51
|
Tan W, Guan H, Zou LH, Wang Y, Liu XD, Rang WQ, Zhou PK, Pei HD, Zhong CG. Overexpression of TNKS1BP1 in lung cancers and its involvement in homologous recombination pathway of DNA double-strand breaks. Cancer Med 2017; 6:483-493. [PMID: 28058814 PMCID: PMC5313643 DOI: 10.1002/cam4.995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 11/01/2016] [Accepted: 11/19/2016] [Indexed: 12/12/2022] Open
Abstract
TNKS1BP1 is a member of the poly(ADP‐ribose) polymerase (PARP) superfamily. Our previous studies have demonstrated that TNKS1BP1 plays an important role in DNA damage response. But whether and how TNKS1BP1 associates with cancer is still not clear. Here, we found that TNKS1BP1 was upregulated in human lung adenocarcinoma (LAC) tissues, and was associated with poor overall survival (OS) in LAC patients. Dysregulation of TNKS1BP1 affected the sensitivity of A549 cells to several DNA damage agents including cisplatin, bleomycin, and ionizing radiation. Mechanically, overexpression of TNKS1BP1 increased the accumulation of S phase cells, which was accompanied by a decrease in M phase cells. More importantly, we found TNKS1BP1 regulated genome stability, mainly through affecting the homologous recombination pathway of DNA double‐strand breaks by inhibiting the RAD51 foci formation. Overall, our study indicates that, in LAC, aberrant expressions of TNKS1BP1 are common events, and overexpression of TNKS1BP1 might affect outcomes of cancer patients to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Wei Tan
- XiangYa School of Public Heath, Central South University, Changsha, Hunan Province, 410078, China.,National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing, 102206, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Lian-Hong Zou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yu Wang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xiao-Dan Liu
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wei-Qing Rang
- Institute for Environmental Medicine and Radiation Hygiene, The College of Public Health, University of South China, Hengyang, Hunan Province, 421000, China
| | - Ping-Kun Zhou
- Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Institute for Environmental Medicine and Radiation Hygiene, The College of Public Health, University of South China, Hengyang, Hunan Province, 421000, China
| | - Hua-Dong Pei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, 100039, China.,National Center for Protein Sciences (The PHOENIX center, Beijing), Beijing, 102206, China
| | - Cai-Gao Zhong
- XiangYa School of Public Heath, Central South University, Changsha, Hunan Province, 410078, China
| |
Collapse
|
52
|
Tripathi E, Smith S. Cell cycle-regulated ubiquitination of tankyrase 1 by RNF8 and ABRO1/BRCC36 controls the timing of sister telomere resolution. EMBO J 2016; 36:503-519. [PMID: 27993934 DOI: 10.15252/embj.201695135] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/19/2022] Open
Abstract
Timely resolution of sister chromatid cohesion in G2/M is essential for genome integrity. Resolution at telomeres requires the poly(ADP-ribose) polymerase tankyrase 1, but the mechanism that times its action is unknown. Here, we show that tankyrase 1 activity at telomeres is controlled by a ubiquitination/deubiquitination cycle depending on opposing ubiquitin ligase and deubiquitinase activities. In late S/G2 phase, the DNA damage-responsive E3 ligase RNF8 conjugates K63-linked ubiquitin chains to tankyrase 1, while in G1 phase such ubiquitin chains are removed by BRISC, an ABRO1/BRCC36-containing deubiquitinase complex. We show that K63-linked ubiquitin chains accumulate on tankyrase 1 in late S/G2 to promote its stabilization, association with telomeres, and resolution of cohesion. Timing of this posttranslational modification coincides with the ATM-mediated DNA damage response that occurs on functional telomeres following replication in G2. Removal of ubiquitin chains is controlled by ABRO1/BRCC36 and occurs as cells exit mitosis and enter G1, ensuring that telomere cohesion is not resolved prematurely in S phase. Our studies suggest that a cell cycle-regulated posttranslational mechanism couples resolution of telomere cohesion with completion of telomere replication to ensure genome integrity.
Collapse
Affiliation(s)
- Ekta Tripathi
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
53
|
Apte MS, Cooper JP. Life and cancer without telomerase: ALT and other strategies for making sure ends (don't) meet. Crit Rev Biochem Mol Biol 2016; 52:57-73. [PMID: 27892716 DOI: 10.1080/10409238.2016.1260090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
While most cancer cells rely on telomerase expression/re-activation for linear chromosome maintenance and sustained proliferation, a significant population of cancers (10-15%) employs telomerase-independent strategies, collectively dubbed Alternative Lengthening of Telomeres (ALT). Most ALT cells relax the usual role of telomeres as inhibitors of local homologous recombination while maintaining the ability of telomeres to prohibit local non-homologous end joining reactions. Here we review current concepts surrounding how ALT telomeres achieve this new balance via alterations in chromatin landscape, DNA damage repair processes and handling of telomeric transcription. We also discuss telomerase independent end maintenance strategies utilized by other organisms, including fruitflies and yeasts, to draw parallels and contrasts and highlight additional modes, beyond ALT, that may be available to telomerase-minus cancers. We conclude by commenting on promises and challenges in the development of effective anti-ALT cancer therapies.
Collapse
Affiliation(s)
- Manasi S Apte
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Julia Promisel Cooper
- a Laboratory of Biochemistry and Molecular Biology , Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
54
|
Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Semin Cell Dev Biol 2016; 63:92-101. [PMID: 27670719 DOI: 10.1016/j.semcdb.2016.09.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022]
Abstract
Cell response to genotoxic stress requires a complex network of sensors and effectors from numerous signaling and repair pathways, among them the nuclear poly(ADP-ribose) polymerase 1 (PARP1) plays a central role. PARP1 is catalytically activated in the setting of DNA breaks. It uses NAD+ as a donor and catalyses the synthesis and subsequent covalent attachment of branched ADP-ribose polymers onto itself and various acceptor proteins to promote repair. Its inhibition is now considered as an efficient therapeutic strategy to potentiate the cytotoxic effect of chemotherapy and radiation or to exploit synthetic lethality in tumours with defective homologous recombination mediated repair. Still, efforts made on understanding the role of PARylation in DNA repair continues to yield novel discoveries. Over the last years, our knowledge in this field has been particularly advanced by the discovery of novel biochemical and functional properties featuring PARP1, by the characterization of the other PARP family members and by the identification of a panel of enzymes capable of erasing poly(ADP-ribose). The aim of this review is to provide an overview of these newest findings and their relevance in genome surveillance.
Collapse
|
55
|
Scarborough HA, Helfrich BA, Casás-Selves M, Schuller AG, Grosskurth SE, Kim J, Tan AC, Chan DC, Zhang Z, Zaberezhnyy V, Bunn PA, DeGregori J. AZ1366: An Inhibitor of Tankyrase and the Canonical Wnt Pathway that Limits the Persistence of Non-Small Cell Lung Cancer Cells Following EGFR Inhibition. Clin Cancer Res 2016; 23:1531-1541. [PMID: 27663586 DOI: 10.1158/1078-0432.ccr-16-1179] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/23/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Purpose: The emergence of EGFR inhibitors such as gefitinib, erlotinib, and osimertinib has provided novel treatment opportunities in EGFR-driven non-small cell lung cancer (NSCLC). However, most patients with EGFR-driven cancers treated with these inhibitors eventually relapse. Recent efforts have identified the canonical Wnt pathway as a mechanism of protection from EGFR inhibition and that inhibiting tankyrase, a key player in this pathway, is a potential therapeutic strategy for the treatment of EGFR-driven tumors.Experimental Design: We performed a preclinical evaluation of tankyrase inhibitor AZ1366 in combination with multiple EGFR-inhibitors across NSCLC lines, characterizing its antitumor activity, impingement on canonical Wnt signaling, and effects on gene expression. We performed pharmacokinetic and pharmacodynamic profiling of AZ1366 in mice and evaluated its therapeutic activity in an orthotopic NSCLC model.Results: In combination with EGFR inhibitors, AZ1366 synergistically suppressed proliferation of multiple NSCLC lines and amplified global transcriptional changes brought about by EGFR inhibition. Its ability to work synergistically with EGFR inhibition coincided with its ability to modulate the canonical Wnt pathway. Pharmacokinetic and pharmacodynamic profiling of AZ1366-treated orthotopic tumors demonstrated clinically relevant serum drug levels and intratumoral target inhibition. Finally, coadministration of an EGFR inhibitor and AZ1366 provided better tumor control and improved survival for Wnt-responsive lung cancers in an orthotopic mouse model.Conclusions: Tankyrase inhibition is a potent route of tumor control in EGFR-dependent NSCLC with confirmed dependence on canonical Wnt signaling. These data strongly support further evaluation of tankyrase inhibition as a cotreatment strategy with EGFR inhibition in an identifiable subset of EGFR-driven NSCLC. Clin Cancer Res; 23(6); 1531-41. ©2016 AACR.
