51
|
Zhao D, Hou H, Zhang X. Progress in the treatment of solid tumors with apatinib: a systematic review. Onco Targets Ther 2018; 11:4137-4147. [PMID: 30050305 PMCID: PMC6056166 DOI: 10.2147/ott.s172305] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
With the investigation of molecular targets, many agents, such as trastuzumab and ramucirumab, have attained a positive outcome in oncotherapy. Vascular endothelial growth factor (VEGF) is considered a potent factor in angiogenesis and plays an important role in the growth of tumors. Moreover, both VEGF and its receptor are usually excessively expressed in solid tumors and could be hopeful targets for the treatment of neoplasms. Apatinib (YN968D1) is an oral small-molecule tyrosine kinase inhibitor of VEGFR-2. By inhibiting several signaling transduction pathways, it restrains angiogenesis and subsequently controls tumorigenesis. According to current studies, apatinib shows promising application in various solid tumors as a post-second- and post-third-line treatment. It could significantly improve the median overall survival and progression-free survival of patients with tolerated adverse reactions. This paper aims to summarize the recent research on apatinib including the mechanism, pharmacokinetics, trials, adverse reactions, and prospect as a treatment.
Collapse
Affiliation(s)
- Deze Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China,
| | - Helei Hou
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China,
| | - Xiaochun Zhang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China,
| |
Collapse
|
52
|
Reckmann AN, Tomczyk CUM, Davidoff MS, Michurina TV, Arnhold S, Müller D, Mietens A, Middendorff R. Nestin in the epididymis is expressed in vascular wall cells and is regulated during postnatal development and in case of testosterone deficiency. PLoS One 2018; 13:e0194585. [PMID: 29874225 PMCID: PMC5991371 DOI: 10.1371/journal.pone.0194585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 03/06/2018] [Indexed: 12/24/2022] Open
Abstract
Vascular smooth muscle cells (SMCs), distinguished by the expression of the neuronal stem cell marker nestin, may represent stem cell-like progenitor cells in various organs including the testis. We investigated epididymal tissues of adult nestin-GFP mice, rats after Leydig cell depletion via ethane dimethane sulfonate (EDS), rats and mice during postnatal development and human tissues. By use of Clarity, a histochemical method to illustrate a three-dimensional picture, we could demonstrate nestin-GFP positive cells within the vascular network. We localized nestin in the epididymis in proliferating vascular SMCs by colocalization with both smooth muscle actin and PCNA, and it was distinct from CD31-positive endothelial cells. The same nestin localization was found in the human epididymis. However, nestin was not found in SMCs of the epididymal duct. Nestin expression is high during postnatal development of mouse and rat and down-regulated towards adulthood when testosterone levels increase. Nestin increases dramatically in rats after Leydig cell ablation with EDS and subsequently low testosterone levels. Interestingly, during this period, the expression of androgen receptor in the epididymis is low and increases until nestin reaches normal levels of adulthood. Here we show that nestin, a common marker for neuronal stem cells, is also expressed in the vasculature of the epididymis. Our results give new insights into the yet underestimated role of proliferating nestin-expressing vascular SMCs during postnatal development and repair of the epididymis.
Collapse
Affiliation(s)
- Ansgar N Reckmann
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Claudia U M Tomczyk
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Michail S Davidoff
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatyana V Michurina
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States of America
- Center for Developmental Genetics and Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States of America
- Moscow Institute of Physics and Technology, Moscow, Russia
| | - Stefan Arnhold
- Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
53
|
El Bairi K, Amrani M, Afqir S. Starvation tactics using natural compounds for advanced cancers: pharmacodynamics, clinical efficacy, and predictive biomarkers. Cancer Med 2018; 7:2221-2246. [PMID: 29732738 PMCID: PMC6010871 DOI: 10.1002/cam4.1467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
The high mortality associated with oncological diseases is mostly due to tumors in advanced stages, and their management is a major challenge in modern oncology. Angiogenesis is a defined hallmark of cancer and predisposes to metastatic invasion and dissemination and is therefore an important druggable target for cancer drug discovery. Recently, because of drug resistance and poor prognosis, new anticancer drugs from natural sources targeting tumor vessels have attracted more attention and have been used in several randomized and controlled clinical trials as therapeutic options. Here, we outline and discuss potential natural compounds as salvage treatment for advanced cancers from recent and ongoing clinical trials and real-world studies. We also discuss predictive biomarkers for patients' selection to optimize the use of these potential anticancer drugs.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and PharmacyMohamed Ist UniversityOujdaMorocco
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco‐biologieFaculty of MedicinePathology DepartmentNational Institute of OncologyUniversité Mohamed VRabatMorocco
| | - Said Afqir
- Department of Medical OncologyMohamed VI University HospitalOujdaMorocco
| |
Collapse
|
54
|
Ueno T, Masuda N, Kamigaki S, Morimoto T, Akiyama F, Kurosumi M, Tsuda H, Mikami Y, Tanaka S, Morita S, Toi M. A multicenter phase II trial of neoadjuvant letrozole plus low-dose cyclophosphamide in postmenopausal patients with estrogen receptor-positive breast cancer (JBCRG-07): therapeutic efficacy and clinical implications of circulating endothelial cells. Cancer Med 2018; 7:2442-2451. [PMID: 29733541 PMCID: PMC6010720 DOI: 10.1002/cam4.1516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 12/12/2022] Open
Abstract
Neoadjuvant endocrine therapy has been reported to decrease tumor size, which leads to increased breast conservation rates. To improve the clinical response, metronomic chemotherapy with endocrine therapy is a promising strategy. A multicenter phase II single‐arm neoadjuvant trial with letrozole and cyclophosphamide was conducted. Eligibility criteria included postmenopausal status, T2–4 N0–1, and estrogen receptor‐positive breast carcinoma. Letrozole (2.5 mg) plus cyclophosphamide (50 mg) was given orally once a day for 24 weeks. The primary endpoint was the clinical response rate (CRR). To investigate anti‐angiogenic effects, circulating endothelial cells (CECs) were quantified using the CellSearch system. From October 2007 to March 2010, 41 patients were enrolled. The CRR was 67.5% (52.0–80.0%), which was above the prespecified threshold (65%). The conversion rate from total mastectomy to breast‐conserving surgery was 64% (18/28). Grade 3 or greater nonhematological toxicity was not reported. Clinical response was associated with improved disease‐free survival (DFS) (P = 0.020). The increase in CEC counts at 8 weeks was observed in nonresponders (P = 0.004) but not in responders. Patients with higher CEC counts at baseline or post‐treatment showed worse DFS than those with lower counts (P < 0.001 at baseline and = 0.014 post‐treatment). Multivariate analysis showed that post‐treatment CEC counts but not pretreatment counts were independently correlated with DFS (P = 0.046). In conclusion, neoadjuvant letrozole plus cyclophosphamide showed a good clinical response for postmenopausal patients with estrogen receptor‐positive breast cancer. CEC quantification is a promising tool for treatment monitoring and prognostic stratification for metronomic therapy following validation of our results in larger studies. Clinical trial registration number: UMIN000001331 Phase II study of neoadjuvant letrozole combined with low‐dose metronomic cyclophosphamide for postmenopausal women with endocrine‐responsive breast cancer (JBCRG‐07)
Collapse
Affiliation(s)
- Takayuki Ueno
- Breast Surgical Oncology, Breast Oncology Center, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Breast Surgery, School of Medicine, Kyorin University, Tokyo, Japan
| | - Norikazu Masuda
- National Hospital Organization, Osaka National Hospital, Osaka, Japan
| | | | | | - Futoshi Akiyama
- Department of Pathology, The Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Yoshiki Mikami
- Department of Diagnostic Pathology, Kumamoto University Hospital, Kumamoto, Japan
| | - Sunao Tanaka
- Department of Breast Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
55
|
Ng T, Phey XY, Yeo HL, Shwe M, Gan YX, Ng R, Ho HK, Chan A. Impact of Adjuvant Anthracycline-Based and Taxane-Based Chemotherapy on Plasma VEGF Levels and Cognitive Function in Breast Cancer Patients: A Longitudinal Study. Clin Breast Cancer 2018; 18:e927-e937. [PMID: 29705024 DOI: 10.1016/j.clbc.2018.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/31/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) has been shown to induce neurogenesis in the brain and yield neuroprotective effects. It is hypothesized that chemotherapy reduces circulating VEGF levels and leads to cognitive decline among patients. This multicenter longitudinal study aimed to evaluate the impact of chemotherapy on VEGF levels and the association between VEGF levels and cognitive function. PATIENTS AND METHODS A total of 145 early-stage breast cancer patients were recruited and assessed before chemotherapy (T1), during chemotherapy (T2), and at the end of chemotherapy (T3). At each time point, plasma VEGF levels were assessed using a multiplex immunoassay. Cognitive function was assessed using both Functional Assessment of Cancer Therapy-Cognitive Function, Version 3 (FACT-Cog), and Headminder (a computerized, web-based neuropsychologic battery). RESULTS Generally, we observed higher-than-baseline plasma VEGF levels after the start of chemotherapy (P < .001). Among patients receiving anthracycline-based chemotherapy, the median plasma VEGF levels were significantly higher at T2 (T2: 37.3 pg/mL vs. T1: 21.3 pg/mL; P < .001) and T3 (T3: 35.5 pg/mL vs. T1: 21.3 pg/mL; P < .001) than at baseline. Plasma VEGF levels were not associated with chemotherapy-associated cognitive impairment. CONCLUSION Breast cancer patients experience an increasing trend in plasma VEGF levels during chemotherapy, and the regimen types may have a differential effect on circulating VEGF levels. Furthermore, changes in plasma VEGF levels during chemotherapy were not associated with cognitive impairment. VEGF may play a minor role in mediating the occurrence of chemotherapy-associated cognitive impairment.
