51
|
Edwardson CF, Hollibaugh JT. Metatranscriptomic analysis of prokaryotic communities active in sulfur and arsenic cycling in Mono Lake, California, USA. ISME JOURNAL 2017; 11:2195-2208. [PMID: 28548659 PMCID: PMC5607362 DOI: 10.1038/ismej.2017.80] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 11/09/2022]
Abstract
This study evaluates the transcriptionally active, dissimilatory sulfur- and arsenic-cycling components of the microbial community in alkaline, hypersaline Mono Lake, CA, USA. We sampled five depths spanning the redox gradient (10, 15, 18, 25 and 31 m) during maximum thermal stratification. We used custom databases to identify transcripts of genes encoding complex iron-sulfur molybdoenzyme (CISM) proteins, with a focus on arsenic (arrA, aioA and arxA) and sulfur cycling (dsrA, aprA and soxB), and assigned them to taxonomic bins. We also report on the distribution of transcripts related to the ars arsenic detoxification pathway. Transcripts from detoxification pathways were not abundant in oxic surface waters (10 m). Arsenic cycling in the suboxic and microaerophilic zones of the water column (15 and 18 m) was dominated by arsenite-oxidizing members of the Gammaproteobacteria most closely affiliated with Thioalkalivibrio and Halomonas, transcribing arxA. We observed a transition to arsenate-reducing bacteria belonging to the Deltaproteobacteria and Firmicutes transcribing arsenate reductase (arrA) in anoxic bottom waters of the lake (25 and 31 m). Sulfur cycling at 15 and 18 m was dominated by Gammaproteobacteria (Thioalkalivibrio and Thioalkalimicrobium) oxidizing reduced S species, with a transition to sulfate-reducing Deltaproteobacteria at 25 and 31 m. Genes related to arsenic and sulfur oxidation from Thioalkalivibrio were more highly transcribed at 15 m relative to other depths. Our data highlight the importance of Thioalkalivibrio to arsenic and sulfur biogeochemistry in Mono Lake and identify new taxa that appear capable of transforming arsenic.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.,Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
52
|
Zhang J, Zhao S, Xu Y, Zhou W, Huang K, Tang Z, Zhao FJ. Nitrate Stimulates Anaerobic Microbial Arsenite Oxidation in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4377-4386. [PMID: 28358982 DOI: 10.1021/acs.est.6b06255] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Arsenic (As) bioavailability to rice plants is elevated in flooded paddy soils due to reductive mobilization of arsenite [As(III)]. However, some microorganisms are able to mediate anaerobic As(III) oxidation by coupling to nitrate reduction, thus attenuating As mobility. In this study, we investigated the impact of nitrate additions on As species dynamics in the porewater of four As-contaminated paddy soils. The effects of nitrate on microbial community structure and the abundance and diversity of the As(III) oxidase (aioA) genes were quantified using 16S rRNA sequencing, quantitative PCR, and aioA gene clone libraries. Nitrate additions greatly stimulated anaerobic oxidation of As(III) to As(V) and decreased total soluble As in the porewater in flooded paddy soils. Nitrate additions significantly enhanced the abundance of aioA genes and changed the microbial community structure by increasing the relative abundance of the operational taxonomic units (OTUs) from the genera Acidovorax and Azoarcus. The aioA gene sequences from the Acidovorax related OTU were also stimulated by nitrate. A bacterial strain (ST3) belonging to Acidovorax was isolated from nitrate-amended paddy soil. The strain was able to oxidize As(III) and Fe(II) under anoxic conditions using nitrate as the electron acceptor. Abiotic experiments showed that Fe(II), but not As(III), could be oxidized by nitrite. These results show that nitrate additions can stimulate As(III) oxidation in flooded paddy soils by enhancing the population of anaerobic As(III) oxidizers, offering a potential strategy to decrease As mobility in As-contaminated paddy soils.
Collapse
Affiliation(s)
- Jun Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Shichen Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Yan Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Wuxian Zhou
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Ke Huang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Zhu Tang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
| | - Fang-Jie Zhao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University , Nanjing 210095, China
- Sustainable Soils and Grassland Systems Department, Rothamsted Research , Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| |
Collapse
|
53
|
Sforna MC, Daye M, Philippot P, Somogyi A, van Zuilen MA, Medjoubi K, Gérard E, Jamme F, Dupraz C, Braissant O, Glunk C, Visscher PT. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record. GEOBIOLOGY 2017; 15:259-279. [PMID: 27935656 DOI: 10.1111/gbi.12218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record.