Collapse
Affiliation(s)
| | - Barbara A Helfrich
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado
| | | | | | | | - Jihye Kim
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado
| | - Aik-Choon Tan
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado
| | - Daniel C Chan
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado
| | - Zhiyong Zhang
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado
| | | | - Paul A Bunn
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado
| | | |
Collapse
|
56
|
Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei. PLoS Genet 2016; 12:e1006169. [PMID: 27541002 PMCID: PMC4991795 DOI: 10.1371/journal.pgen.1006169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. As cells grow, they replicate their DNA to give rise to two copies of each chromosome, known as sister chromatids, which separate from each other once the cell divides. To ensure that sister chromatids end up in different daughter cells, they are kept together from DNA replication until mitosis via a connection known as cohesion. A protein complex known as cohesin is essential for this process. Our work in Drosophila cells suggests that factors other than cohesin also contribute to sister chromatid cohesion in interphase. Additionally, we observed that the alignment of sister chromatids is regulated by condensin II, a protein complex involved in the compaction of chromosomes prior to division as well as the regulation of inter-chromosomal associations. These findings highlight that, in addition to their important individual functions, cohesin and condensin II proteins may interact to organize chromosomes over the course of the cell cycle. Finally, building on prior observations that condensin II is involved in the regulation of somatic homolog pairing in Drosophila, our work suggests that the mechanisms underlying homolog pairing may also contribute to sister chromatid cohesion.
Collapse
|
57
|
Mariotti L, Templeton CM, Ranes M, Paracuellos P, Cronin N, Beuron F, Morris E, Guettler S. Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling. Mol Cell 2016; 63:498-513. [PMID: 27494558 PMCID: PMC4980433 DOI: 10.1016/j.molcel.2016.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 05/13/2016] [Accepted: 06/13/2016] [Indexed: 01/14/2023]
Abstract
The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-β-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active β-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive β-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling.
Collapse
Affiliation(s)
- Laura Mariotti
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Catherine M Templeton
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Michael Ranes
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Patricia Paracuellos
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Nora Cronin
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Fabienne Beuron
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Edward Morris
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK
| | - Sebastian Guettler
- Division of Structural Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK; Division of Cancer Biology, The Institute of Cancer Research (ICR), London SW7 3RP, UK.
| |
Collapse
|
58
|
Riccio AA, McCauley M, Langelier MF, Pascal JM. Tankyrase Sterile α Motif Domain Polymerization Is Required for Its Role in Wnt Signaling. Structure 2016; 24:1573-81. [PMID: 27499439 DOI: 10.1016/j.str.2016.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 12/11/2022]
Abstract
Tankyrase-1 (TNKS1/PARP-5a) is a poly(ADP-ribose) polymerase (PARP) enzyme that regulates multiple cellular processes creating a poly(ADP-ribose) posttranslational modification that can lead to target protein turnover. TNKS1 thereby controls protein levels of key components of signaling pathways, including Axin1, the limiting component of the destruction complex in canonical Wnt signaling that degrades β-catenin to prevent its coactivator function in gene expression. There are limited molecular level insights into TNKS1 regulation in cell signaling pathways. TNKS1 has a sterile α motif (SAM) domain that is known to mediate polymerization, but the functional requirement for SAM polymerization has not been assessed. We have determined the crystal structure of wild-type human TNKS1 SAM domain and used structure-based mutagenesis to disrupt polymer formation and assess the consequences on TNKS1 regulation of β-catenin-dependent transcription. Our data indicate the SAM polymer is critical for TNKS1 catalytic activity and allows TNKS1 to efficiently access cytoplasmic signaling complexes.
Collapse
Affiliation(s)
- Amanda A Riccio
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Michael McCauley
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada.
| |
Collapse
|
59
|
Root H, Larsen A, Komosa M, Al-Azri F, Li R, Bazett-Jones DP, Stephen Meyn M. FANCD2 limits BLM-dependent telomere instability in the alternative lengthening of telomeres pathway. Hum Mol Genet 2016; 25:3255-3268. [DOI: 10.1093/hmg/ddw175] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/02/2016] [Accepted: 06/06/2016] [Indexed: 11/12/2022] Open
|
60
|
DaRosa PA, Ovchinnikov S, Xu W, Klevit RE. Structural insights into SAM domain-mediated tankyrase oligomerization. Protein Sci 2016; 25:1744-52. [PMID: 27328430 DOI: 10.1002/pro.2968] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/16/2016] [Indexed: 12/28/2022]
Abstract
Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP-ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain-mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head-to-tail polymer that facilitates TNKS self-association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM-TNKS2 SAM) hetero-oligomeric structures mediated by their SAM domains. Though wild-type tankyrase proteins have very low solubility, model-based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP-ribosyl)ation (PARylation) and PARylation-dependent ubiquitylation.
Collapse
Affiliation(s)
- Paul A DaRosa
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195.,Department of Biological Structure, University of Washington, Seattle, Washington, 98195
| | - Sergey Ovchinnikov
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, 98195
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington, 98195
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington, 98195
| |
Collapse
|
61
|
Nathubhai A, Haikarainen T, Hayward PC, Muñoz-Descalzo S, Thompson AS, Lloyd MD, Lehtiö L, Threadgill MD. Structure-activity relationships of 2-arylquinazolin-4-ones as highly selective and potent inhibitors of the tankyrases. Eur J Med Chem 2016; 118:316-27. [PMID: 27163581 DOI: 10.1016/j.ejmech.2016.04.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 01/03/2023]
Abstract
Tankyrases (TNKSs), members of the PARP (Poly(ADP-ribose)polymerases) superfamily of enzymes, have gained interest as therapeutic drug targets, especially as they are involved in the regulation of Wnt signalling. A series of 2-arylquinazolin-4-ones with varying substituents at the 8-position was synthesised. An 8-methyl group (compared to 8-H, 8-OMe, 8-OH), together with a 4'-hydrophobic or electron-withdrawing group, provided the most potency and selectivity towards TNKSs. Co-crystal structures of selected compounds with TNKS-2 revealed that the protein around the 8-position is more hydrophobic in TNKS-2 compared to PARP-1/2, rationalising the selectivity. The NAD(+)-binding site contains a hydrophobic cavity which accommodates the 2-aryl group; in TNKS-2, this has a tunnel to the exterior but the cavity is closed in PARP-1. 8-Methyl-2-(4-trifluoromethylphenyl)quinazolin-4-one was identified as a potent and selective inhibitor of TNKSs and Wnt signalling. This compound and analogues could serve as molecular probes to study proliferative signalling and for development of inhibitors of TNKSs as drugs.
Collapse
Affiliation(s)
- Amit Nathubhai
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Teemu Haikarainen
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Penelope C Hayward
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Silvia Muñoz-Descalzo
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrew S Thompson
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Matthew D Lloyd
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Lari Lehtiö
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Michael D Threadgill
- Medicinal Chemistry, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
62
|
Lupo B, Vialard J, Sassi F, Angibaud P, Puliafito A, Pupo E, Lanzetti L, Comoglio PM, Bertotti A, Trusolino L. Tankyrase inhibition impairs directional migration and invasion of lung cancer cells by affecting microtubule dynamics and polarity signals. BMC Biol 2016; 14:5. [PMID: 26787475 PMCID: PMC4719581 DOI: 10.1186/s12915-016-0226-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/04/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tankyrases are poly(adenosine diphosphate)-ribose polymerases that contribute to biological processes as diverse as modulation of Wnt signaling, telomere maintenance, vesicle trafficking, and microtubule-dependent spindle pole assembly during mitosis. At interphase, polarized reshaping of the microtubule network fosters oriented cell migration. This is attained by association of adenomatous polyposis coli with the plus end of microtubules at the cortex of cell membrane protrusions and microtubule-based centrosome reorientation towards the migrating front. RESULTS Here we report a new function for tankyrases, namely, regulation of directional cell locomotion. Using a panel of lung cancer cell lines as a model system, we found that abrogation of tankyrase activity by two different, structurally unrelated small-molecule inhibitors (one introduced and characterized here for the first time) or by RNA interference-based genetic silencing weakened cell migration, invasion, and directional movement induced by the motogenic cytokine hepatocyte growth factor. Mechanistically, the anti-invasive outcome of tankyrase inhibition could be ascribed to sequential deterioration of the distinct events that govern cell directional sensing. In particular, tankyrase blockade negatively impacted (1) microtubule dynamic instability; (2) adenomatous polyposis coli plasma membrane targeting; and (3) centrosome reorientation. CONCLUSIONS Collectively, these findings uncover an unanticipated role for tankyrases in influencing at multiple levels the interphase dynamics of the microtubule network and the subcellular distribution of related polarity signals. These results encourage the further exploration of tankyrase inhibitors as therapeutic tools to oppose dissemination and metastasis of cancer cells.