Collapse
Affiliation(s)
- Terence Ng
- Department of Pharmacy, National University of Singapore, Singapore
| | - Xiang Yun Phey
- Department of Pharmacy, National University of Singapore, Singapore
| | - Hui Ling Yeo
- Department of Pharmacy, National University of Singapore, Singapore
| | - Maung Shwe
- Department of Pharmacy, National University of Singapore, Singapore
| | - Yan Xiang Gan
- Department of Pharmacy, National University of Singapore, Singapore
| | - Raymond Ng
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, National University of Singapore, Singapore
| | - Alexandre Chan
- Department of Pharmacy, National University of Singapore, Singapore; Oncology Pharmacy, National Cancer Centre Singapore, Singapore; Duke-NUS Graduate Medical School Singapore, Singapore.
| |
Collapse
|
56
|
Timaner M, Letko-Khait N, Kotsofruk R, Benguigui M, Beyar-Katz O, Rachman-Tzemah C, Raviv Z, Bronshtein T, Machluf M, Shaked Y. Therapy-Educated Mesenchymal Stem Cells Enrich for Tumor-Initiating Cells. Cancer Res 2018; 78:1253-1265. [PMID: 29301792 PMCID: PMC5924870 DOI: 10.1158/0008-5472.can-17-1547] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/06/2017] [Accepted: 12/28/2017] [Indexed: 12/19/2022]
Abstract
Stromal cells residing in the tumor microenvironment contribute to the development of therapy resistance. Here we show that chemotherapy-educated mesenchymal stem cells (MSC) promote therapy resistance via cross-talk with tumor-initiating cells (TIC), a resistant tumor cell subset that initiates tumorigenesis and metastasis. In response to gemcitabine chemotherapy, MSCs colonized pancreatic adenocarcinomas in large numbers and resided in close proximity to TICs. Furthermore, gemcitabine-educated MSCs promoted the enrichment of TICs in vitro and enhance tumor growth in vivo These effects were dependent on the secretion of CXCL10 by gemcitabine-educated MSCs and subsequent activation of the CXCL10-CXCR3 axis in TICs. In an orthotopic pancreatic tumor model, targeting TICs using nanovesicles (called nanoghosts) derived from MSC membranes and loaded with a CXCR3 antagonist enhanced therapy outcome and delayed tumor regrowth when administered in combination with gemcitabine. Overall, our results establish a mechanism through which MSCs promote chemoresistance, and propose a novel drug delivery system to target TICs and overcome this resistance.Significance: These results establish a mechanism by which mesenchyme stem cells in the tumor microenvironment promote chemoresistance, and they propose a novel drug delivery system to overcome this challenge. Cancer Res; 78(5); 1253-65. ©2018 AACR.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Communication
- Cell Proliferation
- Cell Transformation, Neoplastic/drug effects
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, SCID
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/metabolism
- Tumor Cells, Cultured
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Gemcitabine
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Michael Timaner
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nitzan Letko-Khait
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ruslana Kotsofruk
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ofrat Beyar-Katz
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Chen Rachman-Tzemah
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tomer Bronshtein
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Marcelle Machluf
- The Laboratory for Cancer Drug Delivery & Cell Based Technologies, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
57
|
Sax MJ, Gasch C, Athota VR, Freeman R, Rasighaemi P, Westcott DE, Day CJ, Nikolic I, Elsworth B, Wei M, Rogers K, Swarbrick A, Mittal V, Pouliot N, Mellick AS. Cancer cell CCL5 mediates bone marrow independent angiogenesis in breast cancer. Oncotarget 2018; 7:85437-85449. [PMID: 27863423 PMCID: PMC5356747 DOI: 10.18632/oncotarget.13387] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023] Open
Abstract
It has recently been suggested that the chemokine receptor (CCR5) is required for bone marrow (BM) derived endothelial progenitor cell (EPC) mediated angiogenesis. Here we show that suppression of either cancer cell produced CCL5, or host CCR5 leads to distinctive vascular and tumor growth defects in breast cancer. Surprisingly, CCR5 restoration in the BM alone was not sufficient to rescue the wild type phenotype, suggesting that impaired tumor growth associated with inhibiting CCL5/CCR5 is not due to defects in EPC biology. Instead, to promote angiogenesis cancer cell CCL5 may signal directly to endothelium in the tumor-stroma. In support of this hypothesis, we have also shown: (i) that endothelial cell CCR5 levels increases in response to tumor-conditioned media; (ii) that the amount of CCR5+ tumor vasculature correlates with invasive grade; and (iii) that inhibition of CCL5/CCR5 signaling impairs endothelial cell migration, associated with a decrease in activation of mTOR/AKT pathway members. Finally, we show that treatment with CCR5 antagonist results in less vasculature, impaired tumor growth, reduced metastases and improved survival. Taken as a whole, this work demonstrates that directly inhibiting CCR5 expressing vasculature constitutes a novel strategy for inhibiting angiogenesis and blocking metastatic progression in breast cancer.
Collapse
Affiliation(s)
- Michael John Sax
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Christin Gasch
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Vineel Rag Athota
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Ruth Freeman
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Parisa Rasighaemi
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | | | | | - Iva Nikolic
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Benjamin Elsworth
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Ming Wei
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia
| | - Kelly Rogers
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute for Medical Research, Parkville Victoria, Australia
| | - Alexander Swarbrick
- Kinghorn Cancer Centre & Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW, Australia
| | - Vivek Mittal
- Cardiothoracic Surgery and Neuberger Berman Lung Cancer Centre, Weill Cornell Medical College, New York, NY, USA
| | - Normand Pouliot
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Albert Sleiman Mellick
- School of Medical Science, Griffith University, Gold Coast, QLD, Australia.,School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia.,Faculty of Medicine, University of New South Wales, NSW, Australia.,School of Medicine, Western Sydney University, Campbelltown NSW, Australia.,Translational Oncology Unit, Ingham Institute for Applied Medical Research, Liverpool NSW, Australia
| |
Collapse
|
58
|
Current perspectives between metabolic syndrome and cancer. Oncotarget 2018; 7:38959-38972. [PMID: 27029038 PMCID: PMC5122443 DOI: 10.18632/oncotarget.8341] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/20/2016] [Indexed: 12/21/2022] Open
Abstract
Metabolic syndrome is a cluster of risk factors that lead to cardiovascular morbidity and mortality. Recent studies linked metabolic syndrome and several types of cancer. Although metabolic syndrome may not necessarily cause cancer, it is linked to poorer cancer outcomes including increased risk of recurrence and overall mortality. This review tends to discuss the major biological and physiological alterations involved in the increase of incidence and mortality of cancer patients affected by metabolic syndrome. We focus on metabolic syndrome-associated visceral adiposity, hyperinsulinemia, hyperglycemia, insulin-like growth factor (IGF-I) pathway as well as estrogen signaling and inflammation. Several of these factors are also involved in carcinogenesis and cancer progression. A better understanding of the link between metabolic syndrome and cancer may provide new insight about oncogenesis. Moreover, prevention of metabolic syndrome - related alterations may be an important aspect in the management of cancer patients during simultaneous palliative care.
Collapse
|
59
|
Benguigui M, Alishekevitz D, Timaner M, Shechter D, Raviv Z, Benzekry S, Shaked Y. Dose- and time-dependence of the host-mediated response to paclitaxel therapy: a mathematical modeling approach. Oncotarget 2018; 9:2574-2590. [PMID: 29416793 PMCID: PMC5788661 DOI: 10.18632/oncotarget.23514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/05/2017] [Indexed: 11/26/2022] Open
Abstract
It has recently been suggested that pro-tumorigenic host-mediated processes induced in response to chemotherapy counteract the anti-tumor activity of therapy, and thereby decrease net therapeutic outcome. Here we use experimental data to formulate a mathematical model describing the host response to different doses of paclitaxel (PTX) chemotherapy as well as the duration of the response. Three previously described host-mediated effects are used as readouts for the host response to therapy. These include the levels of circulating endothelial progenitor cells in peripheral blood and the effect of plasma derived from PTX-treated mice on migratory and invasive properties of tumor cells in vitro. A first set of mathematical models, based on basic principles of pharmacokinetics/pharmacodynamics, did not appropriately describe the dose-dependence and duration of the host response regarding the effects on invasion. We therefore provide an alternative mathematical model with a dose-dependent threshold, instead of a concentration-dependent one, that describes better the data. This model is integrated into a global model defining all three host-mediated effects. It not only precisely describes the data, but also correctly predicts host-mediated effects at different doses as well as the duration of the host response. This mathematical model may serve as a tool to predict the host response to chemotherapy in cancer patients, and therefore may be used to design chemotherapy regimens with improved therapeutic outcome by minimizing host mediated effects.
Collapse
Affiliation(s)
- Madeleine Benguigui
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Dror Alishekevitz
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Michael Timaner
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Dvir Shechter
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Ziv Raviv
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Sebastien Benzekry
- MONC Team, Inria Bordeaux Sud-Ouest and Institut de Mathématiques de Bordeaux, Talence, France
| | - Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
60
|
Comunanza V, Bussolino F. Therapy for Cancer: Strategy of Combining Anti-Angiogenic and Target Therapies. Front Cell Dev Biol 2017; 5:101. [PMID: 29270405 PMCID: PMC5725406 DOI: 10.3389/fcell.2017.00101] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
The concept that blood supply is required and necessary for cancer growth and spreading is intuitive and was firstly formalized by Judah Folkman in 1971, when he demonstrated that cancer cells release molecules able to promote the proliferation of endothelial cells and the formation of new vessels. This seminal result has initiated one of the most fascinating story of the medicine, which is offering a window of opportunity for cancer treatment based on the use of molecules inhibiting tumor angiogenesis and in particular vascular-endothelial growth factor (VEGF), which is the master gene in vasculature formation and is the commonest target of anti-angiogenic regimens. However, the clinical results are far from the remarkable successes obtained in pre-clinical models. The reasons of this discrepancy have been partially understood and well addressed in many reviews (Bergers and Hanahan, 2008; Bottsford-Miller et al., 2012; El-Kenawi and El-Remessy, 2013; Wang et al., 2015; Jayson et al., 2016). At present anti-angiogenic regimens are not used as single treatments but associated with standard chemotherapies. Based on emerging knowledge of the biology of VEGF, here we sustain the hypothesis of the efficacy of a dual approach based on targeting pro-angiogenic pathways and other druggable targets such as mutated oncogenes or the immune system.
