51
|
Sheppard K, Söll D. On the evolution of the tRNA-dependent amidotransferases, GatCAB and GatDE. J Mol Biol 2008; 377:831-44. [PMID: 18279892 PMCID: PMC2366055 DOI: 10.1016/j.jmb.2008.01.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 12/21/2007] [Accepted: 01/02/2008] [Indexed: 11/19/2022]
Abstract
Glutaminyl-tRNA synthetase and asparaginyl-tRNA synthetase evolved from glutamyl-tRNA synthetase and aspartyl-tRNA synthetase, respectively, after the split in the last universal communal ancestor (LUCA). Glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) were likely formed in LUCA by amidation of the mischarged species, glutamyl-tRNA(Gln) and aspartyl-tRNA(Asn), by tRNA-dependent amidotransferases, as is still the case in most bacteria and all known archaea. The amidotransferase GatCAB is found in both domains of life, while the heterodimeric amidotransferase GatDE is found only in Archaea. The GatB and GatE subunits belong to a unique protein family that includes Pet112 that is encoded in the nuclear genomes of numerous eukaryotes. GatE was thought to have evolved from GatB after the emergence of the modern lines of decent. Our phylogenetic analysis though places the split between GatE and GatB, prior to the phylogenetic divide between Bacteria and Archaea, and Pet112 to be of mitochondrial origin. In addition, GatD appears to have emerged prior to the bacterial-archaeal phylogenetic divide. Thus, while GatDE is an archaeal signature protein, it likely was present in LUCA together with GatCAB. Archaea retained both amidotransferases, while Bacteria emerged with only GatCAB. The presence of GatDE has favored a unique archaeal tRNA(Gln) that may be preventing the acquisition of glutaminyl-tRNA synthetase in Archaea. Archaeal GatCAB, on the other hand, has not favored a distinct tRNA(Asn), suggesting that tRNA(Asn) recognition is not a major barrier to the retention of asparaginyl-tRNA synthetase in many Archaea.
Collapse
Affiliation(s)
- Kelly Sheppard
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520–8114, USA
| | - Dieter Söll
- Departments of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520–8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520–8114, USA
| |
Collapse
|
52
|
Sheppard K, Sherrer RL, Söll D. Methanothermobacter thermautotrophicus tRNA Gln confines the amidotransferase GatCAB to asparaginyl-tRNA Asn formation. J Mol Biol 2008; 377:845-53. [PMID: 18291416 PMCID: PMC2390905 DOI: 10.1016/j.jmb.2008.01.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 01/15/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
Many prokaryotes form the amide aminoacyl-tRNAs glutaminyl-tRNA and asparaginyl-tRNA by tRNA-dependent amidation of the mischarged tRNA species, glutamyl-tRNA(Gln) or aspartyl-tRNA(Asn). Archaea employ two such amidotransferases, GatCAB and GatDE, while bacteria possess only one, GatCAB. The Methanothermobacter thermautotrophicus GatDE is slightly more efficient using Asn as an amide donor than Gln (k(cat)/K(M) of 5.4 s(-1)/mM and 1.2 s(-1)/mM, respectively). Unlike the bacterial GatCAB enzymes studied to date, the M. thermautotrophicus GatCAB uses Asn almost as well as Gln as an amide donor (k(cat)/K(M) of 5.7 s(-1)/mM and 16.7 s(-1)/mM, respectively). In contrast to the initial characterization of the M. thermautotrophicus GatCAB as being able to form Asn-tRNA(Asn) and Gln-tRNA(Gln), our data demonstrate that while the enzyme is able to transamidate Asp-tRNA(Asn) (k(cat)/K(M) of 125 s(-1)/mM) it is unable to transamidate M. thermautotrophicus Glu-tRNA(Gln). However, M. thermautotrophicus GatCAB is capable of transamidating Glu-tRNA(Gln) from H. pylori or B. subtilis, and M. thermautotrophicus Glu-tRNA(Asn). Thus, M. thermautotrophicus encodes two amidotransferases, each with its own activity, GatDE for Gln-tRNA and GatCAB for Asn-tRNA synthesis.