Collapse
Affiliation(s)
- Barbara Lupo
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy
| | - Jorge Vialard
- Janssen Research & Development, a Division of Janssen Pharmaceutica NV, 2340, Beerse, Belgium
| | - Francesco Sassi
- Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy
| | - Patrick Angibaud
- Janssen Research & Development, a Division of Janssen-Cilag, 27106, Val-de-Reuil, Cedex, France
| | - Alberto Puliafito
- Laboratory of Cell Migration, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Emanuela Pupo
- Laboratory of Membrane Trafficking, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Laboratory of Membrane Trafficking, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Paolo M Comoglio
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy.,Experimental Clinical Molecular Oncology, Candiolo Cancer Institute - FPO IRCCS, 10060, Candiolo, Torino, Italy
| | - Andrea Bertotti
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy. .,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy. .,Istituto Nazionale di Biostrutture e Biosistemi, INBB, 00136, Rome, Italy.
| | - Livio Trusolino
- Department of Oncology, University of Torino Medical School, 10060, Candiolo, Torino, Italy. .,Laboratory of Translational Cancer Medicine, Candiolo Cancer Institute - FPO IRCCS, Strada Provinciale 142, km 3.95, 10060, Candiolo, Torino, Italy.
| |
Collapse
|
63
|
Haikarainen T, Waaler J, Ignatev A, Nkizinkiko Y, Venkannagari H, Obaji E, Krauss S, Lehtiö L. Development and structural analysis of adenosine site binding tankyrase inhibitors. Bioorg Med Chem Lett 2016; 26:328-333. [DOI: 10.1016/j.bmcl.2015.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
|
64
|
Ramamoorthy M, Smith S. Loss of ATRX Suppresses Resolution of Telomere Cohesion to Control Recombination in ALT Cancer Cells. Cancer Cell 2015; 28:357-69. [PMID: 26373281 PMCID: PMC4573400 DOI: 10.1016/j.ccell.2015.08.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/08/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023]
Abstract
The chromatin-remodeler ATRX is frequently lost in cancer cells that use ALT (alternative lengthening of telomeres) for telomere maintenance, but its function in telomere recombination is unknown. Here we show that loss of ATRX suppresses the timely resolution of sister telomere cohesion that normally occurs prior to mitosis. In the absence of ATRX, the histone variant macroH2A1.1 binds to the poly(ADP-ribose) polymerase tankyrase 1, preventing it from localizing to telomeres and resolving cohesion. The resulting persistent telomere cohesion promotes recombination between sister telomeres, while it suppresses inappropriate recombination between non-sisters. Forced resolution of sister telomere cohesion induces excessive recombination between non-homologs, genomic instability, and impaired cell growth, indicating the ATRX-macroH2A1.1-tankyrase axis as a potential therapeutic target in ALT tumors.
Collapse
Affiliation(s)
- Mahesh Ramamoorthy
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Pathology, NYU Langone Medical Center and School of Medicine, New York, NY 10016, USA
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, Department of Pathology, NYU Langone Medical Center and School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
65
|
Roake CM, Artandi SE. Keeping It in the Family: ATRX Loss Promotes Persistent Sister Telomere Cohesion in ALT Cancer Cells. Cancer Cell 2015; 28:277-9. [PMID: 26373274 DOI: 10.1016/j.ccell.2015.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this issue of Cancer Cell, Ramamoorthy and Smith report that cancer cells that maintain their chromosome ends through alternative lengthening of telomeres (ALT) display persistent sister telomere cohesion. This delayed resolution of sister telomere cohesion depends upon the loss of ATRX and its histone-sequestering function and is associated with increased recombination between sister telomeres.
Collapse
Affiliation(s)
- Caitlin M Roake
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steven E Artandi
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
66
|
Exploration of the nicotinamide-binding site of the tankyrases, identifying 3-arylisoquinolin-1-ones as potent and selective inhibitors in vitro. Bioorg Med Chem 2015; 23:5891-908. [PMID: 26189030 DOI: 10.1016/j.bmc.2015.06.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/17/2022]
Abstract
Tankyrases-1 and -2 (TNKS-1 and TNKS-2) have three cellular roles which make them important targets in cancer. Using NAD(+) as a substrate, they poly(ADP-ribosyl)ate TRF1 (regulating lengths of telomeres), NuMA (facilitating mitosis) and axin (in wnt/β-catenin signalling). Using molecular modelling and the structure of the weak inhibitor 5-aminoiso quinolin-1-one, 3-aryl-5-substituted-isoquinolin-1-ones were designed as inhibitors to explore the structure-activity relationships (SARs) for binding and to define the shape of a hydrophobic cavity in the active site. 5-Amino-3-arylisoquinolinones were synthesised by Suzuki-Miyaura coupling of arylboronic acids to 3-bromo-1-methoxy-5-nitro-isoquinoline, reduction and O-demethylation. 3-Aryl-5-methylisoquinolin-1-ones, 3-aryl-5-fluoroisoquinolin-1-ones and 3-aryl-5-methoxyisoquinolin-1-ones were accessed by deprotonation of 3-substituted-N,N,2-trimethylbenzamides and quench with an appropriate benzonitrile. SAR around the isoquinolinone core showed that aryl was required at the 3-position, optimally with a para-substituent. Small meta-substituents were tolerated but groups in the ortho-positions reduced or abolished activity. This was not due to lack of coplanarity of the rings, as shown by the potency of 4,5-dimethyl-3-phenylisoquinolin-1-one. Methyl and methoxy were optimal at the 5-position. SAR was rationalised by modelling and by crystal structures of examples with TNKS-2. The 3-aryl unit was located in a large hydrophobic cavity and the para-substituents projected into a tunnel leading to the exterior. Potency against TNKS-1 paralleled potency against TNKS-2. Most inhibitors were highly selective for TNKSs over PARP-1 and PARP-2. A range of highly potent and selective inhibitors is now available for cellular studies.
Collapse
|
67
|
Haikarainen T, Krauss S, Lehtio L. Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des 2015; 20:6472-88. [PMID: 24975604 PMCID: PMC4262938 DOI: 10.2174/1381612820666140630101525] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Several cellular signaling pathways are regulated by ADP-ribosylation, a posttranslational modification catalyzed by members of the ARTD superfamily. Tankyrases are distinguishable from the rest of this family by their unique domain organization, notably the sterile alpha motif responsible for oligomerization and ankyrin repeats mediating protein-protein interactions. Tankyrases are involved in various cellular functions, such as telomere homeostasis, Wnt/β-catenin signaling, glucose metabolism, and cell cycle progression. In these processes, Tankyrases regulate the interactions and stability of target proteins by poly (ADP-ribosyl)ation. Modified proteins are subsequently recognized by the E3 ubiquitin ligase RNF146, poly-ubiquitinated and predominantly guided to 26S proteasomal degradation. Several small molecule inhibitors have been described for Tankyrases; they compete with the co-substrate NAD+ for binding to the ARTD catalytic domain. The recent, highly potent and selective inhibitors possess several properties of lead compounds and can be used for proof-of-concept studies in cancer and other Tankyrase linked diseases.
Collapse
Affiliation(s)
| | | | - Lari Lehtio
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleen 21, 0349, Oslo, Norway.
| |
Collapse
|
68
|
Papavassiliou P, Charalsawadi C, Rafferty K, Jackson-Cook C. Mosaicism for trisomy 21: a review. Am J Med Genet A 2014; 167A:26-39. [PMID: 25412855 DOI: 10.1002/ajmg.a.36861] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023]
Abstract
The clinical and cytogenetic findings associated with mosaicism for trisomy 21/Down syndrome are the focus of this review. The primary topics discussed in this overview of the extant literature include the history of this condition and its diagnosis, the incidence of mosaicism, the meiotic and/or mitotic chromosomal malsegregation events resulting in mosaicism, the observation of mosaicism in the parents of children with the non-mosaic form of Down syndrome, and the variation in phenotypic outcome for both constitutional and acquired traits present in people with mosaicism for trisomy 21/Down syndrome, including cognition, fertility, and overall phenotypic findings. Additional topics reviewed include the social conditions of people with mosaicism, as well as age-related and epigenetic alterations observed in people with mosaicism for trisomy 21/Down syndrome. .
Collapse
Affiliation(s)
- Paulie Papavassiliou
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | | | | | | |
Collapse
|
69
|
Qiu W, Lam R, Voytyuk O, Romanov V, Gordon R, Gebremeskel S, Vodsedalek J, Thompson C, Beletskaya I, Battaile KP, Pai EF, Rottapel R, Chirgadze NY. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2740-53. [PMID: 25286857 PMCID: PMC4188013 DOI: 10.1107/s1399004714017660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/31/2014] [Indexed: 11/10/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, the high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.