Collapse
Affiliation(s)
- Valentina Comunanza
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, Candiolo, Italy.,Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
61
|
Tanshinone IIA inhibits angiogenesis in human endothelial progenitor cells in vitro and in vivo. Oncotarget 2017; 8:109217-109227. [PMID: 29312602 PMCID: PMC5752515 DOI: 10.18632/oncotarget.22649] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence reports that bone marrow-derived endothelial progenitor cells (EPCs) regulate angiogenesis, postnatal neovascularization and tumor metastasis. It has been suggested that understanding the molecular targets and pharmacological functions of natural products is important for novel drug discovery. Tanshinone IIA is a major diterpene quinone compound isolated from Danshen (Salvia miltiorrhiza) and is widely used in traditional Chinese medicine (TCM). Evidence indicates that tanshinone IIA modulates angiogenic functions in human umbilical vein endothelial cells. However, the anti-angiogenic activity of tanshinone IIA in human EPCs has not been addressed. Here, we report that tanshinone IIA dramatically suppresses vascular endothelial growth factor (VEGF)-promoted migration and tube formation of human EPCs, without cytotoxic effects. We also show that tanshinone IIA markedly inhibits VEGF-induced angiogenesis in the chick embryo chorioallantoic membrane (CAM) model. Importantly, tanshinone IIA significantly attenuated microvessel formation and the expression of EPC-specific markers in the in vivo Matrigel plug assay in mice. Further, we found that tanshinone IIA inhibits EPC angiogenesis through the PLC, Akt and JNK signaling pathways. Our report is the first to reveal that tanshinone IIA reduces EPC angiogenesis both in vitro and in vivo. Tanshinone IIA is a promising natural product worthy of further development for the treatment of cancer and other angiogenesis-related pathologies.
Collapse
|
62
|
Rossi S, Cassano A, Strippoli A, Schinzari G, D'Argento E, Basso M, Barone C. Prognostic and predictive factors of eribulin efficacy in heavily pretreated patients affected by metastatic breast cancer: correlation with tumor biology and previous therapies. Drugs Context 2017; 6:212506. [PMID: 29167692 PMCID: PMC5699107 DOI: 10.7573/dic.212506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 11/30/2022] Open
Abstract
Background Eribulin mesylate is currently approved in the United States and Europe for the treatment of metastatic breast cancer (MBC). Scope The objective of this retrospective study is to find specific predictive criteria related to patient or tumor characteristics in order to select patients that might benefit the most from eribulin and define the correct treatment sequence. Findings Forty-four patients with MBC who received eribulin in third or subsequent lines of therapy in a single Italian center were considered eligible. Patients were stratified by body mass index, hormonal/HER2 status, and previous therapies. Primary endpoint was progression free survival (PFS), whereas secondary endpoint was disease control rate (DCR). A longer PFS was found in patients with hormone-positive tumors (p=0.0051), in HER2-negative cases (p=0.037), and in overweight patients (p=0.0015). No difference in efficacy was observed when eribulin was administered in third or subsequent lines of therapy. Significantly longer PFS (p<0.0001) and higher DCR (p=0.035) were achieved by patients previously treated with paclitaxel-bevacizumab in comparison to those pretreated with other drug combinations or with anthracyclines. Prior treatment with nab-paclitaxel seems to have a detrimental effect on PFS (p=0.0008). Conclusion Hormone and HER2 status seems a good predictive and prognostic indicator of response to eribulin. Efficacy seems independent from the number of prior therapies, and it is not influenced by prior endocrine treatments and anthracyclines-containing regimens. On the other hand, sensitivity to a prior treatment with paclitaxel-bevacizumab might be predictive of response to eribulin.
Collapse
Affiliation(s)
- Sabrina Rossi
- Department of Oncology and Hematology, Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - Alessandra Cassano
- Department of Medical Oncology, Catholic University of Sacred Heart, Rome, Italy
| | - Antonia Strippoli
- Department of Medical Oncology, Catholic University of Sacred Heart, Rome, Italy
| | - Giovanni Schinzari
- Department of Medical Oncology, Catholic University of Sacred Heart, Rome, Italy
| | - Ettore D'Argento
- Department of Medical Oncology, Catholic University of Sacred Heart, Rome, Italy
| | - Michele Basso
- Department of Medical Oncology, Catholic University of Sacred Heart, Rome, Italy
| | - Carlo Barone
- Department of Medical Oncology, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
63
|
CCR5 Directs the Mobilization of CD11b+Gr1+Ly6Clow Polymorphonuclear Myeloid Cells from the Bone Marrow to the Blood to Support Tumor Development. Cell Rep 2017; 21:2212-2222. [DOI: 10.1016/j.celrep.2017.10.104] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 08/13/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022] Open
|
64
|
Siemann DW, Chaplin DJ, Horsman MR. Realizing the Potential of Vascular Targeted Therapy: The Rationale for Combining Vascular Disrupting Agents and Anti-Angiogenic Agents to Treat Cancer. Cancer Invest 2017; 35:519-534. [DOI: 10.1080/07357907.2017.1364745] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- D. W. Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | | - M. R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University, Denmark
| |
Collapse
|
65
|
Chen M, Lei X, Shi C, Huang M, Li X, Wu B, Li Z, Han W, Du B, Hu J, Nie Q, Mai W, Ma N, Xu N, Zhang X, Fan C, Hong A, Xia M, Luo L, Ma A, Li H, Yu Q, Chen H, Zhang D, Ye W. Pericyte-targeting prodrug overcomes tumor resistance to vascular disrupting agents. J Clin Invest 2017; 127:3689-3701. [PMID: 28846068 DOI: 10.1172/jci94258] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/11/2017] [Indexed: 01/10/2023] Open
Abstract
Blood vessels in the tumor periphery have high pericyte coverage and are resistant to vascular disrupting agents (VDAs). VDA treatment resistance leads to a viable peripheral tumor rim that contributes to treatment failure and disease recurrence. Here, we provide evidence to support a hypothesis that shifting the target of VDAs from tumor vessel endothelial cells to pericytes disrupts tumor peripheral vessels and the viable rim, circumventing VDA treatment resistance. Through chemical engineering, we developed Z-GP-DAVLBH (from the tubulin-binding VDA desacetylvinblastine monohydrazide [DAVLBH]) as a prodrug that can be selectively activated by fibroblast activation protein α (FAPα) in tumor pericytes. Z-GP-DAVLBH selectively destroys the cytoskeleton of FAPα-expressing tumor pericytes, disrupting blood vessels both within the core and around the periphery of tumors. As a result, Z-GP-DAVLBH treatment eradicated the otherwise VDA-resistant tumor rim and led to complete regression of tumors in multiple lines of xenografts without producing the drug-related toxicity that is associated with similar doses of DAVLBH. This study demonstrates that targeting tumor pericytes with an FAPα-activated VDA prodrug represents a potential vascular disruption strategy in overcoming tumor resistance to VDA treatments.
Collapse
Affiliation(s)
- Minfeng Chen
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xueping Lei
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Changzheng Shi
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Maohua Huang
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xiaobo Li
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Baojian Wu
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Zhengqiu Li
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Weili Han
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Bin Du
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jianyang Hu
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Qiulin Nie
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Weiqian Mai
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nan Ma
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nanhui Xu
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xinyi Zhang
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Chunlin Fan
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Aihua Hong
- Analytical and Testing Center, Jinan University, Guangzhou, China
| | - Minghan Xia
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liangping Luo
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ande Ma
- School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Hongsheng Li
- Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Qiang Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Heru Chen
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Wencai Ye
- College of Pharmacy, and.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| |
Collapse
|
66
|
The antiangiogenic role of the pro-inflammatory cytokine interleukin-31. Oncotarget 2017; 8:16430-16444. [PMID: 28147314 PMCID: PMC5369974 DOI: 10.18632/oncotarget.14857] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/16/2017] [Indexed: 02/06/2023] Open
Abstract
Pro-inflammatory cytokines in the tumor microenvironment are known for their ability to either inhibit or promote cancer progression. Here we evaluated the role of Interleukin-31 (IL31), a protein belonging to the pro-inflammatory IL-6 cytokine family which has been characterized in autoimmune disease, in tumorigenesis. We show that IL31 and its receptor, IL31RA, are highly expressed in various human and mouse cancer cell lines, as well as in tumor specimens from cancer patients. MC38 murine colon carcinoma cells depleted of IL31 exhibit an increase in invasive and migratory properties in vitro, effects that are reversed by supplementing the cells with exogenous IL31. In vivo, IL31-depleted MC38 tumor cells implanted to mice grow faster than control tumors. In contrast, MC38 tumor-bearing mice infused with recombinant IL31, exhibit a significant reduction in tumor growth than control mice. Furthermore, IL31 infusion reduces the number of metastatic lesions in the lungs of mice bearing 4T1 murine metastatic breast carcinoma. Lastly, injecting tumor-bearing, chemotherapy-treated mice with a long-lived IL31-IgG fusion protein reduces tumor growth, angiogenesis and pulmonary metastasis to a greater extent than when chemotherapy is used alone. The IL31 anti-tumor activity is explained, in part, by the anti-angiogenic effects demonstrated both in vitro and in vivo highlighting the potential use of IL31 as an anti-cancer drug.
