51
|
|
52
|
Abstract
A crystal structure elucidates a key step in methane generation by archaea
Collapse
Affiliation(s)
- Holger Dobbek
- Department of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
53
|
Abstract
A DNA electrochemistry platform has been developed to probe proteins bound to DNA electrically. Here gold electrodes are modified with thiol-modified DNA, and DNA charge transport chemistry is used to probe DNA binding and enzymatic reaction both with redox-silent and redox-active proteins. For redox-active proteins, the electrochemistry permits the determination of redox potentials in the DNA-bound form, where comparisons to DNA-free potentials can be made using graphite electrodes without DNA modification. Importantly, electrochemistry on the DNA-modified electrodes facilitates reaction under aqueous, physiological conditions with a sensitive electrical measurement of binding and activity.
Collapse
Affiliation(s)
| | | | - Yingxin Deng
- California Institute of Technology, Pasadena, CA, United States
| | | |
Collapse
|
54
|
Ji X, Tong P, Yang D, Wang B, Zhao J, Li Y, Qu J. Synthesis, structural characterization and conversion of dinuclear iron-sulfur clusters containing the disulfide ligand: [Cp*Fe(μ-η 2:η 2-bdt)(cis-μ-η 1:η 1-S 2)FeCp*], [Cp*Fe(μ-S(C 6H 4S 2))(cis-μ-η 1:η 1-S 2)FeCp*], and [{Cp*Fe(bdt)} 2(trans-μ-η 1:η 1-S 2)]. Dalton Trans 2017; 46:3820-3824. [PMID: 28265627 DOI: 10.1039/c7dt00450h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The treatment of [Cp*Fe(μ-η2:η4-bdt)FeCp*] (1, Cp* = η5-C5Me5, bdt = benzene-1,2-dithiolate) with 1/4 equiv. of elemental sulfur (S8) gave a dinuclear iron-sulfur cluster [Cp*Fe(μ-η2:η2-bdt)(cis-μ-η1:η1-S2)FeCp*] (2), which contains a cis-1,2-disulfide ligand. When complex 2 further interacted with 1/8 equiv. of S8, another sulfur atom inserted into an Fe-S bond to give a rare product [Cp*Fe(μ-S(C6H4S2))(cis-μ-η1:η1-S2)FeCp*] (3). Unexpectedly, a trans-1,2 disulfide-bridged diiron complex [{Cp*Fe(bdt)}2(trans-μ-η1:η1-S2)] (4) was isolated from the reaction of complex 1 with 1/2 equiv. of S8, which represents a structural isomer of [2Fe-2S] ferredoxin-type clusters. In addition, cis-1,2-disulfide-bridged complex 3 can slowly convert into trans-1,2-disulfide-bridged complex 4 and the complex [Cp*Fe(μ-η2:η2-S2)(cis-μ-η1:η1-S2)FeCp*] (5) by self-assembly reaction at ambient temperature, which is evidenced by time-dependent 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Xiaoxiao Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Peng Tong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Dawei Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Jinfeng Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China. and Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
55
|
Yin S, Bernstein ER. Properties of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions through photoelectron spectroscopy and density functional theory calculations. J Chem Phys 2016; 145:154302. [DOI: 10.1063/1.4964651] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Shi Yin
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Elliot R. Bernstein
- Department of Chemistry, NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
56
|
Abstract
Biological electron transfer reactions between metal cofactors are critical to many essential processes within the cell. Duplex DNA is, moreover, capable of mediating the transport of charge through its π-stacked nitrogenous bases. Increasingly, [4Fe4S] clusters, generally redox-active cofactors, have been found to be associated with enzymes involved in DNA processing. DNA-binding enzymes containing [4Fe4S] clusters can thus utilize DNA charge transport (DNA CT) for redox signaling to coordinate reactions over long molecular distances. In particular, DNA CT signaling may represent the first step in the search for DNA lesions by proteins containing [4Fe4S] clusters that are involved in DNA repair. Here we describe research carried out to examine the chemical characteristics and biological consequences of DNA CT. We are finding that DNA CT among metalloproteins represents powerful chemistry for redox signaling at long range within the cell.
Collapse
Affiliation(s)
- Elizabeth O’Brien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| | - Rebekah M.B. Silva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena CA 91125
| |
Collapse
|
57
|
In Situ Hydrogen Dynamics in a Hot Spring Microbial Mat during a Diel Cycle. Appl Environ Microbiol 2016; 82:4209-4217. [PMID: 27208140 DOI: 10.1128/aem.00710-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Microbes can produce molecular hydrogen (H2) via fermentation, dinitrogen fixation, or direct photolysis, yet the H2 dynamics in cyanobacterial communities has only been explored in a few natural systems and mostly in the laboratory. In this study, we investigated the diel in situ H2 dynamics in a hot spring microbial mat, where various ecotypes of unicellular cyanobacteria (Synechococcus sp.) are the only oxygenic phototrophs. In the evening, H2 accumulated rapidly after the onset of darkness, reaching peak values of up to 30 μmol H2 liter(-1) at about 1-mm depth below the mat surface, slowly decreasing to about 11 μmol H2 liter(-1) just before sunrise. Another pulse of H2 production, reaching a peak concentration of 46 μmol H2 liter(-1), was found in the early morning under dim light conditions too low to induce accumulation of O2 in the mat. The light stimulation of H2 accumulation indicated that nitrogenase activity was an important source of H2 during the morning. This is in accordance with earlier findings of a distinct early morning peak in N2 fixation and expression of Synechococcus nitrogenase genes in mat samples from the same location. Fermentation might have contributed to the formation of H2 during the night, where accumulation of other fermentation products lowered the pH in the mat to less than pH 6 compared to a spring source pH of 8.3. IMPORTANCE Hydrogen is a key intermediate in anaerobic metabolism, and with the development of a sulfide-insensitive microsensor for H2, it is now possible to study the microdistribution of H2 in stratified microbial communities such as the photosynthetic microbial mat investigated here. The ability to measure H2 profiles within the mat compared to previous measurements of H2 emission gives much more detailed information about the sources and sinks of H2 in such communities, and it was demonstrated that the high rates of H2 formation in the early morning when the mat was exposed to low light intensities might be explained by nitrogen fixation, where H2 is formed as a by-product.