Collapse
Affiliation(s)
- Wei Qiu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Robert Lam
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Oleksandr Voytyuk
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Vladimir Romanov
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Roni Gordon
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Simon Gebremeskel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jakub Vodsedalek
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Christine Thompson
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Irina Beletskaya
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kevin P. Battaile
- Hauptman–Woodward Medical Research Institute, IMCA-CAT, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois USA
| | - Emil F. Pai
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Departments of Biochemistry, Molecular Genetics, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- St Michael’s Hospital, Division of Rheumatology, Departments of Medicine, Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Nickolay Y. Chirgadze
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
70
|
Tian X, Hou W, Bai S, Fan J, Tong H, Bai Y. XAV939 promotes apoptosis in a neuroblastoma cell line via telomere shortening. Oncol Rep 2014; 32:1999-2006. [PMID: 25190315 DOI: 10.3892/or.2014.3460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
Telomeres, telomerase and tankyrase (TNKS) have an extremely important and special association with human cell aging and cancer. Telomerase activity is abnormally high in cancer cells and is accompanied by the overexpression of tankyrase 1 (TNKS1). TNKS1 is a positive regulator of telomerase activation and telomere extension in the human body, indicating that TNKS1 may be a possible therapeutic target for cancer. XAV939 is a small-molecule inhibitor of TNKS1. The objective of the present study was to investigate the apoptotic effect of XAV939 on the neuroblastoma (NB) SH-SY5Y cell line, as well as the change in telomere length and telomerase activity and elucidate the mechanism from this perspective. In the present study, we initially treated SH-SY5Y cells with XAV939 and RNA interference (RNAi)-TNKS1, and subsequently chose the optimal sequence for RNAi-TNKS1. We then measured the telomere length using quantitative real-time polymerase chain reaction (qPCR) assay, detected the telomerase activity using the ELISA kit, observed apoptotic morphology by transmission electron microscopy, and detected the percentages of apoptotic cells using flow cytometry and Hoechst 33342 staining. We also determined the invasive ability by a cell invasion assay. The results showed that short hairpin RNA-2 (shRNA-2) was the optimal sequence for RNAi-TNKS1. Treatment with both XAV939 and RNAi-TNKS1 shortened the telomere length, promoted apoptosis and reduced the invasive ability of the SH-SY5Y cells, yet had no effect on telomerase activity. XAV939 promoted apoptosis and reduced the invasiveness of SH-SY5Y cells dependent on telomere shortening, and further research should be conducted to clarify the exact mechanisms. This research may contribute to the cure of malignant NB using multi-targeted therapy with small-molecule agents.
Collapse
Affiliation(s)
- Xiaohong Tian
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Weijian Hou
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shuling Bai
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jun Fan
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hao Tong
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yu Bai
- Department of Ophthalmology, The Second Hospital of Shijiazhuang, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
71
|
Lupo B, Trusolino L. Inhibition of poly(ADP-ribosyl)ation in cancer: old and new paradigms revisited. Biochim Biophys Acta Rev Cancer 2014; 1846:201-15. [PMID: 25026313 DOI: 10.1016/j.bbcan.2014.07.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/02/2014] [Accepted: 07/08/2014] [Indexed: 01/31/2023]
Abstract
Inhibitors of poly(ADP-ribose) polymerases actualized the biological concept of synthetic lethality in the clinical practice, yielding a paradigmatic example of translational medicine. The profound sensitivity of tumors with germline BRCA mutations to PARP1/2 blockade owes to inherent defects of the BRCA-dependent homologous recombination machinery, which are unleashed by interruption of PARP DNA repair activity and lead to DNA damage overload and cell death. Conversely, aspirant BRCA-like tumors harboring somatic DNA repair dysfunctions (a vast entity of genetic and epigenetic defects known as "BRCAness") not always align with the familial counterpart and appear not to be equally sensitive to PARP inhibition. The acquisition of secondary resistance in initially responsive patients and the lack of standardized biomarkers to identify "BRCAness" pose serious threats to the clinical advance of PARP inhibitors; a feeling is also emerging that a BRCA-centered perspective might have missed the influence of additional, not negligible and DNA repair-independent PARP contributions onto therapy outcome. While regulatory approval for PARP1/2 inhibitors is still pending, novel therapeutic opportunities are sprouting from different branches of the PARP family, although they remain immature for clinical extrapolation. This review is an endeavor to provide a comprehensive appraisal of the multifaceted biology of PARPs and their evolving impact on cancer therapeutics.
Collapse
Affiliation(s)
- Barbara Lupo
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino Medical School, 10060 Candiolo, Torino, Italy; Laboratory of Molecular Pharmacology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Torino, Italy.
| |
Collapse
|
72
|
Lan J, Zhu Y, Xu L, Yu H, Yu J, Liu X, Fu C, Wang X, Ke Y, Huang H, Dou Z. The 68-kDa telomeric repeat binding factor 1 (TRF1)-associated protein (TAP68) interacts with and recruits TRF1 to the spindle pole during mitosis. J Biol Chem 2014; 289:14145-56. [PMID: 24692559 PMCID: PMC4022882 DOI: 10.1074/jbc.m113.526244] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/20/2014] [Indexed: 01/19/2023] Open
Abstract
The telomere capping protein TRF1 is a component of the multiprotein complex "shelterin," which organizes the telomere into a high order structure. Besides telomere maintenance, telomere-associated proteins also have nontelomeric functions. For example, tankyrase 1 and TRF1 are required for the maintenance of faithful mitotic progression. However, the functional relevance of their centrosomal localization has not been established. Here, we report the identification of a TRF1-binding protein, TAP68, that interacts with TRF1 in mitotic cells. TAP68 contains two coiled-coil domains and a structural maintenance of chromosome motifs and co-localizes with TRF1 to telomeres during interphase. Immediately after nuclear envelope breakdown, TAP68 translocates toward the spindle poles followed by TRF1. Dissociation of TAP68 from the telomere is concurrent with the Nek2A-dependent phosphorylation at Thr-221. Biochemical characterization demonstrated that the first coiled-coil domain of TAP68 binds and recruits TRF1 to the centrosome. Inhibition of TAP68 expression by siRNA blocked the localization of TRF1 and tankyrase 1 to the centrosome. Furthermore, siRNA-mediated depletion of TAP68 perturbed faithful chromosome segregation and genomic stability. These findings suggest that TAP68 functions in mediating TRF1-tankyrase 1 localization to the centrosome and in mitotic regulation.
Collapse
Affiliation(s)
- Jianping Lan
- From the Department of Hematology and Hematopoietic Stem Cell Transplant Center, Zhejiang Provincial People's Hospital, Hangzhou 310014
| | - Yuanyuan Zhu
- the Department of Hematology and Bone Marrow Transplant Center, 1st Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, and
| | - Leilei Xu
- the Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Huijuan Yu
- the Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Jian Yu
- the Department of Hematology and Bone Marrow Transplant Center, 1st Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, and
| | - Xing Liu
- the Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- the Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - Xiaogang Wang
- From the Department of Hematology and Hematopoietic Stem Cell Transplant Center, Zhejiang Provincial People's Hospital, Hangzhou 310014
| | - Yuwen Ke
- the Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| | - He Huang
- the Department of Hematology and Bone Marrow Transplant Center, 1st Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, and
| | - Zhen Dou
- the Anhui Key Laboratory of Cellular Dynamics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
73
|
Lisaingo K, Uringa EJ, Lansdorp PM. Resolution of telomere associations by TRF1 cleavage in mouse embryonic stem cells. Mol Biol Cell 2014; 25:1958-68. [PMID: 24829382 PMCID: PMC4072570 DOI: 10.1091/mbc.e13-10-0564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Telomere associations have been observed during key cellular processes such as mitosis, meiosis, and carcinogenesis and must be resolved before cell division to prevent genome instability. Here we establish that telomeric repeat-binding factor 1 (TRF1), a core component of the telomere protein complex, is a mediator of telomere associations in mammalian cells. Using live-cell imaging, we show that expression of TRF1 or yellow fluorescent protein (YFP)-TRF1 fusion protein above endogenous levels prevents proper telomere resolution during mitosis. TRF1 overexpression results in telomere anaphase bridges and aggregates containing TRF1 protein and telomeric DNA. Site-specific protein cleavage of YFP-TRF1 by tobacco etch virus protease resolves telomere aggregates, indicating that telomere associations are mediated by TRF1. This study provides novel insight into the formation and resolution of telomere associations.
Collapse
Affiliation(s)
- Kathleen Lisaingo
- Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| | - Evert-Jan Uringa
- Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, BC V5Z 1L3, CanadaEuropean Research Institute for the Biology of Ageing, University of Groningen, University Medical CentreGroningen, NL-9713 AV Groningen, Netherlands
| | - Peter M Lansdorp
- Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, BC V5Z 1L3, CanadaEuropean Research Institute for the Biology of Ageing, University of Groningen, University Medical CentreGroningen, NL-9713 AV Groningen, Netherlands
| |
Collapse
|
74
|
Feng Y, Li X, Ray L, Song H, Qu J, Lin S, Lin X. The Drosophila tankyrase regulates Wg signaling depending on the concentration of Daxin. Cell Signal 2014; 26:1717-24. [PMID: 24768997 DOI: 10.1016/j.cellsig.2014.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 04/19/2014] [Indexed: 02/04/2023]
Abstract
The canonical Wnt signaling pathway plays critical roles during development and homeostasis. Dysregulation of this pathway can lead to many human diseases, including cancers. A key process in this pathway consists of regulation of β-catenin concentration through an Axin-recruited destruction complex. Previous studies have demonstrated a role for tankyrase (TNKS), a protein with poly(ADP-ribose) polymerase, in the regulation of Axin levels in human cells. However, the role of TNKS in development is still unclear. Here, we have generated a Drosophila tankyrase (DTNKS) mutant and provided compelling evidence that DTNKS is involved in the degradation of Drosophila Axin (Daxin). We show that Daxin physically interacts with DTNKS, and its protein levels are elevated in the absence of DTNKS in the eye discs. In S2 cells, DTNKS suppressed the levels of Daxin. Surprisingly, we found that Daxin in turn down-regulated DTNKS protein level. In vivo study showed that DTNKS regulated Wg signaling and wing patterning at a high Daxin protein level, but not at a normal level. Taken together, our findings identified a conserved role of DTNKS in regulating Daxin levels, and thereby Wg/Wnt signaling during development.