Collapse
Affiliation(s)
- Kelly Sheppard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - R. Lynn Sherrer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
53
|
Balg C, Huot JL, Lapointe J, Chênevert R. Inhibition of Helicobacter pylori Aminoacyl-tRNA Amidotransferase by Puromycin Analogues. J Am Chem Soc 2008; 130:3264-5. [DOI: 10.1021/ja7100714] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christian Balg
- Département de Chimie and Département de Biochimie et de Microbiologie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines (CREFSIP), Faculté des Sciences et de Génie, Université Laval, Québec, Canada, G1K 7P4
| | - Jonathan L. Huot
- Département de Chimie and Département de Biochimie et de Microbiologie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines (CREFSIP), Faculté des Sciences et de Génie, Université Laval, Québec, Canada, G1K 7P4
| | - Jacques Lapointe
- Département de Chimie and Département de Biochimie et de Microbiologie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines (CREFSIP), Faculté des Sciences et de Génie, Université Laval, Québec, Canada, G1K 7P4
| | - Robert Chênevert
- Département de Chimie and Département de Biochimie et de Microbiologie, Centre de Recherche sur la Fonction, la Structure et l'Ingénierie des Protéines (CREFSIP), Faculté des Sciences et de Génie, Université Laval, Québec, Canada, G1K 7P4
| |
Collapse
|
54
|
Sherrer RL, Ho JML, Söll D. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase. Nucleic Acids Res 2008; 36:1871-80. [PMID: 18267971 PMCID: PMC2330242 DOI: 10.1093/nar/gkn036] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Selenocysteine (Sec) biosynthesis in archaea and eukaryotes requires three steps: serylation of tRNASec by seryl-tRNA synthetase (SerRS), phosphorylation of Ser-tRNASec by O-phosphoseryl-tRNASec kinase (PSTK), and conversion of O-phosphoseryl-tRNASec (Sep-tRNASec) by Sep-tRNA:Sec-tRNA synthase (SepSecS) to Sec-tRNASec. Although SerRS recognizes both tRNASec and tRNASer species, PSTK must discriminate Ser-tRNASec from Ser-tRNASer. Based on a comparison of the sequences and secondary structures of archaeal tRNASec and tRNASer, we introduced mutations into Methanococcus maripaludis tRNASec to investigate how Methanocaldococcus jannaschii PSTK distinguishes tRNASec from tRNASer. Unlike eukaryotic PSTK, the archaeal enzyme was found to recognize the acceptor stem rather than the length and secondary structure of the D-stem. While the D-arm and T-loop provide minor identity elements, the acceptor stem base pairs G2-C71 and C3-G70 in tRNASec were crucial for discrimination from tRNASer. Furthermore, the A5-U68 base pair in tRNASer has some antideterminant properties for PSTK. Transplantation of these identity elements into the tRNASerUGA scaffold resulted in phosphorylation of the chimeric Ser-tRNA. The chimera was able to stimulate the ATPase activity of PSTK albeit at a lower level than tRNASec, whereas tRNASer did not. Additionally, the seryl moiety of Ser-tRNASec is not required for enzyme recognition, as PSTK efficiently phosphorylated Thr-tRNASec.