Collapse
|
67
|
Koonce NA, Juratli MA, Cai C, Sarimollaoglu M, Menyaev YA, Dent J, Quick CM, Dings RPM, Nedosekin D, Zharov V, Griffin RJ. Real-time monitoring of circulating tumor cell (CTC) release after nanodrug or tumor radiotherapy using in vivo flow cytometry. Biochem Biophys Res Commun 2017; 492:507-512. [PMID: 28822765 DOI: 10.1016/j.bbrc.2017.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022]
Abstract
Noninvasive biological readouts of tumor metastatic risk and therapeutic efficacy are needed as healthcare costs rise. CTCs are the source of metastasis in distant organs that are responsible for the majority of cancer-related deaths. Here we demonstrate the acute and long-term effect of vascular disrupting therapies (high-dose radiotherapy and tumor necrosis factor-alpha (TNF)) on CTCs released from the primary tumor with a non-invasive real-time in vivo flow cytometry system. Using our innovative flow cytometry platform, we show here that radiation and nanodrug treatment can lead to short term release of CTC from the primary tumor. There was no increase in metastasis frequency or extent between control and TNF-treated mice; however, a significant reduction in lung metastasis was noted in the radiotherapy alone group. Mice treated with both TNF and radiotherapy had a slightly elevated metastatic profile between that of radiation alone and control (untreated) tumors. Possible mechanisms based on therapy specific vessel disruption and cell death are discussed. Overall, CTCs correlated with tumor progression and suggest CTC enumeration described herein may be useful in clinical management of solid tumor malignancies.
Collapse
Affiliation(s)
- Nathan A Koonce
- University of Arkansas for Medical Sciences, Department of Radiation Oncology, Little Rock, AR, USA; National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Mazen A Juratli
- University of Arkansas for Medical Sciences, Arkansas Nanomedicine Center, Little Rock, AR, USA; Frankfurt University Hospitals, Goethe-University Frankfurt/Main, Department of General and Visceral Surgery, Frankfurt/Main, Germany
| | - Chengzhong Cai
- University of Arkansas for Medical Sciences, Arkansas Nanomedicine Center, Little Rock, AR, USA; National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Mustafa Sarimollaoglu
- University of Arkansas for Medical Sciences, Arkansas Nanomedicine Center, Little Rock, AR, USA
| | - Yulian A Menyaev
- University of Arkansas for Medical Sciences, Arkansas Nanomedicine Center, Little Rock, AR, USA
| | - Judith Dent
- University of Arkansas for Medical Sciences, Department of Radiation Oncology, Little Rock, AR, USA
| | - Charles M Quick
- University of Arkansas for Medical Sciences, Department of Pathology, Little Rock, AR, USA
| | - Ruud P M Dings
- University of Arkansas for Medical Sciences, Department of Radiation Oncology, Little Rock, AR, USA
| | - Dmitry Nedosekin
- University of Arkansas for Medical Sciences, Arkansas Nanomedicine Center, Little Rock, AR, USA
| | - Vladimir Zharov
- University of Arkansas for Medical Sciences, Arkansas Nanomedicine Center, Little Rock, AR, USA.
| | - Robert J Griffin
- University of Arkansas for Medical Sciences, Department of Radiation Oncology, Little Rock, AR, USA.
| |
Collapse
|
68
|
Karagiannis GS, Pastoriza JM, Wang Y, Harney AS, Entenberg D, Pignatelli J, Sharma VP, Xue EA, Cheng E, D'Alfonso TM, Jones JG, Anampa J, Rohan TE, Sparano JA, Condeelis JS, Oktay MH. Neoadjuvant chemotherapy induces breast cancer metastasis through a TMEM-mediated mechanism. Sci Transl Med 2017; 9:eaan0026. [PMID: 28679654 PMCID: PMC5592784 DOI: 10.1126/scitranslmed.aan0026] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022]
Abstract
Breast cancer cells disseminate through TIE2/MENACalc/MENAINV-dependent cancer cell intravasation sites, called tumor microenvironment of metastasis (TMEM), which are clinically validated as prognostic markers of metastasis in breast cancer patients. Using fixed tissue and intravital imaging of a PyMT murine model and patient-derived xenografts, we show that chemotherapy increases the density and activity of TMEM sites and Mena expression and promotes distant metastasis. Moreover, in the residual breast cancers of patients treated with neoadjuvant paclitaxel after doxorubicin plus cyclophosphamide, TMEM score and its mechanistically connected MENAINV isoform expression pattern were both increased, suggesting that chemotherapy, despite decreasing tumor size, increases the risk of metastatic dissemination. Chemotherapy-induced TMEM activity and cancer cell dissemination were reversed by either administration of the TIE2 inhibitor rebastinib or knockdown of the MENA gene. Our results indicate that TMEM score increases and MENA isoform expression pattern changes with chemotherapy and can be used in predicting prometastatic changes in response to chemotherapy. Furthermore, inhibitors of TMEM function may improve clinical benefits of chemotherapy in the neoadjuvant setting or in metastatic disease.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jessica M Pastoriza
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Allison S Harney
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeanine Pignatelli
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ved P Sharma
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emily A Xue
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Timothy M D'Alfonso
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joan G Jones
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jesus Anampa
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - Thomas E Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joseph A Sparano
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY 10467, USA
| | - John S Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maja H Oktay
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pathology, Montefiore Medical Center, Bronx, NY 10467, USA
| |
Collapse
|
69
|
Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies - A review. J Adv Res 2017; 8:591-605. [PMID: 28808589 PMCID: PMC5544473 DOI: 10.1016/j.jare.2017.06.006] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/20/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023] Open
Abstract
Recent strategies for the treatment of cancer, other than just tumor cell killing have been under intensive development, such as anti-angiogenic therapeutic approach. Angiogenesis inhibition is an important strategy for the treatment of solid tumors, which basically depends on cutting off the blood supply to tumor micro-regions, resulting in pan-hypoxia and pan-necrosis within solid tumor tissues. The differential activation of angiogenesis between normal and tumor tissues makes this process an attractive strategic target for anti-tumor drug discovery. The principles of anti-angiogenic treatment for solid tumors were originally proposed in 1972, and ever since, it has become a putative target for therapies directed against solid tumors. In the early twenty first century, the FDA approved anti-angiogenic drugs, such as bevacizumab and sorafenib for the treatment of several solid tumors. Over the past two decades, researches have continued to improve the performance of anti-angiogenic drugs, describe their drug interaction potential, and uncover possible reasons for potential treatment resistance. Herein, we present an update to the pre-clinical and clinical situations of anti-angiogenic agents and discuss the most recent trends in this field.
Collapse
Affiliation(s)
- Ahmed M Al-Abd
- Pharmacology Department, Medical Division, National Research Centre, Dokki, Giza, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Biomedical Research Section, Nawah Scientific, Mokkatam, Cairo, Egypt
| | - Abdulmohsin J Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Thikryat A Neamatallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61519, Egypt
| |
Collapse
|
70
|
The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions. Stem Cells Int 2017; 2017:4680612. [PMID: 28607561 PMCID: PMC5451769 DOI: 10.1155/2017/4680612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/02/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023] Open
Abstract
Background Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN). Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Results Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.
Collapse
|
71
|
Shi C, Liu D, Xiao Z, Zhang D, Liu G, Liu G, Chen H, Luo L. Monitoring Tumor Response to Antivascular Therapy Using Non-Contrast Intravoxel Incoherent Motion Diffusion-Weighted MRI. Cancer Res 2017; 77:3491-3501. [PMID: 28487383 DOI: 10.1158/0008-5472.can-16-2499] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 02/15/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022]
Abstract
Antivascular therapy is a promising approach to the treatment of non-small cell lung cancer (NSCLC), where an imaging modality capable of longitudinally monitoring treatment response could provide early prediction of the outcome. In this study, we sought to investigate the feasibility of using intravoxel incoherent motion (IVIM) diffusion MRI to quantitatively assess the efficacy of the treatments of a vascular-disrupting agent CA4P or its combination with bevacizumab on experimental NSCLC tumors. CA4P caused a strong but reversible effect on tumor vasculature; all perfusion-related parameters-D*, f, fD*, and Ktrans-initially showed a decrease of 30% to 60% at 2 hours and then fully recovered to baseline on day 2 for CA4P treatment or on days 4 to 8 for CA4P + bevacizumab treatment; the diffusion coefficient in tumors decreased initially at 2 hours and then increased from day 2 to day 8. We observed a good correlation between IVIM parameters and dynamic contrast-enhanced MRI (DCE-MRI; Ktrans). We also found that the relative change in f and fD* at 2 hours correlated well with changes in tumor volume on day 8. In conclusion, our results suggest that IVIM is a promising alternative to DCE-MRI for the assessment of the change in tumor perfusion as a result of antivascular agents and can be used to predict the efficacy of antivascular therapies without the need for contrast media injection. Cancer Res; 77(13); 3491-501. ©2017 AACR.
Collapse
Affiliation(s)
- Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dexiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Zeyu Xiao
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dong Zhang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanfu Liu
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland.,The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hanwei Chen
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China. .,Department of Radiology, Panyu Central Hospital, Guangzhou, China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
72
|
Chase DM, Chaplin DJ, Monk BJ. The development and use of vascular targeted therapy in ovarian cancer. Gynecol Oncol 2017; 145:393-406. [DOI: 10.1016/j.ygyno.2017.01.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 02/08/2023]
|
73
|
Griffin RJ, Dings RP, Makhoul I. Further rationale for optimal combined modality treatments. Oncotarget 2017; 8:25831-25832. [PMID: 28415727 PMCID: PMC5432217 DOI: 10.18632/oncotarget.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
74
|
Woo IS, Jung YH. Metronomic chemotherapy in metastatic colorectal cancer. Cancer Lett 2017; 400:319-324. [PMID: 28274890 DOI: 10.1016/j.canlet.2017.02.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Overall survival and quality of life of patients with metastatic colorectal cancer (mCRC) have improved due to the development of standard systemic treatment. However, many patients are still suffering from the eventual progression of cancer, treatment-related toxicities, and the economic burden of new drugs. Salvage or maintenance therapy, which consistently controls or stabilizes tumor progression without debilitating quality of life, is required. Recently, metronomic capecitabine maintenance therapy after disease control using conventional chemotherapy with maximal tolerated doses has demonstrated beneficial results in a phase III trial. Metronomic chemotherapy has been known to control tumors through antiangiogenesis and immunomodulation as well as a direct effect on tumor-initiating cells. It has the characteristics of being minimally toxic, inexpensive, and durable for maintaining disease stabilization. Therefore, patients with mCRC, who tend to be elderly and frail and have been previously treated, might be suitable for metronomic therapeutic strategies. Furthermore, antiangiogenic therapy has been an important component in treating mCRC, but the schedules and doses of metronomic chemotherapy have not yet been established. Here we review translational and clinical research on metronomic chemotherapy in colorectal cancer (CRC).