Collapse
Affiliation(s)
- Ying Feng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xue Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lorraine Ray
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Haiyun Song
- Laboratory of Food Safety, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Shuyong Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
75
|
Vyas S, Chesarone-Cataldo M, Todorova T, Huang YH, Chang P. A systematic analysis of the PARP protein family identifies new functions critical for cell physiology. Nat Commun 2014; 4:2240. [PMID: 23917125 PMCID: PMC3756671 DOI: 10.1038/ncomms3240] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 07/03/2013] [Indexed: 12/12/2022] Open
Abstract
The poly(ADP-ribose) polymerase (PARP) family of proteins use NAD+ as their substrate to modify acceptor proteins with adenosine diphosphate-ribose (ADPr) modifications. The function of most PARPs under physiological conditions is unknown. Here, to better understand this protein family, we systematically analyze the cell cycle localization of each PARP and of poly(ADP-ribose), a product of PARP activity, then identify the knock-down phenotype of each protein and perform secondary assays to elucidate function. We show that most PARPs are cytoplasmic, identify cell cycle differences in the ratio of nuclear to cytoplasmic poly(ADP-ribose), and identify four phenotypic classes of PARP function. These include the regulation of membrane structures, cell viability, cell division, and the actin cytoskeleton. Further analysis of PARP14 shows that it is a component of focal adhesion complexes required for proper cell motility and focal adhesion function. In total, we show that PARP proteins are critical regulators of eukaryotic physiology.
Collapse
Affiliation(s)
- Sejal Vyas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
76
|
Boltz KA, Jasti M, Townley JM, Shippen DE. Analysis of poly(ADP-Ribose) polymerases in Arabidopsis telomere biology. PLoS One 2014; 9:e88872. [PMID: 24551184 PMCID: PMC3923816 DOI: 10.1371/journal.pone.0088872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/17/2014] [Indexed: 11/22/2022] Open
Abstract
Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose) polymerases (PARPs) have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one.
Collapse
Affiliation(s)
- Kara A. Boltz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Madhu Jasti
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jennifer M. Townley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
77
|
Tian XH, Hou WJ, Fang Y, Fan J, Tong H, Bai SL, Chen Q, Xu H, Li Y. XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:100. [PMID: 24308762 PMCID: PMC3866601 DOI: 10.1186/1756-9966-32-100] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 11/04/2013] [Indexed: 12/17/2022]
Abstract
Background Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. The present treatment including surgery, chemotherapy and radiation, which have only 40% long-term cure rates, and usually cause tumor recurrence. Thus, looking for new effective and less toxic therapies has important significance. XAV939 is a small molecule inhibitor of tankyrase 1(TNKS1). The objective of this study is to investigate the effect of XAV939 on the proliferation and apoptosis of NB cell lines, and the related mechanism. Methods In the present study, we used both XAV939 treatment and RNAi method to demonstrate that TNKS1 inhibition may be a potential mechanism to cure NB. MTT method was used for determining the cell viability and the appropriate concerntration for follow-up assays. The colony formation assay, Annexin V staining and cell cycle analysis were used for detecting colony forming ability, cell apoptosis and the percentage of different cell cycle. The Western blot was used for detecting the expression of key proteins of Wnt/ beta-catenin (Wnt/β-catenin) signaling pathway. Results The results showed that TNKS1 inhibition decreased the viability of SH-SY5Y, SK-N-SH and IMR-32 cells, induced apoptosis in SH-SY5Y as well as SK-N-SH cells, and led to the accumulation of NB cells in the S and G2/M phase of the cell cycle. Moreover, we demonstrated TNKS1 inhibition may in part blocked Wnt/β-catenin signaling and reduced the expression of anti-apoptosis protein. Finally, we also demonstrated that TNKS1 inhibition decreased colony formation in vitro. Conclusions These findings suggested that TNKS1 may be a potential molecule target for the treatment of NB.
Collapse
Affiliation(s)
| | | | | | | | | | - Shu-Ling Bai
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang 110001, PR China.
| | | | | | | |
Collapse
|
78
|
Abstract
Telomeres use distinct mechanisms (not used by arms or centromeres) to mediate cohesion between sister chromatids. However, the motivation for a specialized mechanism at telomeres is not well understood. Here we show, using fluorescence in situ hybridization and live-cell imaging, that persistent sister chromatid cohesion at telomeres triggers a prolonged anaphase in normal human cells and cancer cells. Excess cohesion at telomeres can be induced by inhibition of tankyrase 1, a poly(ADP-ribose) polymerase that is required for resolution of telomere cohesion, or by overexpression of proteins required to establish telomere cohesion, the shelterin subunit TIN2 and the cohesin subunit SA1. Regardless of the method of induction, excess cohesion at telomeres in mitosis prevents a robust and efficient anaphase. SA1- or TIN2-induced excess cohesion and anaphase delay can be rescued by overexpression of tankyrase 1. Moreover, we show that primary fibroblasts, which accumulate excess telomere cohesion at mitosis naturally during replicative aging, undergo a similar delay in anaphase progression that can also be rescued by overexpression of tankyrase 1. Our study demonstrates that there are opposing forces that regulate telomere cohesion. The observation that cells respond to unresolved telomere cohesion by delaying (but not completely disrupting) anaphase progression suggests a mechanism for tolerating excess cohesion and maintaining telomere integrity. This attempt to deal with telomere damage may be ultimately futile for aging fibroblasts but useful for cancer cells.
Collapse
Affiliation(s)
- Mi Kyung Kim
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY 10016
| | | |
Collapse
|
79
|
Lehtiö L, Chi NW, Krauss S. Tankyrases as drug targets. FEBS J 2013; 280:3576-93. [PMID: 23648170 DOI: 10.1111/febs.12320] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022]
Abstract
Tankyrase 1 and tankyrase 2 are poly(ADP-ribosyl)ases that are distinguishable from other members of the enzyme family by the structural features of the catalytic domain, and the presence of a sterile α-motif multimerization domain and an ankyrin repeat protein-interaction domain. Tankyrases are implicated in a multitude of cellular functions, including telomere homeostasis, mitotic spindle formation, vesicle transport linked to glucose metabolism, Wnt-β-catenin signaling, and viral replication. In these processes, tankyrases interact with target proteins, catalyze poly(ADP-ribosyl)ation, and regulate protein interactions and stability. The proposed roles of tankyrases in disease-relevant cellular processes have made them attractive drug targets. Recently, several inhibitors have been identified. The selectivity and potency of these small molecules can be rationalized by how they fit within the NAD(+)-binding groove of the catalytic domain. Some molecules bind to the nicotinamide subsite, such as generic diphtheria toxin-like ADP-ribosyltransferase inhibitors, whereas others bind to a distinct adenosine subsite that diverges from other diphtheria toxin-like ADP-ribosyltransferases and confers specificity. A highly potent dual-site inhibitor is also available. Within the last few years, tankyrase inhibitors have proved to be useful chemical probes and potential lead compounds, especially for specific cancers.
Collapse
Affiliation(s)
- Lari Lehtiö
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Oulu, Finland.
| | | | | |
Collapse
|
80
|
Structural basis and selectivity of tankyrase inhibition by a Wnt signaling inhibitor WIKI4. PLoS One 2013; 8:e65404. [PMID: 23762361 PMCID: PMC3675114 DOI: 10.1371/journal.pone.0065404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022] Open
Abstract
Recently a novel inhibitor of Wnt signaling was discovered. The compound, WIKI4, was found to act through tankyrase inhibition and regulate β-catenin levels in many cancer cell lines and human embryonic stem cells. Here we confirm that WIKI4 is a high potency tankyrase inhibitor and that it selectively inhibits tankyrases over other ARTD enzymes tested. The binding mode of the compound to tankyrase 2 was determined by protein X-ray crystallography to 2.4 Å resolution. The structure revealed a novel binding mode to the adenosine subsite of the donor NAD(+) binding groove of the catalytic domain. Our results form a structural basis for further development of potent and selective tankyrase inhibitors based on the WIKI4 scaffold.