Collapse
|
58
|
MacLeod KC, McWilliams SF, Mercado BQ, Holland PL. Stepwise N-H Bond Formation From N 2-Derived Iron Nitride, Imide and Amide Intermediates to Ammonia. Chem Sci 2016; 7:5736-5746. [PMID: 28066537 PMCID: PMC5207225 DOI: 10.1039/c6sc00423g] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reduction of N2 to ammonia in nature and in electrocatalysis takes place through 1-proton/1-electron steps, motivating efforts to experimentally study the steps during proton/electron transfer to well-characterized N2-derived species with bridging nitrides. We report here the protonation and reduction reactions of an N2-derived iron bis(nitride) complex (Rodriguez et al., Science, 2011, 334, 780). We isolate and definitively characterize triiron imido and amido intermediates that lie along the path to ammonia formation, and Mössbauer spectroscopy shows the oxidation level of iron atoms in these mixed-valence clusters. The first two H atoms add to one of the two nitrides of the bis(nitride) complex, and the proton-coupled electron transfer in the second step can be concerted or stepwise depending on the sources of protons and electrons. The characterization of partially protonated nitrides and their mechanisms of formation are expected to guide efforts to convert N2 to ammonia with mild acids.
Collapse
Affiliation(s)
- K Cory MacLeod
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sean F McWilliams
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
59
|
Jelen BI, Giovannelli D, Falkowski PG. The Role of Microbial Electron Transfer in the Coevolution of the Biosphere and Geosphere. Annu Rev Microbiol 2016; 70:45-62. [PMID: 27297124 DOI: 10.1146/annurev-micro-102215-095521] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All life on Earth is dependent on biologically mediated electron transfer (i.e., redox) reactions that are far from thermodynamic equilibrium. Biological redox reactions originally evolved in prokaryotes and ultimately, over the first ∼2.5 billion years of Earth's history, formed a global electronic circuit. To maintain the circuit on a global scale requires that oxidants and reductants be transported; the two major planetary wires that connect global metabolism are geophysical fluids-the atmosphere and the oceans. Because all organisms exchange gases with the environment, the evolution of redox reactions has been a major force in modifying the chemistry at Earth's surface. Here we briefly review the discovery and consequences of redox reactions in microbes with a specific focus on the coevolution of life and geochemical phenomena.
Collapse
Affiliation(s)
- Benjamin I Jelen
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, New Jersey 08901; , ,
| | - Donato Giovannelli
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, New Jersey 08901; , , .,Institute of Marine Science, National Research Council, 60125 Ancona, Italy.,Program in Interdisciplinary Studies, Institute for Advanced Studies, Princeton, New Jersey 08540.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan 152-8550
| | - Paul G Falkowski
- Environmental Biophysics and Molecular Ecology Program, Institute of Earth, Ocean and Atmospheric Sciences, Rutgers University, New Brunswick, New Jersey 08901; , , .,Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey 08854
| |
Collapse
|
60
|
Nair NN, Ribas-Arino J, Staemmler V, Marx D. Magnetostructural Dynamics from Hubbard-U Corrected Spin-Projection: [2Fe-2S] Complex in Ferredoxin. J Chem Theory Comput 2015; 6:569-75. [PMID: 26617310 DOI: 10.1021/ct900547w] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Hubbard-corrected spin-projected two-determinant approach, EBS+Uscf, is introduced to treat low-spin ground states of antiferromagnetically coupled transition metal complexes. In addition to providing access to total energies, forces, and ab initio simulations, it allows one to readily compute Heisenberg's exchange coupling J(t) on the fly. By studying the binuclear [2Fe-2S] cofactor in a metalloprotein, Anabaena Fd, within this consistent nonempirical procedure in combination with a QM/MM framework, it is illustrated that spin-projection, self-interaction corrections, thermal fluctuations, and protein matrix shifts are crucial in obtaining ⟨J⟩ close to the experiment.
Collapse
Affiliation(s)
- Nisanth N Nair
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jordi Ribas-Arino
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Volker Staemmler
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
61
|
Hirabayashi K, Yuda E, Tanaka N, Katayama S, Iwasaki K, Matsumoto T, Kurisu G, Outten FW, Fukuyama K, Takahashi Y, Wada K. Functional Dynamics Revealed by the Structure of the SufBCD Complex, a Novel ATP-binding Cassette (ABC) Protein That Serves as a Scaffold for Iron-Sulfur Cluster Biogenesis. J Biol Chem 2015; 290:29717-31. [PMID: 26472926 DOI: 10.1074/jbc.m115.680934] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/19/2022] Open
Abstract
ATP-binding cassette (ABC)-type ATPases are chemomechanical engines involved in diverse biological pathways. Recent genomic information reveals that ABC ATPase domains/subunits act not only in ABC transporters and structural maintenance of chromosome proteins, but also in iron-sulfur (Fe-S) cluster biogenesis. A novel type of ABC protein, the SufBCD complex, functions in the biosynthesis of nascent Fe-S clusters in almost all Eubacteria and Archaea, as well as eukaryotic chloroplasts. In this study, we determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits the common architecture of ABC proteins: two ABC ATPase components (SufC) with function-specific components (SufB-SufD protomers). Biochemical and physiological analyses based on this structure provided critical insights into Fe-S cluster assembly and revealed a dynamic conformational change driven by ABC ATPase activity. We propose a molecular mechanism for the biogenesis of the Fe-S cluster in the SufBCD complex.
Collapse
Affiliation(s)
- Kei Hirabayashi
- From the Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan, the Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Eiki Yuda
- the Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Naoyuki Tanaka
- the Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Sumie Katayama
- the Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Kenji Iwasaki
- the Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | | | - Genji Kurisu
- the Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - F Wayne Outten
- the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, and
| | - Keiichi Fukuyama
- the Division of Applied Chemistry, Graduate School of Engineering Osaka University, Osaka 565-0871, Japan
| | - Yasuhiro Takahashi
- the Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan,
| | - Kei Wada
- the Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan,
| |
Collapse
|
62
|
Ni B, Wang X. Face the Edges: Catalytic Active Sites of Nanomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500085. [PMID: 27980960 PMCID: PMC5115441 DOI: 10.1002/advs.201500085] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 04/19/2015] [Indexed: 05/07/2023]
Abstract
Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials.