Collapse
Affiliation(s)
- In Sook Woo
- Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul, 07345, Republic of Korea.
| | - Yun Hwa Jung
- Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul, 07345, Republic of Korea
| |
Collapse
|
75
|
Metronomic chemotherapy and immunotherapy in cancer treatment. Cancer Lett 2017; 400:282-292. [PMID: 28189534 DOI: 10.1016/j.canlet.2017.01.040] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
Systemic chemotherapy given at maximum tolerated doses (MTD) has been the mainstay of cancer treatment for more than half a century. In some chemosensitive diseases such as hematologic malignancies and solid tumors, MTD has led to complete remission and even cure. The combination of maintenance therapy and standard MTD also can generate good disease control; however, resistance to chemotherapy and disease metastasis still remain major obstacles to successful cancer treatment in the majority of advanced tumors. Metronomic chemotherapy, defined as frequent administration of chemotherapeutic agents at a non-toxic dose without extended rest periods, was originally designed to overcome drug resistance by shifting the therapeutic target from tumor cells to tumor endothelial cells. Metronomic chemotherapy also exerts anti-tumor effects on the immune system (immunomodulation) and tumor cells. The goal of immunotherapy is to enhance host anti-tumor immunities. Adding immunomodulators such as metronomic chemotherapy to immunotherapy can improve the clinical outcomes in a synergistic manner. Here, we review the anti-tumor mechanisms of metronomic chemotherapy and the preliminary research addressing the combination of immunotherapy and metronomic chemotherapy for cancer treatment in animal models and in clinical setting.
Collapse
|
76
|
Abstract
Metronomic dosing of chemotherapy-defined as frequent administration at lower doses-has been shown to be more efficacious than maximum tolerated dose treatment in preclinical studies, and is currently being tested in the clinic. Although multiple mechanisms of benefit from metronomic chemotherapy have been proposed, how these mechanisms are related to one another and which one is dominant for a given tumor-drug combination is not known. To this end, we have developed a mathematical model that incorporates various proposed mechanisms, and report here that improved function of tumor vessels is a key determinant of benefit from metronomic chemotherapy. In our analysis, we used multiple dosage schedules and incorporated interactions among cancer cells, stem-like cancer cells, immune cells, and the tumor vasculature. We found that metronomic chemotherapy induces functional normalization of tumor blood vessels, resulting in improved tumor perfusion. Improved perfusion alleviates hypoxia, which reprograms the immunosuppressive tumor microenvironment toward immunostimulation and improves drug delivery and therapeutic outcomes. Indeed, in our model, improved vessel function enhanced the delivery of oxygen and drugs, increased the number of effector immune cells, and decreased the number of regulatory T cells, which in turn killed a larger number of cancer cells, including cancer stem-like cells. Vessel function was further improved owing to decompression of intratumoral vessels as a result of increased killing of cancer cells, setting up a positive feedback loop. Our model enables evaluation of the relative importance of these mechanisms, and suggests guidelines for the optimal use of metronomic therapy.
Collapse
|
77
|
Raphael J, Chan K, Karim S, Kerbel R, Lam H, Santos KD, Saluja R, Verma S. Antiangiogenic Therapy in Advanced Non-small-cell Lung Cancer: A Meta-analysis of Phase III Randomized Trials. Clin Lung Cancer 2017; 18:345-353.e5. [PMID: 28188101 DOI: 10.1016/j.cllc.2017.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022]
Abstract
We conducted a meta-analysis to evaluate the efficacy of adding any antiangiogenic therapy (AT) to the standard of care in advanced non-small-cell lung cancer (NSCLC). The electronic databases Ovid PubMed, Cochrane Central Register of Controlled Trials, and Embase were searched to identify eligible trials. We included all phase III randomized trials with any line and type of treatment, histology. and AT dose. Pooled hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS), and pooled odds ratio (OR) for overall response rates (RR) were calculated. We divided the population into 2 subgroups based on the bevacizumab dose. Data of 19,098 patients from 25 phase III trials were analyzed. Compared with the standard of care, the addition of AT did not prolong OS (HR 0.98; 95% confidence interval [CI], 0.96-1.00; P = .1 and HR 0.97; 95% CI, 0.94-1.00; P = .06 for groups 1 and 2, respectively). However, there was a significant improvement in PFS with the addition of AT (HR 0.85; 95% CI, 0.79-0.91; P < .00001 and HR 0.81; 95% CI, 0.75-0.88; P < .00001 for groups 1 and 2, respectively) and overall RR (OR 1.61; 95% CI, 1.30-2.01; P < .0001 and OR 1.72; 95% CI, 1.39-2.14; P < .00001 for groups 1 and 2, respectively). This is the first meta-analysis including only all phase III trials with AT in NSCLC showing no significant effect on OS and an improvement in PFS and RR only. The role of AT in advanced NSCLC is still questionable; strong validated biomarkers are eagerly needed to predict which subgroup might benefit the most from such therapy.
Collapse
Affiliation(s)
- Jacques Raphael
- Medical Oncology Division, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada.
| | - Kelvin Chan
- Medical Oncology Division, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Safiya Karim
- Medical Oncology Division, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Robert Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Henry Lam
- Medical Oncology Division, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Keemo Delos Santos
- Medical Oncology Division, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Ronak Saluja
- Medical Oncology Division, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Sunil Verma
- Medical Oncology Division, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada; Department of Oncology, Tom Baker Cancer Centre, Calgary, Alberta, Canada
| |
Collapse
|
78
|
Lupo G, Caporarello N, Olivieri M, Cristaldi M, Motta C, Bramanti V, Avola R, Salmeri M, Nicoletti F, Anfuso CD. Anti-angiogenic Therapy in Cancer: Downsides and New Pivots for Precision Medicine. Front Pharmacol 2017; 7:519. [PMID: 28111549 PMCID: PMC5216034 DOI: 10.3389/fphar.2016.00519] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Primary solid tumors originate close to pre-existing tissue vasculature, initially growing along such tissue blood vessels, and this phenomenon is important for the metastatic potential which frequently occurs in highly vascularized tissues. Unfortunately, preclinic and clinic anti-angiogenic approaches have not been very successful, and multiple factors have been found to contribute to toxicity and tumor resistance. Moreover, tumors can highlight intrinsic or acquired resistances, or show adaptation to the VEGF-targeted therapies. Furthermore, different mechanisms of vascularization, activation of alternative signaling pathways, and increased tumor aggressiveness make this context even more complex. On the other hand, it has to be considered that the transitional restoration of normal, not fenestrated, microvessels allows the drug to reach the tumor and act with the maximum efficiency. However, these effects are time-limited and different, depending on the various types of cancer, and clearly define a specific “normalization window.” So, new horizons in the therapeutic approaches consist on the treatment of the tumor with pro- (instead of anti-) angiogenic therapies, which could strengthen a network of well-structured blood vessels that facilitate the transport of the drug.
Collapse
Affiliation(s)
- Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Nunzia Caporarello
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Melania Olivieri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Martina Cristaldi
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Carla Motta
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Vincenzo Bramanti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Roberto Avola
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Mario Salmeri
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| | - Carmelina D Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania Catania, Italy
| |
Collapse
|
79
|
Khan MA, Srivastava SK, Bhardwaj A, Singh S, Arora S, Zubair H, Carter JE, Singh AP. Gemcitabine triggers angiogenesis-promoting molecular signals in pancreatic cancer cells: Therapeutic implications. Oncotarget 2016; 6:39140-50. [PMID: 25970774 PMCID: PMC4770762 DOI: 10.18632/oncotarget.3784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
Pancreatic tumor microenvironment (TME) is characterized by poor tumor-vasculature and extensive desmoplasia that together contribute to poor response to chemotherapy. It was recently shown that targeting of TME to inhibit desmoplasiatic reaction in a preclinical model resulted in increased microvessel-density and intratumoral drug concentration, leading to improved therapeutic response. This approach; however, failed to generate a favorable response in clinical trial. In that regard, we have previously demonstrated a role of gemcitabine-induced CXCR4 signaling as a counter-defense mechanism, which also promoted invasiveness of pancreatic cancer (PC) cells. Here, we investigated the effect of gemcitabine on endothelial cell phenotype. Gemcitabine-treatment of human-umbilical-vein-endothelial-cells (HUVECs) did not promote the growth of HUVECs; however, it was induced when treated with conditioned media from gemcitabine-treated (Gem-CM) PC cells due to increased cell-cycle progression and apoptotic-resistance. Moreover, treatment of HUVECs with Gem-CM resulted in capillary-like structure (CLS) formation and promoted their ability to migrate and invade through extracellular-matrix. Gemcitabine-treatment of PC cells induced expression of various growth factors/cytokines, including IL-8, which exhibited greatest upregulation. Further, IL-8 depletion in Gem-CM diminished its potency to promote angiogenic phenotypes. Together, these findings suggest an indirect effect of gemcitabine on angiogenesis, which, in light of our previous observations, may hold important clinical significance.