Collapse
Affiliation(s)
- R Lynn Sherrer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
55
|
Sheppard K, Yuan J, Hohn MJ, Jester B, Devine KM, Söll D. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Res 2008; 36:1813-25. [PMID: 18252769 PMCID: PMC2330236 DOI: 10.1093/nar/gkn015] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Aminoacyl-tRNAs (aa-tRNAs) are the essential substrates for translation. Most aa-tRNAs are formed by direct aminoacylation of tRNA catalyzed by aminoacyl-tRNA synthetases. However, a smaller number of aa-tRNAs (Asn-tRNA, Gln-tRNA, Cys-tRNA and Sec-tRNA) are made by synthesizing the amino acid on the tRNA by first attaching a non-cognate amino acid to the tRNA, which is then converted to the cognate one catalyzed by tRNA-dependent modifying enzymes. Asn-tRNA or Gln-tRNA formation in most prokaryotes requires amidation of Asp-tRNA or Glu-tRNA by amidotransferases that couple an amidase or an asparaginase to liberate ammonia with a tRNA-dependent kinase. Both archaeal and eukaryotic Sec-tRNA biosynthesis and Cys-tRNA synthesis in methanogens require O-phosophoseryl-tRNA formation. For tRNA-dependent Cys biosynthesis, O-phosphoseryl-tRNA synthetase directly attaches the amino acid to the tRNA which is then converted to Cys by Sep-tRNA: Cys-tRNA synthase. In Sec-tRNA synthesis, O-phosphoseryl-tRNA kinase phosphorylates Ser-tRNA to form the intermediate which is then modified to Sec-tRNA by Sep-tRNA:Sec-tRNA synthase. Complex formation between enzymes in the same pathway may protect the fidelity of protein synthesis. How these tRNA-dependent amino acid biosynthetic routes are integrated into overall metabolism may explain why they are still retained in so many organisms.
Collapse
Affiliation(s)
- Kelly Sheppard
- Department of Molecular Biophysics, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | | | |
Collapse
|
56
|
Sheppard K, Akochy PM, Söll D. Assays for transfer RNA-dependent amino acid biosynthesis. Methods 2008; 44:139-45. [PMID: 18241795 PMCID: PMC2266967 DOI: 10.1016/j.ymeth.2007.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 06/25/2007] [Indexed: 11/29/2022] Open
Abstract
Selenocysteinyl-tRNA(Sec), cysteinyl-tRNA(Cys), glutaminyl-tRNA(Gln), and asparaginyl-tRNA(Asn) in many organisms are formed in an indirect pathway in which a non-cognate amino acid is first attached to the tRNA. This non-cognate amino acid is then converted to the cognate amino acid by a tRNA-dependent modifying enzyme. The in vitro characterization of these modifying enzymes is challenging due to the fact the substrate, aminoacyl-tRNA, is labile and requires a prior enzymatic step to be synthesized. The need to separate product aa-tRNA from unreacted substrate is typically a labor- and time-intensive task; this adds another impediment in the investigation of these enzymes. Here, we review four different approaches for studying these tRNA-dependent amino acid modifications. In addition, we describe in detail a [32P]/nuclease P1 assay for glutaminyl-tRNA(Gln) and asparaginyl-tRNA(Asn) formation which is sensitive, enables monitoring of the aminoacyl state of the tRNA, and is less time consuming than some of the other techniques. This [32P]/nuclease P1 method should be adaptable to studying tRNA-dependent selenocysteine and cysteine synthesis.
Collapse
Affiliation(s)
- Kelly Sheppard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Pierre-Marie Akochy
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
- Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| |
Collapse
|
57
|
Bailly M, Blaise M, Lorber B, Becker HD, Kern D. The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNA-dependent asparagine biosynthesis. Mol Cell 2008; 28:228-39. [PMID: 17964262 DOI: 10.1016/j.molcel.2007.08.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/09/2007] [Accepted: 08/13/2007] [Indexed: 11/28/2022]
Abstract
Asparagine, one of the 22 genetically encoded amino acids, can be synthesized by a tRNA-dependent mechanism. So far, this type of pathway was believed to proceed via two independent steps. A nondiscriminating aspartyl-tRNA synthetase (ND-DRS) first generates a mischarged aspartyl-tRNAAsn that dissociates from the enzyme and binds to a tRNA-dependent amidotransferase (AdT), which then converts the tRNA-bound aspartate into asparagine. We show herein that the ND-DRS, tRNAAsn, and AdT assemble into a specific ribonucleoprotein complex called transamidosome that remains stable during the overall catalytic process. Our results indicate that the tRNAAsn-mediated linkage between the ND-DRS and AdT enables channeling of the mischarged aspartyl-tRNAAsn intermediate between DRS and AdT active sites to prevent challenging of the genetic code integrity. We propose that formation of a ribonucleoprotein is a general feature for tRNA-dependent amino acid biosynthetic pathways that are remnants of earlier stages when amino acid synthesis and tRNA aminoacylation were coupled.