Collapse
Affiliation(s)
- Bing Ni
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xun Wang
- Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
63
|
Goncearenco A, Berezovsky IN. Protein function from its emergence to diversity in contemporary proteins. Phys Biol 2015; 12:045002. [PMID: 26057563 DOI: 10.1088/1478-3975/12/4/045002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The goal of this work is to learn from nature the rules that govern evolution and the design of protein function. The fundamental laws of physics lie in the foundation of the protein structure and all stages of the protein evolution, determining optimal sizes and shapes at different levels of structural hierarchy. We looked back into the very onset of the protein evolution with a goal to find elementary functions (EFs) that came from the prebiotic world and served as building blocks of the first enzymes. We defined the basic structural and functional units of biochemical reactions-elementary functional loops. The diversity of contemporary enzymes can be described via combinations of a limited number of elementary chemical reactions, many of which are performed by the descendants of primitive prebiotic peptides/proteins. By analyzing protein sequences we were able to identify EFs shared by seemingly unrelated protein superfamilies and folds and to unravel evolutionary relations between them. Binding and metabolic processing of the metal- and nucleotide-containing cofactors and ligands are among the most abundant ancient EFs that became indispensable in many natural enzymes. Highly designable folds provide structural scaffolds for many different biochemical reactions. We show that contemporary proteins are built from a limited number of EFs, making their analysis instrumental for establishing the rules for protein design. Evolutionary studies help us to accumulate the library of essential EFs and to establish intricate relations between different folds and functional superfamilies. Generalized sequence-structure descriptors of the EF will become useful in future design and engineering of desired enzymatic functions.
Collapse
Affiliation(s)
- Alexander Goncearenco
- Computational Biology Unit and Department of Informatics, University of Bergen, N-5008 Bergen, Norway
| | | |
Collapse
|
64
|
Denny JA, Darensbourg MY. Metallodithiolates as ligands in coordination, bioinorganic, and organometallic chemistry. Chem Rev 2015; 115:5248-73. [PMID: 25948147 DOI: 10.1021/cr500659u] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
65
|
Li Y, Zhang Y, Yang D, Li Y, Sun P, Wang B, Qu J. Synthesis and Reactivity of Thioether-Dithiolate-Bridged Multi-iron Complexes. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying Li
- State Key
Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Yahui Zhang
- State Key
Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Dawei Yang
- State Key
Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Yang Li
- State Key
Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Puhua Sun
- State Key
Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Baomin Wang
- State Key
Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| | - Jingping Qu
- State Key
Laboratory of Fine
Chemicals, School of Pharmaceutical Science and Technology, Faculty
of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, People’s Republic of China
| |
Collapse
|
66
|
Mössbauer spectroscopy of Fe/S proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1395-405. [PMID: 25498248 DOI: 10.1016/j.bbamcr.2014.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Iron-sulfur (Fe/S) clusters are structurally and functionally diverse cofactors that are found in all domains of life. (57)Fe Mössbauer spectroscopy is a technique that provides information about the chemical nature of all chemically distinct Fe species contained in a sample, such as Fe oxidation and spin state, nuclearity of a cluster with more than one metal ion, electron spin ground state of the cluster, and delocalization properties in mixed-valent clusters. Moreover, the technique allows for quantitation of all Fe species, when it is used in conjunction with electron paramagnetic resonance (EPR) spectroscopy and analytical methods. (57)Fe-Mössbauer spectroscopy played a pivotal role in unraveling the electronic structures of the "well-established" [2Fe-2S](2+/+), [3Fe-4S](1+/0), and [4Fe-4S](3+/2+/1+/0) clusters and -more-recently- was used to characterize novel Fe/S clustsers, including the [4Fe-3S] cluster of the O2-tolerant hydrogenase from Aquifex aeolicus and the 3Fe-cluster intermediate observed during the reaction of lipoyl synthase, a member of the radical SAM enzyme superfamily.
Collapse
|
67
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part II. {[Fe2S2](SγCys)4} proteins. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
68
|
Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100:3-17. [DOI: 10.1016/j.biochi.2013.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022]
|
69
|
Photocatalytic hydrogen production in a noble-metal-free system catalyzed by in situ grown molybdenum sulfide catalyst. J Catal 2014. [DOI: 10.1016/j.jcat.2013.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
70
|
Beilschmidt LK, Puccio HM. Mammalian Fe-S cluster biogenesis and its implication in disease. Biochimie 2014; 100:48-60. [PMID: 24440636 DOI: 10.1016/j.biochi.2014.01.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Iron-sulfur (Fe-S) clusters are inorganic cofactors that are ubiquitous and essential. Due to their chemical versatility, Fe-S clusters are implicated in a wide range of protein functions including mitochondrial respiration and DNA repair. Composed of iron and sulfur, they are sensible to oxygen and their biogenesis requires a highly conserved protein machinery that facilitates assembly of the cluster as well as its insertion into apoproteins. Mitochondria are the central cellular compartment for Fe-S cluster biogenesis in eukaryotic cells and the importance of proper function of this biogenesis for life is highlighted by a constantly increasing number of human genetic diseases that are associated with dysfunction of this Fe-S cluster biogenesis pathway. Although these disorders are rare and appear dissimilar, common aspects are found among them. This review will give an overview on what is known on mammalian Fe-S cluster biogenesis today, by putting it into the context of what is known from studies from lower model organisms, and focuses on the associated diseases, by drawing attention to the respective mutations. Finally, it outlines the importance of adequate cellular and murine models to uncover not only each protein function, but to resolve their role and requirement throughout the mammalian organism.