Collapse
Affiliation(s)
- Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sanjeev K Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
80
|
Garon EB, Neidhart JD, Gabrail NY, de Oliveira MR, Balkissoon J, Kabbinavar F. A randomized Phase II trial of the tumor vascular disrupting agent CA4P (fosbretabulin tromethamine) with carboplatin, paclitaxel, and bevacizumab in advanced nonsquamous non-small-cell lung cancer. Onco Targets Ther 2016; 9:7275-7283. [PMID: 27942221 PMCID: PMC5138047 DOI: 10.2147/ott.s109186] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Combretastatin A4-phosphate, fosbretabulin tromethamine (CA4P) is a vascular disrupting agent that targets tumor vasculature. This study evaluated the safety of CA4P when combined with carboplatin, paclitaxel, and bevacizumab in chemotherapy-naïve subjects with advanced nonsquamous, non-small-cell lung cancer. Methods Adult subjects with confirmed American Joint Committee on Cancer six stage IIIB/IV non-small-cell lung cancer and an Eastern Cooperative Oncology Group performance score of 0 or 1 were randomized to receive six cycles (treatment phase) of paclitaxel (200 mg/m2), carboplatin (area under the concentration versus time curve 6), and bevacizumab (15 mg/kg) on day 1 and repeated every 21 days, or this regimen plus CA4P (60 mg/m2) on days 7, 14, and 21 of each cycle. Subjects could then receive additional maintenance treatment (excluding carboplatin and paclitaxel) for up to 1 year. Results Sixty-three subjects were randomized, 31 to control and 32 to CA4P, and 19 (61.3%) and 17 (53.1%), respectively, completed the treatment phase. Exposure to study treatment and dose modifications were comparable between the randomized groups. The overall incidence of treatment-emergent adverse events was similar between groups, with increased neutropenia, leukopenia, and hypertension in the CA4P group. Deaths, serious adverse events, and early discontinuations from treatment were comparable between the randomized treatment groups. The overall tumor response rate with CA4P was 50% versus 32% in controls. Overall and progression-free survival rates were comparable between the groups. Conclusion CA4P plus carboplatin, paclitaxel, and bevacizumab appears to be a tolerable regimen with an acceptable toxicity profile in subjects with advanced non-small-cell lung cancer.
Collapse
Affiliation(s)
- Edward B Garon
- Department of Medicine; Department of Hematology and Oncology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| | | | | | | | - Jai Balkissoon
- Global Product Development and Immuno-Oncology, PPD, Wilmington, NC, USA
| | - Fairooz Kabbinavar
- Department of Medicine; Department of Hematology and Oncology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
81
|
From 2000 to 2016: Which Second-Line Treatment in Advanced Non-Small Cell Lung Cancer? Curr Treat Options Oncol 2016; 17:59. [DOI: 10.1007/s11864-016-0437-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
82
|
Shaked Y, Pham E, Hariharan S, Magidey K, Beyar-Katz O, Xu P, Man S, Wu FTH, Miller V, Andrews D, Kerbel RS. Evidence Implicating Immunological Host Effects in the Efficacy of Metronomic Low-Dose Chemotherapy. Cancer Res 2016; 76:5983-5993. [PMID: 27569209 DOI: 10.1158/0008-5472.can-16-0136] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022]
Abstract
Conventional chemotherapy drugs administered at a maximum tolerated dose (MTD) remains the backbone for treating most cancers. Low-dose metronomic (LDM) chemotherapy, which utilizes lower, less toxic, doses given on a close regular basis over prolonged periods, is an alternative and better tolerated potential strategy to improve chemotherapy. LDM chemotherapy has been evaluated preclinically and clinically and has shown therapeutic benefit, in both early and advanced stage metastatic disease, especially when used as a maintenance therapy. However, knowledge about the antitumor mechanisms by which LDM chemotherapy acts remain limited. Here we characterized the effects of LDM and MTD capecitabine therapy on tumor and host cells using high-throughput systems approaches involving mass spectrometry flow cytometry and automated cell imaging followed by in vivo analyses of such therapies. An increase in myeloid and T regulatory cells and a decrease in NK and T cytotoxic cells were found in MTD-capecitabine-treated tumors compared with LDM-capecitbine-treated tumors. Plasma from MTD capecitabine-treated mice induced a more tumorigenic and metastatic profile in both breast and colon carcinoma cells than plasma from mice treated with LDM capecitabine. These results correlated, in part, with in vivo studies using models of human or mouse advanced metastatic disease, where the therapeutic advantage of MTD capecitabine was limited despite a substantial initial antitumor activity found in the primary tumor setting. Overall these results implicate a possible contribution of immunologic host effects in accounting for the therapeutic limitations of MTD compared with LDM capecitabine. Cancer Res; 76(20); 5983-93. ©2016 AACR.
Collapse
Affiliation(s)
- Yuval Shaked
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel. Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | - Elizabeth Pham
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Santosh Hariharan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ksenia Magidey
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ofrat Beyar-Katz
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Florence T H Wu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Valeria Miller
- Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - David Andrews
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada. Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Robert S Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
83
|
Timaner M, Bril R, Kaidar-Person O, Rachman-Tzemah C, Alishekevitz D, Kotsofruk R, Miller V, Nevelsky A, Daniel S, Raviv Z, Rotenberg SA, Shaked Y. Dequalinium blocks macrophage-induced metastasis following local radiation. Oncotarget 2016; 6:27537-54. [PMID: 26348470 PMCID: PMC4695007 DOI: 10.18632/oncotarget.4826] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/24/2015] [Indexed: 12/30/2022] Open
Abstract
A major therapeutic obstacle in clinical oncology is intrinsic or acquired resistance to therapy, leading to subsequent relapse. We have previously shown that systemic administration of different cytotoxic drugs can induce a host response that contributes to tumor angiogenesis, regrowth and metastasis. Here we characterize the host response to a single dose of local radiation, and its contribution to tumor progression and metastasis. We show that plasma from locally irradiated mice increases the migratory and invasive properties of colon carcinoma cells. Furthermore, locally irradiated mice intravenously injected with CT26 colon carcinoma cells succumb to pulmonary metastasis earlier than their respective controls. Consequently, orthotopically implanted SW480 human colon carcinoma cells in mice that underwent radiation, exhibited increased metastasis to the lungs and liver compared to their control tumors. The irradiated tumors exhibited an increase in the colonization of macrophages compared to their respective controls; and macrophage depletion in irradiated tumor-bearing mice reduces the number of metastatic lesions. Finally, the anti-tumor agent, dequalinium-14, in addition to its anti-tumor effect, reduces macrophage motility, inhibits macrophage infiltration of irradiated tumors and reduces the extent of metastasis in locally irradiated mice. Overall, this study demonstrates the adverse effects of local radiation on the host that result in macrophage-induced metastasis.
Collapse
Affiliation(s)
- Michael Timaner
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Rotem Bril
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Chen Rachman-Tzemah
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Dror Alishekevitz
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ruslana Kotsofruk
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Valeria Miller
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | - Shahar Daniel
- Department of Radio-Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Ziv Raviv
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Susan A Rotenberg
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, Flushing, NY, USA
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
84
|
Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164:204-25. [PMID: 27288725 DOI: 10.1016/j.pharmthera.2016.06.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.
Collapse
|
85
|
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vessels, has been validated as a target in several tumour types through randomised trials, incorporating vascular endothelial growth factor (VEGF) pathway inhibitors into the therapeutic armoury. Although some tumours such as renal cell carcinoma, ovarian and cervical cancers, and pancreatic neuroendocrine tumours are sensitive to these drugs, others such as prostate cancer, pancreatic adenocarcinoma, and melanoma are resistant. Even when drugs have yielded significant results, improvements in progression-free survival, and, in some cases, overall survival, are modest. Thus, a crucial issue in development of these drugs is the search for predictive biomarkers-tests that predict which patients will, and will not, benefit before initiation of therapy. Development of biomarkers is important because of the need to balance efficacy, toxicity, and cost. Novel combinations of these drugs with other antiangiogenics or other classes of drugs are being developed, and the appreciation that these drugs have immunomodulatory and other modes of action will lead to combination regimens that capitalise on these newly understood mechanisms.
Collapse
Affiliation(s)
- Gordon C Jayson
- Institute of Cancer Sciences and Christie Hospital, University of Manchester, Manchester, UK.
| | - Robert Kerbel
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Lee M Ellis
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adrian L Harris
- Department of Medical Oncology, Churchill Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
86
|
Nguyen L, Fifis T, Christophi C. Vascular disruptive agent OXi4503 and anti-angiogenic agent Sunitinib combination treatment prolong survival of mice with CRC liver metastasis. BMC Cancer 2016; 16:533. [PMID: 27460820 PMCID: PMC4962549 DOI: 10.1186/s12885-016-2568-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/14/2016] [Indexed: 11/29/2022] Open
Abstract
Background Preclinical research indicate that vascular disrupting agent (VDA) treatment induces extensive tumor death but also a systemic mobilization of bone marrow derived cells including endothelial progenitor cells (EPC) leading to revascularization and renewed growth within the residual tumor. This study investigates if combination of VDA with the anti-angiogenic agent Sunitinib increases the treatment efficacy in a colorectal liver metastases mouse model. Methods CBA mice with established liver metastases were given a single dose of OXi4503 at day 16 post tumor induction, a daily dose of Sunitinib starting at day 14 or day 16 post tumor induction or a combination of Sunitinib given daily from day 14 or day 16 post tumor induction in combination with a single dose of OXi4503 at day 16. Treatment was terminated at day 21 post tumor induction and its effects were assessed using stereological and immunohistochemical techniques. Long term effects were assessed in a survival study. Results Combination with long (7 day) Sunitinib treatment lead to liver toxicity but this was ameliorated in the shorter (5 day) treatment without significantly altering the effects on tumor reduction. Combination treatment resulted in significant reduction of viable tumor, reduction in tumor vasculature, reduction in tumor proliferation, increase in tumor apoptosis and prolonged mouse survival compared to control and single arm treatments. Complete tumor eradication was not achieved. Redistribution of E-cadherin and strong up regulation of ZEB1 and Vimentin were observed in the surviving tumor; indicative of epithelial to mesenchymal transition (EMT), a mechanism that could contribute to tumor resistance. Conclusions Combination treatment significantly reduces viable tumor and prolongs animal survival. EMT in the surviving tumor may prevent total tumor eradication and could provide novel targets for a more lasting treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2568-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Linh Nguyen
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| | - Theodora Fifis
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia.
| | - Christopher Christophi
- Department of Surgery, University of Melbourne, Austin Health, Lance Townsend Building Level 8, Studley Rd, Heidelberg, VIC, 3084, Australia
| |
Collapse
|
87
|
Xia X, Yu Y, Zhang L, Ma Y, Wang H. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression. Mol Med Rep 2016; 14:2016-24. [PMID: 27432753 PMCID: PMC4991734 DOI: 10.3892/mmr.2016.5491] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 06/15/2016] [Indexed: 11/28/2022] Open
Abstract
Endothelial injury is a risk factor for atherosclerosis. Endothelial progenitor cell (EPC) proliferation contributes to vascular injury repair. Overexpression of inhibitor of DNA binding 1 (Id1) significantly promotes EPC proliferation; however, the underlying molecular mechanism remains to be fully elucidated. The present study investigated the role of Id1 in cell cycle regulation of EPCs, which is closely associated with proliferation. Overexpression of Id1 increased the proportion of EPCs in the S/G2M phase and significantly increased cyclin D1 expression levels, while knockdown of Id1 arrested the cell cycle progression of EPCs in the G1 phase and inhibited cyclin D1 expression levels. In addition, it was demonstrated that Id1 upregulated wingless-type mouse mammary tumor virus integration site family member 2 (Wnt2) expression levels and promoted β-catenin accumulation and nuclear translocation. Furthermore, Wnt2 knockdown counteracted the effects of Id1 on cell cycle progression of EPCs. In conclusion, the results of the present study indicate that Id1 promoted Wnt2 expression, which accelerated cell cycle progression from G1 to S phase. This suggests that Id1 may promote cell cycle progression of EPCs, and that Wnt2 may be important in Id1 regulation of the cell cycle of EPCs.