Collapse
Affiliation(s)
- Marc Bailly
- UPR Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, 15, Rue René Descartes, F-67084 Strasbourg Cédex, France
| | | | | | | | | |
Collapse
|
58
|
Sherrer RL, O'Donoghue P, Söll D. Characterization and evolutionary history of an archaeal kinase involved in selenocysteinyl-tRNA formation. Nucleic Acids Res 2008; 36:1247-59. [PMID: 18174226 PMCID: PMC2275090 DOI: 10.1093/nar/gkm1134] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Selenocysteine (Sec)-decoding archaea and eukaryotes employ a unique route of Sec-tRNASec synthesis in which O-phosphoseryl-tRNASec kinase (PSTK) phosphorylates Ser-tRNASec to produce the O-phosphoseryl-tRNASec (Sep-tRNASec) substrate that Sep-tRNA:Sec-tRNA synthase (SepSecS) converts to Sec-tRNASec. This study presents a biochemical characterization of Methanocaldococcus jannaschii PSTK, including kinetics of Sep-tRNASec formation (Km for Ser-tRNASec of 40 nM and ATP of 2.6 mM). PSTK binds both Ser-tRNASec and tRNASec with high affinity (Kd values of 53 nM and 39 nM, respectively). The ATPase activity of PSTK may be activated via an induced fit mechanism in which binding of tRNASec specifically stimulates hydrolysis. Albeit with lower activity than ATP, PSTK utilizes GTP, CTP, UTP and dATP as phosphate-donors. Homology with related kinases allowed prediction of the ATPase active site, comprised of phosphate-binding loop (P-loop), Walker B and RxxxR motifs. Gly14, Lys17, Ser18, Asp41, Arg116 and Arg120 mutations resulted in enzymes with decreased activity highlighting the importance of these conserved motifs in PSTK catalysis both in vivo and in vitro. Phylogenetic analysis of PSTK in the context of its ‘DxTN’ kinase family shows that PSTK co-evolved precisely with SepSecS and indicates the presence of a previously unidentified PSTK in Plasmodium species.
Collapse
Affiliation(s)
- R Lynn Sherrer
- Department of Molecular Biophysics, Yale University, New Haven, CT 06520-8114, USA
| | | | | |
Collapse
|
59
|
Araiso Y, Palioura S, Ishitani R, Sherrer RL, O'Donoghue P, Yuan J, Oshikane H, Domae N, Defranco J, Söll D, Nureki O. Structural insights into RNA-dependent eukaryal and archaeal selenocysteine formation. Nucleic Acids Res 2007; 36:1187-99. [PMID: 18158303 PMCID: PMC2275076 DOI: 10.1093/nar/gkm1122] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The micronutrient selenium is present in proteins as selenocysteine (Sec). In eukaryotes and archaea, Sec is formed in a tRNA-dependent conversion of O-phosphoserine (Sep) by O-phosphoseryl-tRNA:selenocysteinyl-tRNA synthase (SepSecS). Here, we present the crystal structure of Methanococcus maripaludis SepSecS complexed with PLP at 2.5 Å resolution. SepSecS, a member of the Fold Type I PLP enzyme family, forms an (α2)2 homotetramer through its N-terminal extension. The active site lies on the dimer interface with each monomer contributing essential residues. In contrast to other Fold Type I PLP enzymes, Asn247 in SepSecS replaces the conserved Asp in binding the pyridinium nitrogen of PLP. A structural comparison with Escherichia coli selenocysteine lyase allowed construction of a model of Sep binding to the SepSecS catalytic site. Mutations of three conserved active site arginines (Arg72, Arg94, Arg307), protruding from the neighboring subunit, led to loss of in vivo and in vitro activity. The lack of active site cysteines demonstrates that a perselenide is not involved in SepSecS-catalyzed Sec formation; instead, the conserved arginines may facilitate the selenation reaction. Structural phylogeny shows that SepSecS evolved early in the history of PLP enzymes, and indicates that tRNA-dependent Sec formation is a primordial process.