Collapse
Affiliation(s)
- M C Sforna
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy
| | - M Daye
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - P Philippot
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - A Somogyi
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - M A van Zuilen
- Geomicrobiologie, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - K Medjoubi
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - E Gérard
- Geomicrobiologie, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - F Jamme
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - C Dupraz
- Department of Geological Sciences, Stockholms Universitet, Stockholm, Sweden
| | - O Braissant
- Center for Biomechanics and Biocalorimetry, University of Basel, Basel, Switzerland
| | - C Glunk
- Societe Suisse des Explosifs SA, Brig, Switzerland
| | - P T Visscher
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
54
|
Sediment biomarker, bacterial community characterization of high arsenic aquifers in Jianghan Plain, China. Sci Rep 2017; 7:42037. [PMID: 28165031 PMCID: PMC5292745 DOI: 10.1038/srep42037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/03/2017] [Indexed: 11/08/2022] Open
Abstract
Representative biomarkers (e.g., n-alkanes), diversity and microbial community in the aquifers contaminated by high concentration of arsenic (As) in different sediment depth (0-30 m) in Jianghan Plain, Hubei, China, were analyzed to investigate the potential mechanism of As enrichment in groundwater. The concentration of As was abundant in top soil and sand, but not in clay. The analysis of the distribution of n-alkanes, CPI values, and wax to total n-alkane ratio (Wax(n)%) indicated that the organic matter (OM) from fresh terrestrial plants were abundant in the shallow sediment. However, n-alkanes have suffered from significant biodegradation from the depth of 16 m to 30 m. The deposition of fresh terrestrial derived organic matters may facilitate the release of As from sediment to groundwater in the sediment of 0-16 m. However, the petroleum derived organic matters may do the favor to the release of As in the deeper section of borehole (16 m to 30 m). The 16S rRNA gene sequences identification indicated that Acidobacteria, Actinomycetes and Hydrogenophaga are abundant in the sediments with high arsenic. Therefore, microbes and organic matters from different sources may play important roles in arsenic mobilization in the aquifers of the study area.
Collapse
|
55
|
An Oxidoreductase AioE is Responsible for Bacterial Arsenite Oxidation and Resistance. Sci Rep 2017; 7:41536. [PMID: 28128323 PMCID: PMC5270249 DOI: 10.1038/srep41536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/19/2016] [Indexed: 11/08/2022] Open
Abstract
Previously, we found that arsenite (AsIII) oxidation could improve the generation of ATP/NADH to support the growth of Agrobacterium tumefaciens GW4. In this study, we found that aioE is induced by AsIII and located in the arsenic island near the AsIII oxidase genes aioBA and co-transcripted with the arsenic resistant genes arsR1-arsC1-arsC2-acr3-1. AioE belongs to TrkA family corresponding the electron transport function with the generation of NADH and H+. An aioE in-frame deletion strain showed a null AsIII oxidation and a reduced AsIII resistance, while a cytC mutant only reduced AsIII oxidation efficiency. With AsIII, aioE was directly related to the increase of NADH, while cytC was essential for ATP generation. In addition, cyclic voltammetry analysis showed that the redox potential (ORP) of AioBA and AioE were +0.297 mV vs. NHE and +0.255 mV vs. NHE, respectively. The ORP gradient is AioBA > AioE > CytC (+0.217 ~ +0.251 mV vs. NHE), which infers that electron may transfer from AioBA to CytC via AioE. The results indicate that AioE may act as a novel AsIII oxidation electron transporter associated with NADH generation. Since AsIII oxidation contributes AsIII detoxification, the essential of AioE for AsIII resistance is also reasonable.
Collapse
|
56
|
Hoeft McCann S, Boren A, Hernandez-Maldonado J, Stoneburner B, Saltikov CW, Stolz JF, Oremland RS. Arsenite as an Electron Donor for Anoxygenic Photosynthesis: Description of Three Strains of Ectothiorhodospira from Mono Lake, California and Big Soda Lake, Nevada. Life (Basel) 2016; 7:E1. [PMID: 28035953 PMCID: PMC5370401 DOI: 10.3390/life7010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 01/20/2023] Open
Abstract
Three novel strains of photosynthetic bacteria from the family Ectothiorhodospiraceae were isolated from soda lakes of the Great Basin Desert, USA by employing arsenite (As(III)) as the sole electron donor in the enrichment/isolation process. Strain PHS-1 was previously isolated from a hot spring in Mono Lake, while strain MLW-1 was obtained from Mono Lake sediment, and strain BSL-9 was isolated from Big Soda Lake. Strains PHS-1, MLW-1, and BSL-9 were all capable of As(III)-dependent growth via anoxygenic photosynthesis and contained homologs of arxA, but displayed different phenotypes. Comparisons were made with three related species: Ectothiorhodospira shaposhnikovii DSM 2111, Ectothiorhodospira shaposhnikovii DSM 243T, and Halorhodospira halophila DSM 244. All three type cultures oxidized arsenite to arsenate but did not grow with As(III) as the sole electron donor. DNA-DNA hybridization indicated that strain PHS-1 belongs to the same species as Ect. shaposhnikovii DSM 2111 (81.1% sequence similarity), distinct from Ect. shaposhnikovii DSM 243T (58.1% sequence similarity). These results suggest that the capacity for light-driven As(III) oxidation is a common phenomenon among purple photosynthetic bacteria in soda lakes. However, the use of As(III) as a sole electron donor to sustain growth via anoxygenic photosynthesis is confined to novel isolates that were screened for by this selective cultivation criterion.