Collapse
Affiliation(s)
- Xi Xia
- Postgraduate Department, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yang Yu
- Department of Cardiology, Institute of Cardiovascular Science of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Li Zhang
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| | - Yang Ma
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| | - Hong Wang
- Department of Geriatrics, Kunming General Hospital of Chengdu Military Area, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
88
|
Prisco AR, Hoffmann BR, Kaczorowski CC, McDermott-Roe C, Stodola TJ, Exner EC, Greene AS. Tumor Necrosis Factor α Regulates Endothelial Progenitor Cell Migration via CADM1 and NF-kB. Stem Cells 2016; 34:1922-33. [PMID: 26867147 PMCID: PMC4931961 DOI: 10.1002/stem.2339] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023]
Abstract
Shortly after the discovery of endothelial progenitor cells (EPCs) in 1997, many clinical trials were conducted using EPCs as a cellular based therapy with the goal of restoring damaged organ function by inducing growth of new blood vessels (angiogenesis). Results were disappointing, largely because the cellular and molecular mechanisms of EPC-induced angiogenesis were not clearly understood. Following injection, EPCs must migrate to the target tissue and engraft prior to induction of angiogenesis. In this study EPC migration was investigated in response to tumor necrosis factor α (TNFα), a pro-inflammatory cytokine, to test the hypothesis that organ damage observed in ischemic diseases induces an inflammatory signal that is important for EPC homing. In this study, EPC migration and incorporation were modeled in vitro using a coculture assay where TNFα treated EPCs were tracked while migrating toward vessel-like structures. It was found that TNFα treatment of EPCs increased migration and incorporation into vessel-like structures. Using a combination of genomic and proteomic approaches, NF-kB mediated upregulation of CADM1 was identified as a mechanism of TNFα induced migration. Inhibition of NF-kB or CADM1 significantly decreased migration of EPCs in vitro suggesting a role for TNFα signaling in EPC homing during tissue repair. Stem Cells 2016;34:1922-1933.
Collapse
Affiliation(s)
- Anthony R. Prisco
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
| | - Brian R. Hoffmann
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
- Medical College of Wisconsin, Department of Medicine, Division of Cardiology, Cardiovascular Center, Milwaukee, WI
| | - Catherine C. Kaczorowski
- University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN
| | - Chris McDermott-Roe
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Human and Molecular Genetics Center, Milwaukee, WI
| | - Timothy J. Stodola
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
| | - Eric C. Exner
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
| | - Andrew S. Greene
- Medical College of Wisconsin, Department of Physiology, Milwaukee, WI
- Medical College of Wisconsin, Biotechnology and Bioengineering Center, Milwaukee, WI
| |
Collapse
|
89
|
Pérez-Pérez MJ, Priego EM, Bueno O, Martins MS, Canela MD, Liekens S. Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An Approach to Targeting Tumor Growth. J Med Chem 2016; 59:8685-8711. [DOI: 10.1021/acs.jmedchem.6b00463] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Eva-María Priego
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Oskía Bueno
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | - María-Dolores Canela
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Sandra Liekens
- Rega
Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
90
|
Beyar-Katz O, Magidey K, Ben-Tsedek N, Alishekevitz D, Timaner M, Miller V, Lindzen M, Yarden Y, Avivi I, Shaked Y. Bortezomib-induced pro-inflammatory macrophages as a potential factor limiting anti-tumour efficacy. J Pathol 2016; 239:262-73. [DOI: 10.1002/path.4723] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Ofrat Beyar-Katz
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa Israel
- Department of Haematology and BMT; Rambam Health Care Campus; Haifa Israel
| | - Ksenia Magidey
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa Israel
| | - Neta Ben-Tsedek
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa Israel
| | - Dror Alishekevitz
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa Israel
| | - Michael Timaner
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa Israel
| | - Valeria Miller
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa Israel
| | - Moshit Lindzen
- Department of Biological Regulation; Weizmann Institute of Science; Rehovot Israel
| | - Yosef Yarden
- Department of Biological Regulation; Weizmann Institute of Science; Rehovot Israel
| | - Irit Avivi
- Department of Haematology and BMT; Rambam Health Care Campus; Haifa Israel
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
91
|
Shaked Y. Balancing efficacy of and host immune responses to cancer therapy: the yin and yang effects. Nat Rev Clin Oncol 2016; 13:611-26. [PMID: 27118493 DOI: 10.1038/nrclinonc.2016.57] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Local and systemic treatments for cancer include surgery, radiation, chemotherapy, hormonal therapy, molecularly targeted therapies, antiangiogenic therapy, and immunotherapy. Many of these therapies can be curative in patients with early stage disease, but much less frequently is this the case when they are used to treat advanced-stage metastatic disease. In the latter setting, innate and/or acquired resistance are among the reasons for reduced responsiveness or nonresponsiveness to therapy, or for tumour relapse after an initial response. Most studies of resistance or reduced responsiveness focus on 'driver' genetic (or epigenetic) changes in the tumour-cell population. Several studies have highlighted the contribution of therapy-induced physiological changes in host tissues and cells that can reduce or even nullify the desired antitumour effects of therapy. These unwanted host effects can promote tumour-cell proliferation (repopulation) and even malignant aggressiveness. These effects occur as a result of systemic release of numerous cytokines, and mobilization of various host accessory cells, which can invade the treated tumour microenvironment. In short, the desired tumour-targeting effects of therapy (the 'yin') can be offset by a reactive host response (the 'yang'); proactively preventing or actively suppressing the latter represents a possible new approach to improving the efficacy of both local and systemic cancer therapies.
Collapse
Affiliation(s)
- Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 1 Efron St. Bat Galim, Haifa 31096, Israel
| |
Collapse
|
92
|
Liang W, Ni Y, Chen F. Tumor resistance to vascular disrupting agents: mechanisms, imaging, and solutions. Oncotarget 2016; 7:15444-59. [PMID: 26812886 PMCID: PMC4941252 DOI: 10.18632/oncotarget.6999] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/14/2016] [Indexed: 01/04/2023] Open
Abstract
The emergence of vascular disrupting agents (VDAs) is a significant advance in the treatment of solid tumors. VDAs induce rapid and selective shutdown of tumor blood flow resulting in massive necrosis. However, a viable marginal tumor rim always remains after VDA treatment and is a major cause of recurrence. In this review, we discuss the mechanisms involved in the resistance of solid tumors to VDAs. Hypoxia, tumor-associated macrophages, and bone marrow-derived circulating endothelial progenitor cells all may contribute to resistance. Resistance can be monitored using magnetic resonance imaging markers. The various solutions proposed to manage tumor resistance to VDAs emphasize combining these agents with other approaches including antiangiogenic agents, chemotherapy, radiotherapy, radioimmunotherapy, and sequential dual-targeting internal radiotherapy.