Collapse
Affiliation(s)
- Lena K Beilschmidt
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France
| | - Hélène M Puccio
- Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France; Inserm, U596, Illkirch, France; CNRS, UMR7104, Illkirch, France; Université de Strasbourg, Strasbourg, France; Collège de France, Chaire de génétique humaine, Illkirch, France.
| |
Collapse
|
71
|
Zhao L, Chang WC, Xiao Y, Liu HW, Liu P. Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 2013; 82:497-530. [PMID: 23746261 DOI: 10.1146/annurev-biochem-052010-100934] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Isoprenoids are a class of natural products with more than 55,000 members. All isoprenoids are constructed from two precursors, isopentenyl diphosphate and its isomer dimethylallyl diphosphate. Two of the most important discoveries in isoprenoid biosynthetic studies in recent years are the elucidation of a second isoprenoid biosynthetic pathway [the methylerythritol phosphate (MEP) pathway] and a modified mevalonic acid (MVA) pathway. In this review, we summarize mechanistic insights on the MEP pathway enzymes. Because many isoprenoids have important biological activities, the need to produce them in sufficient quantities for downstream research efforts or commercial application is apparent. Recent advances in both MVA and MEP pathway-based synthetic biology are also illustrated by reviewing the landmark work of artemisinic acid and taxadien-5α-ol production through microbial fermentations.
Collapse
Affiliation(s)
- Lishan Zhao
- Amyris, Inc., Emeryville, California 94608, USA.
| | | | | | | | | |
Collapse
|
72
|
The effect of the adaptor protein Isd11 on the quaternary structure of the eukaryotic cysteine desulphurase Nfs1. Biochem Biophys Res Commun 2013; 440:235-40. [DOI: 10.1016/j.bbrc.2013.09.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/06/2013] [Indexed: 11/21/2022]
|
73
|
Reactivity landscape of pyruvate under simulated hydrothermal vent conditions. Proc Natl Acad Sci U S A 2013; 110:13283-8. [PMID: 23872841 DOI: 10.1073/pnas.1304923110] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pyruvate is an important "hub" metabolite that is a precursor for amino acids, sugars, cofactors, and lipids in extant metabolic networks. Pyruvate has been produced under simulated hydrothermal vent conditions from alkyl thiols and carbon monoxide in the presence of transition metal sulfides at 250 °C [Cody GD et al. (2000) Science 289(5483):1337-1340], so it is plausible that pyruvate was formed in hydrothermal systems on the early earth. We report here that pyruvate reacts readily in the presence of transition metal sulfide minerals under simulated hydrothermal vent fluids at more moderate temperatures (25-110 °C) that are more conducive to survival of biogenic molecules. We found that pyruvate partitions among five reaction pathways at rates that depend upon the nature of the mineral present; the concentrations of H2S, H2, and NH4Cl; and the temperature. In most cases, high yields of one or two primary products are found due to preferential acceleration of certain pathways. Reactions observed include reduction of ketones to alcohols and aldol condensation, both reactions that are common in extant metabolic networks. We also observed reductive amination to form alanine and reduction to form propionic acid. Amino acids and fatty acids formed by analogous processes may have been important components of a protometabolic network that allowed the emergence of life.
Collapse
|
74
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part I. {Fe(SγCys)4} proteins. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
75
|
Dubina MV, Vyazmin SY, Boitsov VM, Nikolaev EN, Popov IA, Kononikhin AS, Eliseev IE, Natochin YV. Potassium ions are more effective than sodium ions in salt induced peptide formation. ORIGINS LIFE EVOL B 2013; 43:109-17. [PMID: 23536046 PMCID: PMC3676736 DOI: 10.1007/s11084-013-9326-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/17/2013] [Indexed: 11/25/2022]
Abstract
Prebiotic peptide formation under aqueous conditions in the presence of metal ions is one of the plausible triggers of the emergence of life. The salt-induced peptide formation reaction has been suggested as being prebiotically relevant and was examined for the formation of peptides in NaCl solutions. In previous work we have argued that the first protocell could have emerged in KCl solution. Using HPLC-MS/MS analysis, we found that K+ is more than an order of magnitude more effective in the L-glutamic acid oligomerization with 1,1'-carbonyldiimidazole in aqueous solutions than the same concentration of Na+, which is consistent with the diffusion theory calculations. We anticipate that prebiotic peptides could have formed with K+ as the driving force, not Na+, as commonly believed.
Collapse
Affiliation(s)
- Michael V Dubina
- St Petersburg Academic University - Nanotechnology Research and Education Centre RAS, 8/3 Khlopin str, 194021, St Petersburg, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Synthesis, structure and reactions of triply selenolate-bridged diiron complex [Cp*Fe(μ-SeMe)3FeCp*]. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2012.12.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
77
|
Yin S, Wang Z, Bernstein ER. Formaldehyde and methanol formation from reaction of carbon monoxide and hydrogen on neutral Fe2S2 clusters in the gas phase. Phys Chem Chem Phys 2013; 15:4699-706. [DOI: 10.1039/c3cp50183c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
78
|
Iron-sulphur clusters, their biosynthesis, and biological functions in protozoan parasites. ADVANCES IN PARASITOLOGY 2013; 83:1-92. [PMID: 23876871 DOI: 10.1016/b978-0-12-407705-8.00001-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fe-S clusters are ensembles of sulphide-linked di-, tri-, and tetra-iron centres of a variety of metalloproteins that play important roles in reduction and oxidation of mitochondrial electron transport, energy metabolism, regulation of gene expression, cell survival, nitrogen fixation, and numerous other metabolic pathways. The Fe-S clusters are assembled by one of four distinct systems: NIF, SUF, ISC, and CIA machineries. The ISC machinery is a house-keeping system conserved widely from prokaryotes to higher eukaryotes, while the other systems are present in a limited range of organisms and play supplementary roles under certain conditions such as stress. Fe-S cluster-containing proteins and the components required for Fe-S cluster biosynthesis are modulated under stress conditions, drug resistance, and developmental stages. It is also known that a defect in Fe-S proteins and Fe-S cluster biogenesis leads to many genetic disorders in humans, which indicates the importance of the systems. In this review, we describe the biological and physiological significance of Fe-S cluster-containing proteins and their biosynthesis in parasitic protozoa including Plasmodium, Trypanosoma, Leishmania, Giardia, Trichomonas, Entamoeba, Cryptosporidium, Blastocystis, and microsporidia. We also discuss the roles of Fe-S cluster biosynthesis in proliferation, differentiation, and stress response in protozoan parasites. The heterogeneity of the systems and the compartmentalization of Fe-S cluster biogenesis in the protozoan parasites likely reflect divergent evolution under highly diverse environmental niches, and influence their parasitic lifestyle and pathogenesis. Finally, both Fe-S cluster-containing proteins and their biosynthetic machinery in protozoan parasites are remarkably different from those in their mammalian hosts. Thus, they represent a rational target for the development of novel chemotherapeutic and prophylactic agents against protozoan infections.
