing magnetic fields, the head drove the flexible tail to rotate and generated undulatory bending waves propagating along the body. Bidirectional locomotion was investigated, and moving velocity as well as direction varied with the actuating conditions (field strength, frequency, direction) and the nanorobot's structure (tail length). Effective flagellar propulsion was observed near the substrate and high velocities were attained to move back and forth without U-turn. Typical modelling based on elastohydrodynamics and undulatory wave propagation were utilized for propulsion analysis. This research presents novel artificial flexible sperm-like nanorobots with delicate self-assembled head-to-tail structures and remarkable bidirectional locomotion performances, indicating significant potentials for nanorobotic design and future biomedical application.
Collapse
Affiliation(s)
- Nuoer Celi
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - De Gong
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China. .,Shen Yuan Honors College, Beihang University, Beijing, 100191, China.
| | - Jun Cai
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| |
Collapse
|
96
|
Kaya M, Stein F, Rouwkema J, Khalil ISM, Misra S. Serial imaging of micro-agents and cancer cell spheroids in a microfluidic channel using multicolor fluorescence microscopy. PLoS One 2021; 16:e0253222. [PMID: 34129617 PMCID: PMC8205435 DOI: 10.1371/journal.pone.0253222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Multicolor fluorescence microscopy is a powerful technique to fully visualize many biological phenomena by acquiring images from different spectrum channels. This study expands the scope of multicolor fluorescence microscopy by serial imaging of polystyrene micro-beads as surrogates for drug carriers, cancer spheroids formed using HeLa cells, and microfluidic channels. Three fluorophores with different spectral characteristics are utilized to perform multicolor microscopy. According to the spectrum analysis of the fluorophores, a multicolor widefield fluorescence microscope is developed. Spectral crosstalk is corrected by exciting the fluorophores in a round-robin manner and synchronous emitted light collection. To report the performance of the multicolor microscopy, a simplified 3D tumor model is created by placing beads and spheroids inside a channel filled with the cell culture medium is imaged at varying exposure times. As a representative case and a method for bio-hybrid drug carrier fabrication, a spheroid surface is coated with beads in a channel utilizing electrostatic forces under the guidance of multicolor microscopy. Our experiments show that multicolor fluorescence microscopy enables crosstalk-free and spectrally-different individual image acquisition of beads, spheroids, and channels with the minimum exposure time of 5.5 ms. The imaging technique has the potential to monitor drug carrier transportation to cancer cells in real-time.
Collapse
Affiliation(s)
- Mert Kaya
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Fabian Stein
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Jeroen Rouwkema
- Vascularization Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Islam S. M. Khalil
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
- Surgical Robotics Laboratory, Department of Biomedical Engineering and University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
97
|
Pauer C, du Roure O, Heuvingh J, Liedl T, Tavacoli J. Programmable Design and Performance of Modular Magnetic Microswimmers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006237. [PMID: 33719137 PMCID: PMC11469239 DOI: 10.1002/adma.202006237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Synthetic biomimetic microswimmers are promising agents for in vivo healthcare and important frameworks to advance the understanding of locomotion strategies and collective motion at the microscopic scale. Nevertheless, constructing these devices with design flexibility and in large numbers remains a challenge. Here, a step toward meeting this challenge is taken by assembling such swimmers via the programmed shape and arrangement of superparamagnetic micromodules. The method's capacity for design flexibility is demonstrated through the assembly of a variety of swimmer architectures. On their actuation, strokes characterized by a balance of viscous and magnetic forces are found in all cases, but swimmers formed from a series of size-graded triangular modules swim quicker than more traditional designs comprising a circular "head" and a slender tail. Linking performance to design, rules are extracted informing the construction of a second-generation swimmer with a short tail and an elongated head optimized for speed. Its fast locomotion is attributed to a stroke that better breaks beating symmetry and an ability to beat fully with flex at high frequencies. Finally, production at scale is demonstrated through the assembly and swimming of a flock of the triangle-based architectures to reveal four types of swimmer couplings.