Collapse
|
81
|
Bisht KK, Daniloski Z, Smith S. SA1 binds directly to DNA through its unique AT-hook to promote sister chromatid cohesion at telomeres. J Cell Sci 2013; 126:3493-503. [PMID: 23729739 DOI: 10.1242/jcs.130872] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sister chromatid cohesion relies on cohesin, a complex comprising a tri-partite ring and a peripheral subunit Scc3, which is found as two related isoforms SA1 and SA2 in vertebrates. There is a division of labor between the vertebrate cohesin complexes; SA1-cohesin is required at telomeres and SA2-cohesin at centromeres. Depletion of SA1 has dramatic consequences for telomere function and genome integrity, but the mechanism by which SA1-cohesin mediates cohesion at telomeres is not well understood. Here we dissect the individual contribution of SA1 and the ring subunits to telomere cohesion and show that telomeres rely heavily on SA1 and to a lesser extent on the ring for cohesion. Using chromatin immunoprecipitation we show that SA1 is highly enriched at telomeres, is decreased at mitosis when cohesion is resolved, and is increased when cohesion persists. Overexpression of SA1 alone was sufficient to induce cohesion at telomeres, independent of the cohesin ring and dependent on its unique (not found in SA2) N-terminal domain, which we show binds to telomeric DNA through an AT-hook motif. We suggest that a specialized cohesion mechanism may be required to accommodate the high level of DNA replication-associated repair at telomeres.
Collapse
Affiliation(s)
- Kamlesh K Bisht
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
82
|
Masutani M, Fujimori H. Poly(ADP-ribosyl)ation in carcinogenesis. Mol Aspects Med 2013; 34:1202-16. [PMID: 23714734 DOI: 10.1016/j.mam.2013.05.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 12/18/2022]
Abstract
Cancer develops through diverse genetic, epigenetic and other changes, so-called 'multi-step carcinogenesis', and each cancer harbors different alterations and properties. Here in this article we review how poly(ADP-ribosyl)ation is involved in multi-step and diverse pathways of carcinogenesis. Involvement of poly- and mono-ADP-ribosylation in carcinogenesis has been studied at molecular and cellular levels, and further by animal models and human genetic approaches. PolyADP-ribosylation acts in DNA damage repair response and maintenance mechanisms of genomic stability. Several DNA repair pathways, including base-excision repair and double strand break repair pathways, involve PARP and PARG functions. These care-taker functions of poly(ADP-ribosyl)ation suggest that polyADP-ribosyation may mainly act in a tumor suppressive manner because genomic instability caused by defective DNA repair response could serve as a driving force for tumor progression, leading to invasion, metastasis and relapse of cancer. On the other hand, the new concept of 'synthetic lethality by PARP inhibition' suggests the significance of PARP activities for survival of cancer cells that harbor defects in DNA repair. Accumulating evidence has revealed that some PARP family molecules are involved in various signaling cascades other than DNA repair, including epigenetic and transcriptional regulations, inflammation/immune response and epithelial-mesenchymal transition, suggesting that poly(ADP-ribosyl)ation both promotes and suppresses carcinogenic processes depending on the conditions. Expanding understanding of poly(ADP-ribosyl)ation suggests that strategies to achieve cancer prevention targeting poly(ADP-ribosyl)ation for genome protection against life-long exposure to environmental carcinogens and endogenous carcinogenic stimuli.
Collapse
Affiliation(s)
- Mitsuko Masutani
- Division of Genome Stability Research, National Cancer Center Research Institute, Japan.
| | | |
Collapse
|
83
|
Galati A, Micheli E, Cacchione S. Chromatin structure in telomere dynamics. Front Oncol 2013; 3:46. [PMID: 23471416 PMCID: PMC3590461 DOI: 10.3389/fonc.2013.00046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/21/2013] [Indexed: 11/13/2022] Open
Abstract
The establishment of a specific nucleoprotein structure, the telomere, is required to ensure the protection of chromosome ends from being recognized as DNA damage sites. Telomere shortening below a critical length triggers a DNA damage response that leads to replicative senescence. In normal human somatic cells, characterized by telomere shortening with each cell division, telomere uncapping is a regulated process associated with cell turnover. Nevertheless, telomere dysfunction has also been associated with genomic instability, cell transformation, and cancer. Despite the essential role telomeres play in chromosome protection and in tumorigenesis, our knowledge of the chromatin structure involved in telomere maintenance is still limited. Here we review the recent findings on chromatin modifications associated with the dynamic changes of telomeres from protected to deprotected state and their role in telomere functions.
Collapse
Affiliation(s)
- Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma Rome, Italy
| | | | | |
Collapse
|
84
|
Riffell JL, Lord CJ, Ashworth A. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 2012; 11:923-36. [PMID: 23197039 DOI: 10.1038/nrd3868] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The poly(ADP-ribose) polymerase (PARP) protein superfamily has wide-ranging roles in cellular processes such as DNA repair and WNT signalling. Efforts to pharmacologically target PARP enzymes have largely focused on PARP1 and the closely related PARP2, but recent work highlighting the role of another family member, tankyrase 1 (TANK1; also known as PARP5A and ARTD5), in the control of WNT signalling has fuelled interest in the development of additional inhibitors to target this enzyme class. Tankyrase function is also implicated in other processes such as the regulation of telomere length, lung fibrogenesis and myelination, suggesting that tankyrase inhibitors could have broad clinical utility. Here, we discuss the biology of tankyrases and the discovery of tankyrase-specific inhibitors. We also consider the challenges that lie ahead for the clinical development of PARP family inhibitors in general.
Collapse
Affiliation(s)
- Jenna L Riffell
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
85
|
Hao SY, Yu JC. Shelterin complex and digestive system tumor. Shijie Huaren Xiaohua Zazhi 2012; 20:3124-3129. [DOI: 10.11569/wcjd.v20.i32.3124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Shelterin complex is the crucial components of telomere binding proteins. The regulation of this complex, together with telomerase and the alterative lengthening of telomeres (ALT mechanism), plays a critical role in maintaining telomere functions. Telomeres are DNA-protein complexes that contain short repeat sequences added on to the ends of chromosome by the telomerase for protecting the ends of chromosome and preventing chromosome fusion. The loss of protective function of telomeres is closely related to genome instability, and this is the molecular basis for tumor development. Thus, telomeres play key roles in the process of malignant tumor development. Many studies have shown that telomere binding proteins are associated with gastric, colorectal and liver cancers, and other digestive system tumors. This review will focus on the role of the shelterin complex in digestive system neoplasms to provide an insight into prevention and targeted therapy of these malignancies.
Collapse
|
86
|
Weuts A, Voet T, Verbeeck J, Lambrechts N, Wirix E, Schoonjans L, Danloy S, Marynen P, Froyen G. Telomere length homeostasis and telomere position effect on a linear human artificial chromosome are dictated by the genetic background. Nucleic Acids Res 2012; 40:11477-89. [PMID: 23066103 PMCID: PMC3526267 DOI: 10.1093/nar/gks926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomere position effect (TPE) is the influence of telomeres on subtelomeric epigenetic marks and gene expression. Previous studies suggested that TPE depends on genetic background. As these analyses were performed on different chromosomes, cell types and species, it remains unclear whether TPE represents a chromosome—rather than genetic background-specific regulation. We describe the development of a Linear Human Artificial Chromosome (L-HAC) as a new tool for telomere studies. The L-HAC was generated through the Cre-loxP-mediated addition of telomere ends to an existing circular HAC (C-HAC). As it can be transferred to genetically distinct cell lines and animal models the L-HAC enables the study of TPE in an unprecedented manner. The HAC was relocated to four telomerase-positive cell lines via microcell-mediated chromosome transfer and subsequently to mice via blastocyst injection of L-HAC+-ES-cells. We could show consistent genetic background-dependent adaptation of telomere length and telomere-associated de novo subtelomeric DNA methylation in mouse ES-R1 cells as well as in mice. Expression of the subtelomeric neomycin gene was inversely correlated with telomere length and subtelomeric methylation. We thus provide a new tool for functional telomere studies and provide strong evidence that telomere length, subtelomeric chromatin marks and expression of subtelomeric genes are genetic background dependent.
Collapse
Affiliation(s)
- An Weuts
- Human Genome Laboratory, VIB Center for the Biology of Disease, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Ozaki Y, Matsui H, Asou H, Nagamachi A, Aki D, Honda H, Yasunaga S, Takihara Y, Yamamoto T, Izumi S, Ohsugi M, Inaba T. Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol Cell 2012; 47:694-706. [PMID: 22864114 DOI: 10.1016/j.molcel.2012.06.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/28/2012] [Accepted: 06/19/2012] [Indexed: 11/26/2022]
Abstract
During prometaphase, dense microtubule nucleation sites at centrosomes form robust spindles that align chromosomes promptly. Failure of centrosome maturation leaves chromosomes scattered, as seen routinely in cancer cells, including myelodysplastic syndrome (MDS). We previously reported that the Miki (LOC253012) gene is frequently deleted in MDS patients, and that low levels of Miki are associated with abnormal mitosis. Here we demonstrate that Miki localizes to the Golgi apparatus and is poly(ADP-ribosyl)ated by tankyrase-1 during late G2 and prophase. PARsylated Miki then translocates to mitotic centrosomes and anchors CG-NAP, a large scaffold protein of the γ-tubulin ring complex. Due to impairment of microtubule aster formation, cells in which tankyrase-1, Miki, or CG-NAP expression is downregulated all show prometaphase disturbances, including scattered and lagging chromosomes. Our data suggest that PARsylation of Miki by tankyrase-1 is a key initial event promoting prometaphase.