Collapse
|
79
|
Allosteric control in a metalloprotein dramatically alters function. Proc Natl Acad Sci U S A 2012; 110:948-53. [PMID: 23271805 DOI: 10.1073/pnas.1208286110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metalloproteins (MPs) comprise one-third of all known protein structures. This diverse set of proteins contain a plethora of unique inorganic moieties capable of performing chemistry that would otherwise be impossible using only the amino acids found in nature. Most of the well-studied MPs are generally viewed as being very rigid in structure, and it is widely thought that the properties of the metal centers are primarily determined by the small fraction of amino acids that make up the local environment. Here we examine both theoretically and experimentally whether distal regions can influence the metal center in the diabetes drug target mitoNEET. We demonstrate that a loop (L2) 20 Å away from the metal center exerts allosteric control over the cluster binding domain and regulates multiple properties of the metal center. Mutagenesis of L2 results in significant shifts in the redox potential of the [2Fe-2S] cluster and orders of magnitude effects on the rate of [2Fe-2S] cluster transfer to an apo-acceptor protein. These surprising effects occur in the absence of any structural changes. An examination of the native basin dynamics of the protein using all-atom simulations shows that twisting in L2 controls scissoring in the cluster binding domain and results in perturbations to one of the cluster-coordinating histidines. These allosteric effects are in agreement with previous folding simulations that predicted L2 could communicate with residues surrounding the metal center. Our findings suggest that long-range dynamical changes in the protein backbone can have a significant effect on the functional properties of MPs.
Collapse
|
80
|
Probing the structural, electronic and magnetic properties of multicenter Fe2S2 0/−, Fe3S4 0/− and Fe4S4 0/− clusters. J Mol Model 2012; 19:1527-36. [DOI: 10.1007/s00894-012-1714-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
81
|
Dai Z, Tonelli M, Markley JL. Metamorphic protein IscU changes conformation by cis-trans isomerizations of two peptidyl-prolyl peptide bonds. Biochemistry 2012; 51:9595-602. [PMID: 23110687 DOI: 10.1021/bi301413y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
IscU from Escherichia coli, the scaffold protein for iron-sulfur cluster biosynthesis and transfer, populates two conformational states with similar free energies and with lifetimes on the order of 1 s that interconvert in an apparent two-state reaction. One state (S) is structured, and the other (D) is largely disordered; however, both play essential functional roles. We report here nuclear magnetic resonance studies demonstrating that all four prolyl residues of apo-IscU (P14, P35, P100, and P101) are trans in the S state but that two absolutely conserved residues (P14 and P101) become cis in the D state. The peptidyl-prolyl peptide bond configurations were determined by analyzing assigned chemical shifts and were confirmed by measurements of nuclear Overhauser effects. We conclude that the S ⇄ D interconversion involves concerted trans-cis isomerization of the N13-P14 and P100-P101 peptide bonds. Although the D state is largely disordered, we show that it contains an ordered domain that accounts for the stabilization of two high-energy cis peptide bonds. Thus, IscU may be classified as a metamorphic protein.
Collapse
Affiliation(s)
- Ziqi Dai
- Graduate Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
82
|
Schippers JHM, Nguyen HM, Lu D, Schmidt R, Mueller-Roeber B. ROS homeostasis during development: an evolutionary conserved strategy. Cell Mol Life Sci 2012; 69:3245-57. [PMID: 22842779 PMCID: PMC11114851 DOI: 10.1007/s00018-012-1092-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/22/2022]
Abstract
The balance between cellular proliferation and differentiation is a key aspect of development in multicellular organisms. Recent studies on Arabidopsis roots revealed distinct roles for different reactive oxygen species (ROS) in these processes. Modulation of the balance between ROS in proliferating cells and elongating cells is controlled at least in part at the transcriptional level. The effect of ROS on proliferation and differentiation is not specific for plants but appears to be conserved between prokaryotic and eukaryotic life forms. The ways in which ROS is received and how it affects cellular functioning is discussed from an evolutionary point of view. The different redox-sensing mechanisms that evolved ultimately result in the activation of gene regulatory networks that control cellular fate and decision-making. This review highlights the potential common origin of ROS sensing, indicating that organisms evolved similar strategies for utilizing ROS during development, and discusses ROS as an ancient universal developmental regulator.
Collapse
Affiliation(s)
- Jos H. M. Schippers
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hung M. Nguyen
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dandan Lu
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Romy Schmidt
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam-Golm, Germany
- Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
83
|
Bovi D, Guidoni L. Magnetic coupling constants and vibrational frequencies by extended broken symmetry approach with hybrid functionals. J Chem Phys 2012; 137:114107. [DOI: 10.1063/1.4752398] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
84
|
Peters JW, Broderick JB. Emerging paradigms for complex iron-sulfur cofactor assembly and insertion. Annu Rev Biochem 2012; 81:429-50. [PMID: 22482905 DOI: 10.1146/annurev-biochem-052610-094911] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
[FeFe]-hydrogenses and molybdenum (Mo)-nitrogenase are evolutionarily unrelated enzymes with unique complex iron-sulfur cofactors at their active sites. The H cluster of [FeFe]-hydrogenases and the FeMo cofactor of Mo-nitrogenase require specific maturation machinery for their proper synthesis and insertion into the structural enzymes. Recent insights reveal striking similarities in the biosynthetic pathways of these complex cofactors. For both systems, simple iron-sulfur cluster precursors are modified on assembly scaffolds by the activity of radical S-adenosylmethionine (SAM) enzymes. Radical SAM enzymes are responsible for the synthesis and insertion of the unique nonprotein ligands presumed to be key structural determinants for their respective catalytic activities. Maturation culminates in the transfer of the intact cluster assemblies to a cofactor-less structural protein recipient. Required roles for nucleotide binding and hydrolysis have been implicated in both systems, but the specific role for these requirements remain unclear. In this review, we highlight the progress on [FeFe]-hydrogenase H cluster and nitrogenase FeMo-cofactor assembly in the context of these emerging paradigms.