Collapse
Affiliation(s)
- Yuhei Araiso
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mouilleron S, Golinelli-Pimpaneau B. Conformational changes in ammonia-channeling glutamine amidotransferases. Curr Opin Struct Biol 2007; 17:653-64. [PMID: 17951049 DOI: 10.1016/j.sbi.2007.09.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 09/04/2007] [Accepted: 09/06/2007] [Indexed: 11/28/2022]
Abstract
Glutamine amidotransferases (GATs), which catalyze the synthesis of different aminated products, channel ammonia over 10-40 A from a glutamine substrate at the glutaminase site to an acceptor substrate at the synthase site. Ammonia production usually uses a cysteine-histidine-glutamate triad or a N-terminal cysteine residue. Crystal structures of several amidotransferase ligand complexes, mimicking intermediates along the catalytic cycle, have now been determined. In most cases, acceptor binding triggers glutaminase activation through domain-hinged movements and other conformational changes. Structural information shows how flexible loops of the synthase and glutaminase domains move to shield the two catalytic sites and anchor the substrates, and how the ammonia channel forms and opens or closes.
Collapse
Affiliation(s)
- Stéphane Mouilleron
- Laboratoire d'Enzymologie et Biochimie structurales, CNRS Bâtiment 34, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | |
Collapse
|
61
|
Li H. Complexes of tRNA and maturation enzymes: shaping up for translation. Curr Opin Struct Biol 2007; 17:293-301. [PMID: 17580114 DOI: 10.1016/j.sbi.2007.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 03/27/2007] [Accepted: 05/25/2007] [Indexed: 11/29/2022]
Abstract
Several significant structures of transfer ribonucleic acid (tRNA) maturation enzymes complexed with precursor tRNA or fragments thereof have been published recently, providing detailed knowledge of enzyme-tRNA recognition and catalytic strategies. In addition to reinforcing the general principles of RNA-protein interaction, the new structures highlight both the features of composite RNA recognition by multiple enzyme subunits and the pronounced RNA structural flexibility in or near the active site in all cases. These structural principles provide plausible explanations for the exquisite specificity and catalytic power of these enzymes and, in the case of evolutionary adaptation, for the ability of some enzymes to develop novel specificities.
Collapse
Affiliation(s)
- Hong Li
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
62
|
Fukunaga R, Yokoyama S. Structural insights into the second step of RNA-dependent cysteine biosynthesis in archaea: crystal structure of Sep-tRNA:Cys-tRNA synthase from Archaeoglobus fulgidus. J Mol Biol 2007; 370:128-41. [PMID: 17512006 DOI: 10.1016/j.jmb.2007.04.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 04/06/2007] [Accepted: 04/17/2007] [Indexed: 11/23/2022]
Abstract
In the ancient organisms, methanogenic archaea, lacking the canonical cysteinyl-tRNA synthetase, Cys-tRNA(Cys) is produced by an indirect pathway, in which O-phosphoseryl-tRNA synthetase ligates O-phosphoserine (Sep) to tRNA(Cys) and Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). In this study, the crystal structure of SepCysS from Archaeoglobus fulgidus has been determined at 2.4 A resolution. SepCysS forms a dimer, composed of monomers bearing large and small domains. The large domain harbors the seven-stranded beta-sheet, which is typical of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. In the active site, which is located near the dimer interface, PLP is covalently bound to the side-chain of the conserved Lys209. In the proximity of PLP, a sulfate ion is bound by the side-chains of the conserved Arg79, His103, and Tyr104 residues. The active site is located deep within the large, basic cleft to accommodate Sep-tRNA(Cys). On the basis of the surface electrostatic potential, the amino acid residue conservation mapping, the position of the bound sulfate ion, and the substrate amino acid binding manner in other PLP-dependent enzymes, a binding model of Sep-tRNA(Cys) to SepCysS was constructed. One of the three strictly conserved Cys residues (Cys39, Cys42, or Cys247), of one subunit may play a crucial role in the catalysis in the active site of the other subunit.