Collapse
Affiliation(s)
- Yuko Ozaki
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Londoño-Vallejo JA, Wellinger RJ. Telomeres and telomerase dance to the rhythm of the cell cycle. Trends Biochem Sci 2012; 37:391-9. [PMID: 22727244 DOI: 10.1016/j.tibs.2012.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 11/27/2022]
Abstract
The stability of the ends of linear eukaryotic chromosomes is ensured by functional telomeres, which are composed of short, species-specific direct repeat sequences. The maintenance of telomeres depends on a specialized ribonucleoprotein (RNP) called telomerase. Both telomeres and telomerase are dynamic entities with different physical behaviors and, given their substrate-enzyme relation, they must establish a productive interaction. Regulatory mechanisms controlling this interaction are key missing elements in our understanding of telomere functions. Here, we review the dynamic properties of telomeres and the maturing telomerase RNPs, and summarize how tracking the timing of their dance during the cell cycle will yield insights into chromosome stability mechanisms. Cancer cells often display loss of genome integrity; therefore, these issues are of particular interest for our understanding of cancer initiation or progression.
Collapse
Affiliation(s)
- J Arturo Londoño-Vallejo
- Laboratoire Télomères et Cancer, UMR3244, Institut Curie, 26 rue d'Ulm, 75248 Paris, France; UPMC Université Paris 06, F-75005 Paris, France
| | | |
Collapse
|
89
|
GDP-mannose-4,6-dehydratase is a cytosolic partner of tankyrase 1 that inhibits its poly(ADP-ribose) polymerase activity. Mol Cell Biol 2012; 32:3044-53. [PMID: 22645305 DOI: 10.1128/mcb.00258-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tankyrase 1 is a poly(ADP-ribose) polymerase (PARP) that participates in a broad range of cellular activities due to interaction with multiple binding partners. Tankyrase 1 recognizes a linear six-amino-acid degenerate motif and, hence, has hundreds of potential target proteins. Binding of partner proteins to tankyrase 1 usually results in their poly(ADP-ribosyl)ation (PARsylation) and can lead to ubiquitylation and proteasomal degradation. However, it is not known how tankyrase 1 PARP activity is regulated. Here we identify GDP-mannose 4,6-dehydratase (GMD) as a binding partner of tankyrase 1. GMD is a cytosolic protein required for the first step of fucose synthesis. We show that GMD is complexed to tankyrase 1 in the cytosol throughout interphase, but its association with tankyrase 1 is reduced upon entry into mitosis, when tankyrase 1 binds to its other partners TRF1 (at telomeres) and NuMA (at spindle poles). In contrast to other binding partners, GMD is not PARsylated by tankyrase 1. Indeed, we show that GMD inhibits tankyrase 1 PARP activity in vitro, dependent on the GMD tankyrase 1 binding motif. In vivo, depletion of GMD led to degradation of tankyrase 1, dependent on the catalytic PARP activity of tankyrase 1. We speculate that association of tankyrase 1 with GMD in the cytosol sequesters tankyrase 1 in an inactive stable form that can be tapped by other target proteins as needed.
Collapse
|
90
|
Pont AR, Sadri N, Hsiao SJ, Smith S, Schneider RJ. mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Mol Cell 2012; 47:5-15. [PMID: 22633954 DOI: 10.1016/j.molcel.2012.04.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 03/07/2012] [Accepted: 04/12/2012] [Indexed: 01/31/2023]
Abstract
Inflammation is associated with DNA damage, cellular senescence, and aging. Cessation of the inflammatory cytokine response is mediated in part through cytokine mRNA degradation facilitated by RNA-binding proteins, including AUF1. We report a major function of AUF1-it activates telomerase expression, suppresses cellular senescence, and maintains normal aging. AUF1-deficient mice undergo striking telomere erosion, markedly increased DNA damage responses at telomere ends, pronounced cellular senescence, and rapid premature aging that increases with successive generations, which can be rescued in AUF1 knockout mice and their cultured cells by resupplying AUF1 expression. AUF1 binds and strongly activates the transcription promoter for telomerase catalytic subunit Tert. In addition to directing inflammatory cytokine mRNA decay, AUF1 destabilizes cell-cycle checkpoint mRNAs, preventing cellular senescence. Thus, a single gene, AUF1, links maintenance of telomere length and normal aging to attenuation of inflammatory cytokine expression and inhibition of cellular senescence.
Collapse
Affiliation(s)
- Adam R Pont
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
91
|
Walker JR, Zhu XD. Post-translational modifications of TRF1 and TRF2 and their roles in telomere maintenance. Mech Ageing Dev 2012; 133:421-34. [PMID: 22634377 DOI: 10.1016/j.mad.2012.05.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/27/2012] [Accepted: 05/04/2012] [Indexed: 11/29/2022]
Abstract
Telomeres, heterochromatic structures, found at the ends of linear eukaryotic chromosomes, function to protect natural chromosome ends from nucleolytic attack. Human telomeric DNA is bound by a telomere-specific six-subunit protein complex, termed shelterin/telosome. The shelterin subunits TRF1 and TRF2 bind in a sequence-specific manner to double-stranded telomeric DNA, providing a vital platform for recruitment of additional shelterin proteins as well as non-shelterin factors crucial for the maintenance of telomere length and structure. Both TRF1 and TRF2 are engaged in multiple roles at telomeres including telomere protection, telomere replication, sister telomere resolution and telomere length maintenance. Regulation of TRF1 and TRF2 in these various processes is controlled by post-translational modifications, at times in a cell-cycle-dependent manner, affecting key functions such as DNA binding, dimerization, localization, degradation and interactions with other proteins. Here we review the post-translational modifications of TRF1 and TRF2 and discuss the mechanisms by which these modifications contribute to the function of these two proteins.
Collapse
Affiliation(s)
- John R Walker
- Department of Biology, LSB438, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | |
Collapse
|
92
|
Peuscher MH, Jacobs JJL. Posttranslational control of telomere maintenance and the telomere damage response. Cell Cycle 2012; 11:1524-34. [PMID: 22433952 DOI: 10.4161/cc.19847] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Telomeres help maintain genome integrity by protecting natural chromosome ends from being recognized as damaged DNA. When telomeres become dysfunctional, they limit replicative lifespan and prevent outgrowth of potentially cancerous cells by activating a DNA damage response that forces cells into senescence or apoptosis. On the other hand, chromosome ends devoid of proper telomere protection are subject to DNA repair activities that cause end-to-end fusions and, when cells divide, extensive genomic instability that can promote cancer. While telomeres represent unique chromatin structures with important roles in cancer and aging, we have limited understanding of the way telomeres and the response to their malfunction are controlled at the level of chromatin. Accumulating evidence indicates that different types of posttranslational modifications act in both telomere maintenance and the response to telomere uncapping. Here, we discuss the latest insights on posttranslational control of telomeric chromatin, with emphasis on ubiquitylation and SUMOylation events.
Collapse
Affiliation(s)
- Marieke H Peuscher
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
93
|
De Vos M, Schreiber V, Dantzer F. The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 2012; 84:137-46. [PMID: 22469522 DOI: 10.1016/j.bcp.2012.03.018] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/17/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) catalyzed poly(ADP-ribosyl)ation is one of the earliest post-translational modification of proteins detectable at sites of DNA strand interruptions. The considerable recent progress in the science of PARP in the last decade and the discovery of a PARP superfamily (17 members) has introduced this modification as a key mechanism regulating a wide variety of cellular processes including among others transcription, regulation of chromatin dynamics, telomere homeostasis, differentiation and cell death. However, the most extensive studied and probably the best characterized role is in DNA repair where it plays pivotal roles in the processing and resolution of the damaged DNA. Although much of the focus has been on PARP1 in DNA repair, recent advances highlight the emergence of other DNA-dependent PARPs (i.e. PARP2, PARP3 and possibly Tankyrase) in this process. Here we will summarize the recent insights into the molecular functions of these PARPs in different DNA repair pathways in which they emerge as specific actors. Furthermore, the DNA repair functions of PARP1 have stimulated another area of intense research in the field with the development of potent and selective PARP1 inhibitors to promote genome instability and cell death in tumor cells. Their current use in clinical trials have demonstrated potentiation of antitumoral drugs and cytotoxicity in repair deficient tumor cells.
Collapse
Affiliation(s)
- Mike De Vos
- UMR7242-CNRS-Université de Strasbourg, Institut de Recherche de l'Ecole de Biotechnologie de Strasbourg, Ecole Supérieure de Biotechnologie de Strasbourg, bld. S. Brant, BP10413, 67412 Illkirch, France
| | | | | |
Collapse
|
94
|
Abstract
Human telomeres are DNA-protein complexes that cap and protect the ends of chromosomes. The protein PinX1 associates with telomeres through an interaction with the resident double-stranded telomere-binding protein TRF1. PinX1 also binds to and inhibits telomerase, the enzyme responsible for complete replication of telomeric DNA. We now report that endogenous PinX1 associates with telomeres primarily at mitosis. Moreover, knockdown of PinX1 caused delayed mitotic entry and reduced the accumulation of TRF1 on telomeres during this stage of the cell cycle. Taking these findings together, we suggest that one function of PinX1 is to stabilize TRF1 during mitosis, perhaps to promote transition into M phase of the cell cycle.