Collapse
Affiliation(s)
- John W Peters
- Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
85
|
Duffus BR, Hamilton TL, Shepard EM, Boyd ES, Peters JW, Broderick JB. Radical AdoMet enzymes in complex metal cluster biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1254-63. [PMID: 22269887 DOI: 10.1016/j.bbapap.2012.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/01/2012] [Indexed: 10/14/2022]
Abstract
Radical S-adenosylmethionine (AdoMet) enzymes comprise a large superfamily of proteins that engage in a diverse series of biochemical transformations through generation of the highly reactive 5'-deoxyadenosyl radical intermediate. Recent advances into the biosynthesis of unique iron-sulfur (FeS)-containing cofactors such as the H-cluster in [FeFe]-hydrogenase, the FeMo-co in nitrogenase, as well as the iron-guanylylpyridinol (FeGP) cofactor in [Fe]-hydrogenase have implicated new roles for radical AdoMet enzymes in the biosynthesis of complex inorganic cofactors. Radical AdoMet enzymes in conjunction with scaffold proteins engage in modifying ubiquitous FeS precursors into unique clusters, through novel amino acid decomposition and sulfur insertion reactions. The ability of radical AdoMet enzymes to modify common metal centers to unusual metal cofactors may provide important clues into the stepwise evolution of these and other complex bioinorganic catalysts. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
Collapse
Affiliation(s)
- Benjamin R Duffus
- The Department of Chemistry and Biochemistry and the Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, MT 59717, USA
| | | | | | | | | | | |
Collapse
|
86
|
|
87
|
Abstract
Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts with increased activity and catalysts with improved selectivity. We discuss how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure.
Collapse
|
88
|
Nechushtai R, Lammert H, Michaeli D, Eisenberg-Domovich Y, Zuris JA, Luca MA, Capraro DT, Fish A, Shimshon O, Roy M, Schug A, Whitford PC, Livnah O, Onuchic JN, Jennings PA. Allostery in the ferredoxin protein motif does not involve a conformational switch. Proc Natl Acad Sci U S A 2011; 108:2240-2245. [PMID: 21266547 PMCID: PMC3038707 DOI: 10.1073/pnas.1019502108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Regulation of protein function via cracking, or local unfolding and refolding of substructures, is becoming a widely recognized mechanism of functional control. Oftentimes, cracking events are localized to secondary and tertiary structure interactions between domains that control the optimal position for catalysis and/or the formation of protein complexes. Small changes in free energy associated with ligand binding, phosphorylation, etc., can tip the balance and provide a regulatory functional switch. However, understanding the factors controlling function in single-domain proteins is still a significant challenge to structural biologists. We investigated the functional landscape of a single-domain plant-type ferredoxin protein and the effect of a distal loop on the electron-transfer center. We find the global stability and structure are minimally perturbed with mutation, whereas the functional properties are altered. Specifically, truncating the L1,2 loop does not lead to large-scale changes in the structure, determined via X-ray crystallography. Further, the overall thermal stability of the protein is only marginally perturbed by the mutation. However, even though the mutation is distal to the iron-sulfur cluster (∼20 Å), it leads to a significant change in the redox potential of the iron-sulfur cluster (57 mV). Structure-based all-atom simulations indicate correlated dynamical changes between the surface-exposed loop and the iron-sulfur cluster-binding region. Our results suggest intrinsic communication channels within the ferredoxin fold, composed of many short-range interactions, lead to the propagation of long-range signals. Accordingly, protein interface interactions that involve L1,2 could potentially signal functional changes in distal regions, similar to what is observed in other allosteric systems.
Collapse
Affiliation(s)
- Rachel Nechushtai
- Life Science Institute and The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Heiko Lammert
- Center for Theoretical Biological Physics and the Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375
| | - Dorit Michaeli
- Life Science Institute and The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Yael Eisenberg-Domovich
- Life Science Institute and The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - John A. Zuris
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375
| | - Maria A. Luca
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375
| | - Dominique T. Capraro
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375
| | - Alex Fish
- Life Science Institute and The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Odelia Shimshon
- Life Science Institute and The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Melinda Roy
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375
| | - Alexander Schug
- Center for Theoretical Biological Physics and the Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375
- Department of Chemistry, Umeå University, Umeå, Sweden; and
| | - Paul C. Whitford
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, MS K710, Los Alamos, NM 87545
| | - Oded Livnah
- Life Science Institute and The Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - José N. Onuchic
- Center for Theoretical Biological Physics and the Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375
| |
Collapse
|
89
|
Fiethen SA, Staemmler V, Nair NN, Ribas-Arino J, Schreiner E, Marx D. Revealing the magnetostructural dynamics of [2Fe-2S] ferredoxins from reduced-dimensionality analysis of antiferromagnetic exchange coupling fluctuations. J Phys Chem B 2010; 114:11612-9. [PMID: 20718446 DOI: 10.1021/jp1014912] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metalloproteins are biomolecular hybrids composed of an "inorganic core" embedded in a "bioorganic matrix". Cofactors typically contain transition metal clusters with complex electronic structure whereas the protein host undergoes dynamics on many length and time scales. This renders computational studies of spectroscopic properties challenging, in particular, when magnetic interactions are involved. In the present study we introduce a simplified description of the antiferromagnetic exchange coupling J in reduced dimensionality which allows one to study magnetostructural dynamics of [2Fe-2S] type iron-sulfur proteins in their oxidized form by molecular dynamics. It is demonstrated that parametrization in terms of a 2D J-surface faithfully reproduces the rigorous results both in vacuo and in Anabaena ferredoxin. In particular, we present a parametrization which relies on a spin-projected density functional approach based on two Kohn-Sham determinants corrected for self-interaction via a self-consistent linear-response Hubbard-U technique. This yields an average J for Anabaena Fd in close agreement with experimental in vitro results without any specific adjustment or fitting. The analytical J-surface can be used for [2Fe-2S] proteins in their oxidized form in general and the idea can be extended to other metalloproteins as well as to other spectroscopic properties.