Collapse
Affiliation(s)
- Wenjie Liang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yicheng Ni
- Radiology Section, University Hospitals, University of Leuven, Leuven, Belgium
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
93
|
Role of the tumor stroma in resistance to anti-angiogenic therapy. Drug Resist Updat 2016; 25:26-37. [DOI: 10.1016/j.drup.2016.02.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
|
94
|
Timaner M, Beyar-Katz O, Shaked Y. Analysis of the Stromal Cellular Components of the Solid Tumor Microenvironment Using Flow Cytometry. ACTA ACUST UNITED AC 2016; 70:19.18.1-19.18.12. [PMID: 26930555 DOI: 10.1002/0471143030.cb1918s70] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment consists of a variety of cell types. The contribution of each cell type to the tumor is an emerging subject in the field of cancer research. Here, we describe protocols for dissociating tumor tissues and Matrigel plugs into single cells for further analysis by flow cytometry. These protocols can be used for evaluating the cellular component of solid tumors from human or mouse origin or Matrigel plugs implanted in mice. The protocols describe the dissociation of tumor tissue with or without dissociation automatic devices. Subsequently, the use of flow cytometry for immunophenotypic analysis of host cells found in the tumor microenvironment, including myeloid derived suppressor cells, endothelial cells, and macrophages is provided. These methods can be used to broaden our understanding of the cross-talk between tumor and host cells in the tumor microenvironment. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Michael Timaner
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ofrat Beyar-Katz
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
95
|
Tiram G, Segal E, Krivitsky A, Shreberk-Hassidim R, Ferber S, Ofek P, Udagawa T, Edry L, Shomron N, Roniger M, Kerem B, Shaked Y, Aviel-Ronen S, Barshack I, Calderón M, Haag R, Satchi-Fainaro R. Identification of Dormancy-Associated MicroRNAs for the Design of Osteosarcoma-Targeted Dendritic Polyglycerol Nanopolyplexes. ACS NANO 2016; 10:2028-45. [PMID: 26815014 DOI: 10.1021/acsnano.5b06189] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The presence of dormant, microscopic cancerous lesions poses a major obstacle for the treatment of metastatic and recurrent cancers. While it is well-established that microRNAs play a major role in tumorigenesis, their involvement in tumor dormancy has yet to be fully elucidated. We established and comprehensively characterized pairs of dormant and fast-growing human osteosarcoma models. Using these pairs of mouse tumor models, we identified three novel regulators of osteosarcoma dormancy: miR-34a, miR-93, and miR-200c. This report shows that loss of these microRNAs occurs during the switch from dormant avascular into fast-growing angiogenic phenotype. We validated their downregulation in patients' tumor samples compared to normal bone, making them attractive candidates for osteosarcoma therapy. Successful delivery of miRNAs is a challenge; hence, we synthesized an aminated polyglycerol dendritic nanocarrier, dPG-NH2, and designed dPG-NH2-microRNA polyplexes to target cancer. Reconstitution of these microRNAs using dPG-NH2 polyplexes into Saos-2 and MG-63 cells, which generate fast-growing osteosarcomas, reduced the levels of their target genes, MET proto-oncogene, hypoxia-inducible factor 1α, and moesin, critical to cancer angiogenesis and cancer cells' migration. We further demonstrate that these microRNAs attenuate the angiogenic capabilities of fast-growing osteosarcomas in vitro and in vivo. Treatment with each of these microRNAs using dPG-NH2 significantly prolonged the dormancy period of fast-growing osteosarcomas in vivo. Taken together, these findings suggest that nanocarrier-mediated delivery of microRNAs involved in osteosarcoma tumor-host interactions can induce a dormant-like state.
Collapse
Affiliation(s)
- Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Ehud Segal
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Rony Shreberk-Hassidim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Shiran Ferber
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Taturo Udagawa
- Vertex Pharmaceuticals , Cambridge, Massachusetts 02142, United States
| | - Liat Edry
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell & Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Maayan Roniger
- Department of Genetics, The Life Sciences Institute, Edmond J. Safra Campus, The Hebrew University , Jerusalem 91905, Israel
| | - Batsheva Kerem
- Department of Genetics, The Life Sciences Institute, Edmond J. Safra Campus, The Hebrew University , Jerusalem 91905, Israel
| | - Yuval Shaked
- Department of Molecular Pharmacology, Rappaport Faculty of Medicine, Technion, Israel Institute of Technology , Haifa 32000, Israel
| | - Sarit Aviel-Ronen
- Department of Pathology, Sheba Medical Center , Tel Hashomer 52621, Israel
- Talpiot Medical Leadership Program, Sheba Medical Center , Tel Hashomer 52621, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center , Tel Hashomer 52621, Israel
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Marcelo Calderón
- Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin 14195, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin , Berlin 14195, Germany
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| |
Collapse
|
96
|
Flamini V, Jiang WG, Lane J, Cui YX. Significance and therapeutic implications of endothelial progenitor cells in angiogenic-mediated tumour metastasis. Crit Rev Oncol Hematol 2016; 100:177-89. [PMID: 26917455 DOI: 10.1016/j.critrevonc.2016.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/30/2015] [Accepted: 02/15/2016] [Indexed: 01/16/2023] Open
Abstract
Cancer conveys profound social and economic consequences throughout the world. Metastasis is responsible for approximately 90% of cancer-associated mortality and, when it occurs, cancer becomes almost incurable. During metastatic dissemination, cancer cells pass through a series of complex steps including the establishment of tumour-associated angiogenesis. The human endothelial progenitor cells (hEPCs) are a cell population derived from the bone marrow which are required for endothelial tubulogenesis and neovascularization. They also express abundant inflammatory cytokines and paracrine angiogenic factors. Clinically hEPCs are highly correlated with relapse, disease progression, metastasis and treatment response in malignancies such as breast cancer, ovarian cancer and non-small-cell lung carcinoma. It has become evident that the hEPCs are involved in the angiogenesis-required progression and metastasis of tumours. However, it is not clear in what way the signalling pathways, controlling the normal cellular function of human BM-derived EPCs, are hijacked by aggressive tumour cells to facilitate tumour metastasis. In addition, the actual roles of hEPCs in tumour angiogenesis-mediated metastasis are not well characterised. In this paper we reviewed the clinical relevance of the hEPCs with cancer diagnosis, progression and prognosis. We further summarised the effects of tumour microenvironment on the hEPCs and underlying mechanisms. We also hypothesized the roles of altered hEPCs in tumour angiogenesis and metastasis. We hope this review may enhance our understanding of the interaction between hEPCs and tumour cells thus aiding the development of cellular-targeted anti-tumour therapies.
Collapse
Affiliation(s)
- Valentina Flamini
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK
| | - Yu-Xin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, UK.
| |
Collapse
|
97
|
Bothwell KD, Folaron M, Seshadri M. Preclinical Activity of the Vascular Disrupting Agent OXi4503 against Head and Neck Cancer. Cancers (Basel) 2016; 8:cancers8010011. [PMID: 26751478 PMCID: PMC4728458 DOI: 10.3390/cancers8010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Vascular disrupting agents (VDAs) represent a relatively distinct class of agents that target established blood vessels in tumors. In this study, we examined the preclinical activity of the second-generation VDA OXi4503 against human head and neck squamous cell carcinoma (HNSCC). Studies were performed in subcutaneous and orthotopic FaDu-luc HNSCC xenografts established in immunodeficient mice. In the subcutaneous model, bioluminescence imaging (BLI) along with tumor growth measurements was performed to assess tumor response to therapy. In mice bearing orthotopic tumors, a dual modality imaging approach based on BLI and magnetic resonance imaging (MRI) was utilized. Correlative histologic assessment of tumors was performed to validate imaging data. Dynamic BLI revealed a marked reduction in radiance within a few hours of OXi4503 administration compared to baseline levels. However, this reduction was transient with vascular recovery observed at 24 h post treatment. A single injection of OXi4503 (40 mg/kg) resulted in a significant (p < 0.01) tumor growth inhibition of subcutaneous FaDu-luc xenografts. MRI revealed a significant reduction (p < 0.05) in volume of orthotopic tumors at 10 days post two doses of OXi4503 treatment. Corresponding histologic (H&E) sections of Oxi4503 treated tumors showed extensive areas of necrosis and hemorrhaging compared to untreated controls. To the best of our knowledge, this is the first report, on the activity of Oxi4503 against HNSCC. These results demonstrate the potential of tumor-VDAs in head and neck cancer. Further examination of the antivascular and antitumor activity of Oxi4503 against HNSCC alone and in combination with chemotherapy and radiation is warranted.
Collapse
Affiliation(s)
- Katelyn D Bothwell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA.
| | - Margaret Folaron
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Oral Medicine/Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
98
|
Mittal V, El Rayes T, Narula N, McGraw TE, Altorki NK, Barcellos-Hoff MH. The Microenvironment of Lung Cancer and Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 890:75-110. [PMID: 26703800 DOI: 10.1007/978-3-319-24932-2_5] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment (TME) represents a milieu that enables tumor cells to acquire the hallmarks of cancer. The TME is heterogeneous in composition and consists of cellular components, growth factors, proteases, and extracellular matrix. Concerted interactions between genetically altered tumor cells and genetically stable intratumoral stromal cells result in an "activated/reprogramed" stroma that promotes carcinogenesis by contributing to inflammation, immune suppression, therapeutic resistance, and generating premetastatic niches that support the initiation and establishment of distant metastasis. The lungs present a unique milieu in which tumors progress in collusion with the TME, as evidenced by regions of aberrant angiogenesis, acidosis and hypoxia. Inflammation plays an important role in the pathogenesis of lung cancer, and pulmonary disorders in lung cancer patients such as chronic obstructive pulmonary disease (COPD) and emphysema, constitute comorbid conditions and are independent risk factors for lung cancer. The TME also contributes to immune suppression, induces epithelial-to-mesenchymal transition (EMT) and diminishes efficacy of chemotherapies. Thus, the TME has begun to emerge as the "Achilles heel" of the disease, and constitutes an attractive target for anti-cancer therapy. Drugs targeting the components of the TME are making their way into clinical trials. Here, we will focus on recent advances and emerging concepts regarding the intriguing role of the TME in lung cancer progression, and discuss future directions in the context of novel diagnostic and therapeutic opportunities.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents/therapeutic use
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Communication/drug effects
- Drug Resistance, Neoplasm/genetics
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Diseases, Obstructive/complications
- Lung Diseases, Obstructive/drug therapy
- Lung Diseases, Obstructive/genetics
- Lung Diseases, Obstructive/metabolism
- Lung Neoplasms/complications
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Pulmonary Emphysema/complications
- Pulmonary Emphysema/drug therapy
- Pulmonary Emphysema/genetics
- Pulmonary Emphysema/metabolism
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Vivek Mittal
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA.
| | - Tina El Rayes
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Navneet Narula
- Department of Pathology, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Timothy E McGraw
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
- Neuberger Berman Lung Cancer Research Center, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY, 10065, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
99
|
Lin JS, Cheng CY, Liu CJ. Oral uracil and tegafur as postoperative adjuvant metronomic chemotherapy in patients with advanced oral squamous cell carcinoma. J Dent Sci 2015. [DOI: 10.1016/j.jds.2015.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
100
|
Abdel-Aziz HA, Ghabbour HA, Eldehna WM, Al-Rashood ST, Al-Rashood KA, Fun HK, Al-Tahhan M, Al-Dhfyan A. 2-((Benzimidazol-2-yl)thio)-1-arylethan-1-ones: Synthesis, crystal study and cancer stem cells CD133 targeting potential. Eur J Med Chem 2015; 104:1-10. [DOI: 10.1016/j.ejmech.2015.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/26/2015] [Accepted: 09/15/2015] [Indexed: 02/02/2023]
|