Collapse
Affiliation(s)
- Christoph Pauer
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐UniversitätGeschwister‐Scholl‐Platz 1München80539Germany
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes CNRSESPCI ParisUniversité PSLSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes CNRSESPCI ParisUniversité PSLSorbonne UniversitéUniversité de ParisParisF‐75005France
| | - Tim Liedl
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐UniversitätGeschwister‐Scholl‐Platz 1München80539Germany
| | - Joe Tavacoli
- Faculty of Physics and Center for NanoScienceLudwig‐Maximilians‐UniversitätGeschwister‐Scholl‐Platz 1München80539Germany
| |
Collapse
|
98
|
Magdanz V, Vivaldi J, Mohanty S, Klingner A, Vendittelli M, Simmchen J, Misra S, Khalil ISM. Impact of Segmented Magnetization on the Flagellar Propulsion of Sperm-Templated Microrobots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004037. [PMID: 33898186 PMCID: PMC8061355 DOI: 10.1002/advs.202004037] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/17/2020] [Indexed: 05/22/2023]
Abstract
Technical design features for improving the way a passive elastic filament produces propulsive thrust can be understood by analyzing the deformation of sperm-templated microrobots with segmented magnetization. Magnetic nanoparticles are electrostatically self-assembled on bovine sperm cells with nonuniform surface charge, producing different categories of sperm-templated microrobots. Depending on the amount and location of the nanoparticles on each cellular segment, magnetoelastic and viscous forces determine the wave pattern of each category during flagellar motion. Passively propagating waves are induced along the length of these microrobots using external rotating magnetic fields and the resultant wave patterns are measured. The response of the microrobots to the external field reveals distinct flow fields, propulsive thrust, and frequency responses during flagellar propulsion. This work allows predictions for optimizing the design and propulsion of flexible magnetic microrobots with segmented magnetization.
Collapse
Affiliation(s)
- Veronika Magdanz
- Applied ZoologyTechnical University of DresdenDresden01069Germany
- Smart Nano‐Bio‐Devices GroupInstitute for Bioengineering of CataloniaBarcelona08028Spain
| | - Jacopo Vivaldi
- Department of Computer Control and Management EngineeringSapienza University of RomeRome00185Italy
| | - Sumit Mohanty
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteEnschede7522 NBThe Netherlands
| | - Anke Klingner
- Department of PhysicsThe German University in CairoNew Cairo13411Egypt
| | - Marilena Vendittelli
- Department of Computer Control and Management EngineeringSapienza University of RomeRome00185Italy
| | - Juliane Simmchen
- Physical ChemistryTechnical University of DresdenDresden01069Germany
| | - Sarthak Misra
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteEnschede7522 NBThe Netherlands
- Surgical Robotics LaboratoryDepartment of Biomedical EngineeringUniversity of Groningen and University Medical Center GroningenGroningen9713 GZThe Netherlands
| | - Islam S. M. Khalil
- Surgical Robotics LaboratoryDepartment of Biomechanical EngineeringUniversity of TwenteEnschede7522 NBThe Netherlands
| |
Collapse
|
99
|
Abstract
![]()
Manipulation and navigation of micro
and nanoswimmers in different
fluid environments can be achieved by chemicals, external fields,
or even motile cells. Many researchers have selected magnetic fields
as the active external actuation source based on the advantageous
features of this actuation strategy such as remote and spatiotemporal
control, fuel-free, high degree of reconfigurability, programmability,
recyclability, and versatility. This review introduces fundamental
concepts and advantages of magnetic micro/nanorobots (termed here
as “MagRobots”) as well as basic knowledge of magnetic
fields and magnetic materials, setups for magnetic manipulation, magnetic
field configurations, and symmetry-breaking strategies for effective
movement. These concepts are discussed to describe the interactions
between micro/nanorobots and magnetic fields. Actuation mechanisms
of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave
locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted
motion), applications of magnetic fields in other propulsion approaches,
and magnetic stimulation of micro/nanorobots beyond motion are provided
followed by fabrication techniques for (quasi-)spherical, helical,
flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots
in targeted drug/gene delivery, cell manipulation, minimally invasive
surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery,
pollution removal for environmental remediation, and (bio)sensing
are also reviewed. Finally, current challenges and future perspectives
for the development of magnetically powered miniaturized motors are
discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-612 00, Czech Republic
| |
Collapse
|
100
|
Abstract
3D printing (also called "additive manufacturing" or "rapid prototyping") is able to translate computer-aided and designed virtual 3D models into 3D tangible constructs/objects through a layer-by-layer deposition approach. Since its introduction, 3D printing has aroused enormous interest among researchers and engineers to understand the fabrication process and composition-structure-property correlation of printed 3D objects and unleash its great potential for application in a variety of industrial sectors. Because of its unique technological advantages, 3D printing can definitely benefit the field of microrobotics and advance the design and development of functional microrobots in a customized manner. This review aims to present a generic overview of 3D printing for functional microrobots. The most applicable 3D printing techniques, with a focus on laser-based printing, are introduced for the 3D microfabrication of microrobots. 3D-printable materials for fabricating microrobots are reviewed in detail, including photopolymers, photo-crosslinkable hydrogels, and cell-laden hydrogels. The representative applications of 3D-printed microrobots with rational designs heretofore give evidence of how these printed microrobots are being exploited in the medical, environmental, and other relevant fields. A future outlook on the 3D printing of microrobots is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic. and Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-61600, Czech Republic and Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|