Collapse
Affiliation(s)
- S Annamaria Fiethen
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | | | | | |
Collapse
|
90
|
Czech I, Stripp S, Sanganas O, Leidel N, Happe T, Haumann M. The [FeFe]-hydrogenase maturation protein HydF contains a H-cluster like [4Fe4S]-2Fe site. FEBS Lett 2010; 585:225-30. [PMID: 21130763 DOI: 10.1016/j.febslet.2010.11.052] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/26/2010] [Accepted: 11/26/2010] [Indexed: 10/18/2022]
Abstract
Formation of the catalytic six-iron complex (H-cluster) of [FeFe]-hydrogenase (HydA) requires its interaction with a specific maturation protein, HydF. Comparison by X-ray absorption spectroscopy at the Fe K-edge of HydF from Clostridium acetobutylicum and HydA1 from Chlamydomonas reinhardtii revealed that the overall structure of the iron site in both proteins is highly similar, comprising a [4Fe4S] cluster (Fe-Fe distances of ∼2.7Å) and a di-iron unit (Fe-Fe distance of ∼2.5Å). Thus, a precursor of the whole H-cluster is assembled on HydF. Formation of the core structures of both the 4Fe and 2Fe units may require only the housekeeping [FeS] cluster assembly machinery of the cell. Presumably, only the 2Fe cluster is transferred from HydF to HydA1, thereby forming the active site.
Collapse
Affiliation(s)
- Ilka Czech
- Ruhr-Universität Bochum, Lehrstuhl für Biochemie der Pflanzen, AG Photobiotechnologie, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
91
|
Iron-sulfur world in aerobic and hyperthermoacidophilic archaea Sulfolobus. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20885930 PMCID: PMC2946596 DOI: 10.1155/2010/842639] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/26/2010] [Indexed: 11/18/2022]
Abstract
The general importance of the Fe-S cluster prosthetic groups in biology is primarily attributable to specific features of iron and sulfur chemistry, and the assembly and interplay of the Fe-S cluster core with the surrounding protein is the key to in-depth understanding of the underlying mechanisms. In the aerobic and thermoacidophilic archaea, zinc-containing ferredoxin is abundant in the cytoplasm, functioning as a key electron carrier, and many Fe-S enzymes are produced to participate in the central metabolic and energetic pathways. De novo formation of intracellular Fe-S clusters does not occur spontaneously but most likely requires the operation of a SufBCD complex of the SUF machinery, which is the only Fe-S cluster biosynthesis system conserved in these archaea. In this paper, a brief introduction to the buildup and maintenance of the intracellular Fe-S world in aerobic and hyperthermoacidophilic crenarchaeotes, mainly Sulfolobus, is given in the biochemical, genetic, and evolutionary context.
Collapse
|
92
|
Maganas D, Grigoropoulos A, Staniland SS, Chatziefthimiou SD, Harrison A, Robertson N, Kyritsis P, Neese F. Tetrahedral and square planar Ni[(SPR(2))(2)N](2) complexes, R = Ph & (i)Pr revisited: experimental and theoretical analysis of interconversion pathways, structural preferences, and spin delocalization. Inorg Chem 2010; 49:5079-93. [PMID: 20462270 DOI: 10.1021/ic100163g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur-containing mono- or bidentate types of ligands, usually form square planar Ni((II))S(4) complexes. However, it has already been established that the bidentate L(-) dithioimidodiphosphinato ligands, [R(2)P(S)NP(S)R'(2)](-), R, and R' = aryl or alkyl, can afford both tetrahedral and square planar, NiS(4)-containing, homoleptic Ni(R,R')L(2) complexes, owing to an apparent structural flexibility, which has not, so far, been probed. In this work, the literature tetrahedral Ni[R(2)P(S)NP(S)R(2)](2) complexes, R = Ph (Ni(Ph,Ph)L(2), 1(Td)) and R = (i)Pr (Ni(iPr,iPr)L(2), 2) as well as the newly synthesized Ni[(i)Pr(2)P(S)NP(S)Ph(2)](2) complex (Ni(iPr,Ph)L(2), 3), have been studied by UV-vis, IR, and (31)P NMR spectroscopy. Complex 3 was shown by X-ray crystallography to be square planar, and magnetic studies confirmed that it is diamagnetic in the solid state. However, it becomes paramagnetic in solution, as it shows a similar UV-vis spectrum to one of the tetrahedral 1(Td) and 2 complexes. The crystal structure of the potassium salt of the asymmetric ligand, [(i)Pr(2)P(S)NP(S)Ph(2)]K, has also been determined and compared to those of the protonated (i)Pr(2)P(S)NHP(S)Ph(2) ligand and complex 3. All three, 1(Td), 2, and 3, Ni(R,R')L(2) complexes show strong paramagnetic effects in their solution (31)P NMR spectra. The magnetic properties of paramagnetic complexes 1 and 2 in the solid state were investigated on oriented crystals, and their analysis afforded remarkably small values of the spin-orbit coupling constant (lambda) and orbital reduction factor (k) parameters, implying significant delocalization of unpaired electronic density toward the ligands. The above experimental findings are combined with data from standard density functional theory and correlated multiconfiguration ab initio theoretical methods, in an effort to investigate the interplay between the square planar and tetrahedral geometries of the NiS(4) core, the mechanistic pathway for the spin-state interconversion, the degree of covalency of the Ni-S bonds, and the distribution of the spin density in this type of system. The analysis provides justification for the structural flexibility of such ligands, affording Ni(R,R')L(2) complexes with variable metallacycle conformation and NiS(4) core geometries. Of particular importance are the large zero-field splitting values estimated by both experimental and theoretical means, which have not, as yet, been verified by direct methods, such as electron paramagnetic resonance spectroscopy. The findings of our work confirm earlier observations on the feasibility of synthesizing either tetrahedral or square planar NiS(4) complexes containing the same type of ligands. They can also form the basis of investigating structure-properties relationships in other NiS(4)-containing systems.