Collapse
Affiliation(s)
- Ryuya Fukunaga
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
63
|
Sheppard K, Akochy PM, Salazar JC, Söll D. The Helicobacter pylori amidotransferase GatCAB is equally efficient in glutamine-dependent transamidation of Asp-tRNAAsn and Glu-tRNAGln. J Biol Chem 2007; 282:11866-73. [PMID: 17329242 DOI: 10.1074/jbc.m700398200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amide aminoacyl-tRNAs, Gln-tRNA(Gln) and Asn-tRNA(Asn), are formed in many bacteria by a pretranslational tRNA-dependent amidation of the mischarged tRNA species, Glu-tRNA(Gln) or Asp-tRNA(Asn). This conversion is catalyzed by a heterotrimeric amidotransferase GatCAB in the presence of ATP and an amide donor (Gln or Asn). Helicobacter pylori has a single GatCAB enzyme required in vivo for both Gln-tRNA(Gln) and Asn-tRNA(Asn) synthesis. In vitro characterization reveals that the enzyme transamidates Asp-tRNA(Asn) and Glu-tRNA(Gln) with similar efficiency (k(cat)/K(m) of 1368.4 s(-1)/mM and 3059.3 s(-1)/mM respectively). The essential glutaminase activity of the enzyme is a property of the A-subunit, which displays the characteristic amidase signature sequence. Mutations of the GatA catalytic triad residues (Lys(52), Ser(128), Ser(152)) abolished glutaminase activity and consequently the amidotransferase activity with glutamine as the amide donor. However, the latter activity was rescued when the mutant enzymes were presented with ammonium chloride. The presence of Asp-tRNA(Asn) and ATP enhances the glutaminase activity about 22-fold. H. pylori GatCAB uses the amide donor glutamine 129-fold more efficiently than asparagine, suggesting that GatCAB is a glutamine-dependent amidotransferase much like the unrelated asparagine synthetase B. Genomic analysis suggests that most bacteria synthesize asparagine in a glutamine-dependent manner, either by a tRNA-dependent or in a tRNA-independent route. However, all known bacteria that contain asparagine synthetase A form Asn-tRNA(Asn) by direct acylation catalyzed by asparaginyl-tRNA synthetase. Therefore, bacterial amide aminoacyl-tRNA formation is intimately tied to amide amino acid metabolism.