Collapse
|
95
|
Ha GH, Kim HS, Go H, Lee H, Seimiya H, Chung DH, Lee CW. Tankyrase-1 function at telomeres and during mitosis is regulated by Polo-like kinase-1-mediated phosphorylation. Cell Death Differ 2012; 19:321-32. [PMID: 21818122 PMCID: PMC3263489 DOI: 10.1038/cdd.2011.101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 06/13/2011] [Accepted: 06/22/2011] [Indexed: 01/21/2023] Open
Abstract
Telomere length is critical for chromosome stability that affects cell proliferation and survival. Telomere elongation by telomerase is inhibited by the telomeric protein, TRF1. Tankyrase-1 (TNKS1) poly(ADP-ribosyl)ates TRF1 and releases TRF1 from telomeres, thereby allowing access of telomerase to the telomeres. TNKS1-mediated poly(ADP-ribosyl)ation also appears to be crucial for regulating the mitotic cell cycle. In searching for proteins that interact with polo-like kinase-1 (Plk1) by using complex proteomics, we identified TNKS1 as a novel Plk1-binding protein. Here, we report that Plk1 forms a complex with TNKS1 in vitro and in vivo, and phosphorylates TNKS1. Phosphorylation of TNKS1 by Plk1 appears to increase TNKS1 stability and telomeric poly(ADP-ribose) polymerase (PARP) activity. By contrast, targeted inhibition of Plk1 or mutation of phosphorylation sites decreased the stability and PARP activity of TNKS1, leading to distort mitotic spindle-pole assembly and telomeric ends. Taken together, our results provide evidence of a novel molecular mechanism in which phosphorylation of TNKS1 by Plk1 may help regulate mitotic spindle assembly and promote telomeric chromatin maintenance.
Collapse
Affiliation(s)
- G-H Ha
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
- Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - H-S Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
- Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - H Go
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - H Lee
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 411-764, Republic of Korea
| | - H Seimiya
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - D H Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - C-W Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
- Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| |
Collapse
|
96
|
Abstract
Chromosomal imbalances can result from numerical or structural anomalies. Numerical chromosomal abnormalities are often referred to as aneuploid conditions. This article focuses on the occurrence of constitutional and acquired autosomal aneuploidy in humans. Topics covered include frequency, mosaicism, phenotypic findings, and etiology. The article concludes with a consideration of anticipated advances that might allow for the development of screening tests and/or lead to improvements in our understanding and management of the role that aneuploidy plays in the aging process and acquisition of age-related and constitutional conditions.
Collapse
Affiliation(s)
- Colleen Jackson-Cook
- Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
97
|
Canudas S, Houghtaling BR, Bhanot M, Sasa G, Savage SA, Bertuch AA, Smith S. A role for heterochromatin protein 1γ at human telomeres. Genes Dev 2011; 25:1807-19. [PMID: 21865325 DOI: 10.1101/gad.17325211] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human telomere function is mediated by shelterin, a six-subunit complex that is required for telomere replication, protection, and cohesion. TIN2, the central component of shelterin, has binding sites to three subunits: TRF1, TRF2, and TPP1. Here we identify a fourth partner, heterochromatin protein 1γ (HP1γ), that binds to a conserved canonical HP1-binding motif, PXVXL, in the C-terminal domain of TIN2. We show that HP1γ localizes to telomeres in S phase, where it is required to establish/maintain cohesion. We further demonstrate that the HP1-binding site in TIN2 is required for sister telomere cohesion and can impact telomere length maintenance by telomerase. Remarkably, the PTVML HP1-binding site is embedded in the recently identified cluster of mutations in TIN2 that gives rise to dyskeratosis congenita (DC), an inherited bone marrow failure syndrome caused by defects in telomere maintenance. We show that DC-associated mutations in TIN2 abrogate binding to HP1γ and that DC patient cells are defective in sister telomere cohesion. Our data indicate a novel requirement for HP1γ in the establishment/maintenance of cohesion at human telomeres and, furthermore, may provide insight into the mechanism of pathogenesis in TIN2-mediated DC.
Collapse
Affiliation(s)
- Silvia Canudas
- Molecular Pathogenesis Program, Department of Pathology, Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Function, replication and structure of the mammalian telomere. Cytotechnology 2011; 45:3-12. [PMID: 19003238 DOI: 10.1007/s10616-004-5120-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Accepted: 09/21/2004] [Indexed: 10/25/2022] Open
Abstract
Telomeres are specialized structures at the ends of linear chromosomes that were originally defined functionally based on observations first by Muller (1938) and subsequently by McClintock (1941) that naturally occurring chromosome ends do not behave as double-stranded DNA breaks, in spite of the fact that they are the physical end of a linear, duplex DNA molecule. Double-stranded DNA breaks are highly unstable entities, being susceptible to nucleolytic attack and giving rise to chromosome rearrangements through end-to-end fusions and recombination events. In contrast, telomeres confer stability upon chromosome termini, as evidenced by the fact that chromosomes are extraordinarily stable through multiple cell divisions and even across evolutionary time. This protective function of telomeres is due to the formation of a nucleoprotein complex that sequesters the end of the DNA molecule, rendering it inaccessible to nucleases and recombinases as well as preventing the telomere from activating the DNA damage checkpoint pathways. The capacity of a functional end-protective complex to form is dependent upon maintenance of sufficient telomeric DNA. We have learned a great deal about telomere structure and how this specialized nucleoprotein complex confers stability on chromosome ends since the original observations that defined telomeres were made. This review summarizes our current understanding of mammalian telomere replication, structure and function.
Collapse
|
99
|
McKerlie M, Zhu XD. Cyclin B-dependent kinase 1 regulates human TRF1 to modulate the resolution of sister telomeres. Nat Commun 2011; 2:371. [PMID: 21712819 PMCID: PMC4931922 DOI: 10.1038/ncomms1372] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 06/02/2011] [Indexed: 11/26/2022] Open
Abstract
Cyclin B-Cdk1 is a key mediator of mitotic entry; however, little is known about its role in the separation of sister chromatids. Here we report that upon mitotic entry, Cdk1 specifically phosphorylates threonine 371 of TRF1, a telomere binding protein implicated in the regulation of sister telomere cohesion. Such phosphorylation is removed in late mitosis when Cdk1 activity is inhibited, indicative of a tight regulation of T371 phosphorylation. We show that T371 phosphorylation by Cdk1 keeps TRF1 free of chromatin and this phosphorylation is associated with loss of telomere-bound TRF1 and TIN2, and a reduction in telomere heterochromatin. We find that a phosphomimic mutation at T371 of TRF1 induces telomere deprotection, resulting in telomere loss and the formation of telomere fusions, whereas a non-phosphorylatable substitution of T371 blocks sister telomere resolution, promotes micronuclei formation and impairs cell proliferation. Our work suggests that Cdk1 controls TRF1 association with telomeres to facilitate temporal telomere de-protection, which is essential for sister telomere resolution.
Collapse
Affiliation(s)
- Megan McKerlie
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S4K1
| | - Xu-Dong Zhu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S4K1
| |
Collapse
|
100
|
Dregalla RC, Zhou J, Idate RR, Battaglia CLR, Liber HL, Bailey SM. Regulatory roles of tankyrase 1 at telomeres and in DNA repair: suppression of T-SCE and stabilization of DNA-PKcs. Aging (Albany NY) 2011; 2:691-708. [PMID: 21037379 PMCID: PMC2993799 DOI: 10.18632/aging.100210] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intrigued by the dynamics of the seemingly contradictory yet integrated cellular responses to the requisites of preserving telomere integrity while also efficiently repairing damaged DNA, we investigated roles of the telomere associated poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) tankyrase 1 in both telomere function and the DNA damage response following exposure to ionizing radiation. Tankyrase 1 siRNA knockdown in human cells significantly elevated recombination specifically within telomeres, a phenotype with the potential of accelerating cellular senescence. Additionally, depletion of tankyrase 1 resulted in concomitant and rapid reduction of the nonhomologous end-joining protein DNA-PKcs, while Ku86 and ATM protein levels remained unchanged; DNA-PKcs mRNA levels were also unaffected. We found that the requirement of tankyrase 1 for DNA-PKcs protein stability reflects the necessity of its PARP enzymatic activity. We also demonstrated that depletion of tankyrase 1 resulted in proteasome-mediated DNA-PKcs degradation, explaining the associated defective damage response observed; i.e., increased sensitivity to ionizing radiation-induced cell killing, mutagenesis, chromosome aberration and telomere fusion. We provide the first evidence for regulation of DNA-PKcs by tankyrase 1 PARP activity and taken together, identify roles of tankyrase 1 with implications not only for DNA repair and telomere biology, but also for cancer and aging.
Collapse
Affiliation(s)
- Ryan C Dregalla
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, 80523-1618, USA
| | | | | | | | | | | |
Collapse
|