Collapse
Affiliation(s)
- Dimitrios Maganas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, GR-157 71 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
93
|
McGuinness ET. Some Molecular Moments of the Hadean and Archaean Aeons: A Retrospective Overview from the Interfacing Years of the Second to Third Millennia. Chem Rev 2010; 110:5191-215. [DOI: 10.1021/cr050061l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eugene T. McGuinness
- Department of Chemistry & Biochemistry, Seton Hall University, South Orange, New Jersey 07079-2690
| |
Collapse
|
94
|
Sakamoto M, Ohki Y, Tatsumi K. Synthesis and Reactions of Coordinatively Unsaturated Half-Sandwich Rhodium and Iridium Complexes Having a 2,6-Dimesitylbenzenethiolate Ligand. Organometallics 2010. [DOI: 10.1021/om100006r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mayumi Sakamoto
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuyuki Tatsumi
- Department of Chemistry, Graduate School of Science and Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
95
|
Nayak S, Aromí G, Teat SJ, Ribas-Ariño J, Gamez P, Reedijk J. Hydrogen bond assisted co-crystallization of a bimetallic MnIII2NiII2cluster and a NiII2cluster unit: synthesis, structure, spectroscopy and magnetism. Dalton Trans 2010; 39:4986-90. [DOI: 10.1039/b919654d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
96
|
In Vivo Fluorescent Detection of Fe-S Clusters Coordinated by Human GRX2. ACTA ACUST UNITED AC 2009; 16:1299-308. [DOI: 10.1016/j.chembiol.2009.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/28/2009] [Accepted: 11/02/2009] [Indexed: 11/20/2022]
|
97
|
In silico cloning, expression of Rieske-like apoprotein gene and protein subcellular localization in the Pacific oyster, Crassostrea gigas. Mol Biol Rep 2009; 37:3259-64. [DOI: 10.1007/s11033-009-9910-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 10/16/2009] [Indexed: 10/20/2022]
|
98
|
Conlan AR, Axelrod HL, Cohen AE, Abresch EC, Zuris J, Yee D, Nechushtai R, Jennings PA, Paddock ML. Crystal structure of Miner1: The redox-active 2Fe-2S protein causative in Wolfram Syndrome 2. J Mol Biol 2009; 392:143-53. [PMID: 19580816 PMCID: PMC2739586 DOI: 10.1016/j.jmb.2009.06.079] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 11/29/2022]
Abstract
The endoplasmic reticulum protein Miner1 is essential for health and longevity. Mis-splicing of CISD2, which codes for Miner1, is causative in Wolfram Syndrome 2 (WFS2) resulting in early onset optic atrophy, diabetes mellitus, deafness and decreased lifespan. In knock-out studies, disruption of CISD2 leads to accelerated aging, blindness and muscle atrophy. In this work, we characterized the soluble region of human Miner1 and solved its crystal structure to a resolution of 2.1 A (R-factor=17%). Although originally annotated as a zinc finger, we show that Miner1 is a homodimer harboring two redox-active 2Fe-2S clusters, indicating for the first time an association of a redox-active FeS protein with WFS2. Each 2Fe-2S cluster is bound by a rare Cys(3)-His motif within a 17 amino acid segment. Miner1 is the first functionally different protein that shares the NEET fold with its recently identified paralog mitoNEET, an outer mitochondrial membrane protein. We report the first measurement of the redox potentials (E(m)) of Miner1 and mitoNEET, showing that they are proton-coupled with E(m) approximately 0 mV at pH 7.5. Changes in the pH sensitivity of their cluster stabilities are attributed to significant differences in the electrostatic distribution and surfaces between the two proteins. The structural and biophysical results are discussed in relation to possible roles of Miner1 in cellular Fe-S management and redox reactions.
Collapse
Affiliation(s)
- Andrea R. Conlan
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093
| | - Herbert L. Axelrod
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025
| | - Edward C. Abresch
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| | - John Zuris
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093
| | - David Yee
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| | - Rachel Nechushtai
- Department of Plant and Environmental Sciences, The Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Givat Ram 91904, Israel
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093
| | - Mark L. Paddock
- Department of Physics, University of California at San Diego, La Jolla, CA 92093
| |
Collapse
|
99
|
Cys92, Cys101, Cys197, and Cys203 Are Crucial Residues for Coordinating the Iron–Sulfur Cluster of RhdA from Acidithiobacillus ferrooxidans. Curr Microbiol 2009; 59:559-64. [DOI: 10.1007/s00284-009-9476-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
|
100
|
Wada K, Sumi N, Nagai R, Iwasaki K, Sato T, Suzuki K, Hasegawa Y, Kitaoka S, Minami Y, Outten FW, Takahashi Y, Fukuyama K. Molecular dynamism of Fe-S cluster biosynthesis implicated by the structure of the SufC(2)-SufD(2) complex. J Mol Biol 2009; 387:245-58. [PMID: 19361433 PMCID: PMC2744881 DOI: 10.1016/j.jmb.2009.01.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 11/28/2022]
Abstract
Maturation of iron-sulfur (Fe-S) proteins is achieved by the SUF machinery in a wide number of eubacteria and archaea, as well as eukaryotic chloroplasts. This machinery is encoded in Escherichia coli by the sufABCDSE operon, where three Suf components, SufB, SufC, and SufD, form a complex and appear to provide an intermediary site for the Fe-S cluster assembly. Here, we report the quaternary structure of the SufC(2)-SufD(2) complex in which SufC is bound to the C-terminal domain of SufD. Comparison with the monomeric structure of SufC revealed conformational change of the active-site residues: SufC becomes competent for ATP binding and hydrolysis upon association with SufD. The two SufC subunits were spatially separated in the SufC(2)-SufD(2) complex, whereas cross-linking experiments in solution have indicated that two SufC molecules associate with each other in the presence of Mg(2+) and ATP. Such dimer formation of SufC may lead to a gross structural change of the SufC(2)-SufD(2) complex. Furthermore, genetic analysis of SufD revealed an essential histidine residue buried inside the dimer interface, suggesting that conformational change may expose this crucial residue. These findings, together with biochemical characterization of the SufB-SufC-SufD complex, have led us to propose a model for the Fe-S cluster biosynthesis in the complex.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Norika Sumi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Rina Nagai
- CREST, Japan Science Technology Agency, Suita, Osaka 560-0871, Japan
| | - Kenji Iwasaki
- CREST, Japan Science Technology Agency, Suita, Osaka 560-0871, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka 560-0871, Japan
| | - Takayuki Sato
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kei Suzuki
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuko Hasegawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shintaro Kitaoka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshiko Minami
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama, Okayama 700-0005, Japan
| | - F. Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Yasuhiro Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Keiichi Fukuyama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|