Collapse
Affiliation(s)
- Kelly Sheppard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | |
Collapse
|
64
|
Deniziak M, Sauter C, Becker HD, Paulus CA, Giegé R, Kern D. Deinococcus glutaminyl-tRNA synthetase is a chimer between proteins from an ancient and the modern pathways of aminoacyl-tRNA formation. Nucleic Acids Res 2007; 35:1421-31. [PMID: 17284460 PMCID: PMC1865053 DOI: 10.1093/nar/gkl1164] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glutaminyl-tRNA synthetase from Deinococcus radiodurans possesses a C-terminal extension of 215 residues appending the anticodon-binding domain. This domain constitutes a paralog of the Yqey protein present in various organisms and part of it is present in the C-terminal end of the GatB subunit of GatCAB, a partner of the indirect pathway of Gln-tRNAGln formation. To analyze the peculiarities of the structure–function relationship of this GlnRS related to the Yqey domain, a structure of the protein was solved from crystals diffracting at 2.3 Å and a docking model of the synthetase complexed to tRNAGln constructed. The comparison of the modeled complex with the structure of the E. coli complex reveals that all residues of E. coli GlnRS contacting tRNAGln are conserved in D. radiodurans GlnRS, leaving the functional role of the Yqey domain puzzling. Kinetic investigations and tRNA-binding experiments of full length and Yqey-truncated GlnRSs reveal that the Yqey domain is involved in tRNAGln recognition. They demonstrate that Yqey plays the role of an affinity-enhancer of GlnRS for tRNAGln acting only in cis. However, the presence of Yqey in free state in organisms lacking GlnRS, suggests that this domain may exert additional cellular functions.
Collapse
Affiliation(s)
| | | | - Hubert Dominique Becker
- *To whom correspondence should be addressed. +33 (0)3 88 41 70 41+33 (0)3 88 60 22 18 Correspondence may also be addressed to Daniel Kern. +33 (0)3 88 41 70 92 +33 (0)3 88 60 22 18;
| | | | | | | |
Collapse
|
65
|
Namgoong S, Sheppard K, Sherrer RL, Söll D. Co-evolution of the archaeal tRNA-dependent amidotransferase GatCAB with tRNA(Asn). FEBS Lett 2007; 581:309-14. [PMID: 17214986 PMCID: PMC1808439 DOI: 10.1016/j.febslet.2006.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 12/12/2006] [Accepted: 12/13/2006] [Indexed: 12/01/2022]
Abstract
The important identity elements in tRNA(Gln) and tRNA(Asn) for bacterial GatCAB and in tRNA(Gln) for archaeal GatDE are the D-loop and the first base pair of the acceptor stem. Here we show that Methanothermobacter thermautotrophicus GatCAB, the archaeal enzyme, is different as it discriminates Asp-tRNA(Asp) and Asp-tRNA(Asn) by use of U49, the D-loop and to a lesser extent the variable loop. Since archaea possess the tRNA(Gln)-specific amidotransferase GatDE, the archaeal GatCAB enzyme evolved to recognize different elements in tRNA(Asn) than those recognized by GatDE or by the bacterial GatCAB enzyme in their tRNA substrates.
Collapse
Affiliation(s)
- Suk Namgoong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 8114, USA
| | | | | | | |
Collapse
|
66
|
Cathopoulis T, Chuawong P, Hendrickson TL. Novel tRNA aminoacylation mechanisms. MOLECULAR BIOSYSTEMS 2007; 3:408-18. [PMID: 17533454 DOI: 10.1039/b618899k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In nature, ribosomally synthesized proteins can contain at least 22 different amino acids: the 20 common amino acids as well as selenocysteine and pyrrolysine. Each of these amino acids is inserted into proteins codon-specifically via an aminoacyl-transfer RNA (aa-tRNA). In most cases, these aa-tRNAs are biosynthesized directly by a set of highly specific and accurate aminoacyl-tRNA synthetases (aaRSs). However, in some cases aaRSs with relaxed or novel substrate specificities cooperate with other enzymes to generate specific canonical and non-canonical aminoacyl-tRNAs.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/metabolism
- Aspartate-tRNA Ligase/metabolism
- Bacteria/enzymology
- RNA, Transfer, Amino Acyl/biosynthesis
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Asn/biosynthesis
- RNA, Transfer, Asn/chemistry
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Cys/chemistry
- RNA, Transfer, Gln/biosynthesis
- RNA, Transfer, Gln/chemistry
- Transfer RNA Aminoacylation
Collapse
Affiliation(s)
- Terry Cathopoulis
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|