Collapse
Affiliation(s)
| | - Alison Boren
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA.
| | - Jaime Hernandez-Maldonado
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA.
| | - Brendon Stoneburner
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA.
| | - Chad W Saltikov
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA.
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| | | |
Collapse
|
57
|
|
58
|
Stolz JF. Gaia and her microbiome. FEMS Microbiol Ecol 2016; 93:fiw247. [DOI: 10.1093/femsec/fiw247] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 01/09/2023] Open
|
59
|
Kumari N, Jagadevan S. Genetic identification of arsenate reductase and arsenite oxidase in redox transformations carried out by arsenic metabolising prokaryotes - A comprehensive review. CHEMOSPHERE 2016; 163:400-412. [PMID: 27565307 DOI: 10.1016/j.chemosphere.2016.08.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) contamination in water is a cause of major concern to human population worldwide, especially in Bangladesh and West Bengal, India. Arsenite (As(III)) and arsenate (As(V)) are the two common forms in which arsenic exists in soil and groundwater, the former being more mobile and toxic. A large number of arsenic metabolising microorganisms play a crucial role in microbial transformation of arsenic between its different states, thus playing a key role in remediation of arsenic contaminated water. This review focuses on advances in biochemical, molecular and genomic developments in the field of arsenic metabolising bacteria - covering recent developments in the understanding of structure of arsenate reductase and arsenite oxidase enzymes, their gene and operon structures and their mechanism of action. The genetic and molecular studies of these microbes and their proteins may lead to evolution of successful strategies for effective implementation of bioremediation programs.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science and Engineering, Indian School of Mines, Dhanbad, Jharkhand, 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian School of Mines, Dhanbad, Jharkhand, 826004, India.
| |
Collapse
|
60
|
Geesey GG, Barkay T, King S. Microbes in mercury-enriched geothermal springs in western North America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:321-331. [PMID: 27344121 DOI: 10.1016/j.scitotenv.2016.06.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/11/2016] [Accepted: 06/12/2016] [Indexed: 06/06/2023]
Abstract
Because geothermal environments contain mercury (Hg) from natural sources, microorganisms that evolved in these systems have likely adapted to this element. Knowledge of the interactions between microorganisms and Hg in geothermal systems may assist in understanding the long-term evolution of microbial adaptation to Hg with relevance to other environments where Hg is introduced from anthropogenic sources. A number of microbiological studies with supporting geochemistry have been conducted in geothermal systems across western North America. Approximately 1 in 5 study sites include measurements of Hg. Of all prokaryotic taxa reported across sites with microbiological and accompanying physicochemical data, 42% have been detected at sites in which Hg was measured. Genes specifying Hg reduction and detoxification by microorganisms were detected in a number of hot springs across the region. Archaeal-like sequences, representing two crenarchaeal orders and one order each of the Euryarchaeota and Thaumarchaeota, dominated in metagenomes' MerA (the mercuric reductase protein) inventories, while bacterial homologs were mostly found in one deeply sequenced metagenome. MerA homologs were more frequently found in metagenomes of microbial communities in acidic springs than in circumneutral or high pH geothermal systems, possibly reflecting higher bioavailability of Hg under acidic conditions. MerA homologs were found in hot springs prokaryotic isolates affiliated with Bacteria and Archaea taxa. Acidic sites with high Hg concentrations contain more of Archaea than Bacteria taxa, while the reverse appears to be the case in circumneutral and high pH sites with high Hg concentrations. However, MerA was detected in only a small fraction of the Archaea and Bacteria taxa inhabiting sites containing Hg. Nevertheless, the presence of MerA homologs and their distribution patterns in systems, in which Hg has yet to be measured, demonstrates the potential for detoxification by Hg reduction in these geothermal systems, particularly the low pH springs that are dominated by Archaea.
Collapse
Affiliation(s)
- Gill G Geesey
- Department of Microbiology and Immunology, Thermal Biology Institute, Montana State University, Bozeman, MT 59717-3520, USA.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901-8525, USA.
| | - Sue King
- 2908 3rd Avenue North, Great Falls, MT 59401, USA.
| |
Collapse
|
61
|
Genome Sequence of the Photoarsenotrophic Bacterium Ectothiorhodospira sp. Strain BSL-9, Isolated from a Hypersaline Alkaline Arsenic-Rich Extreme Environment. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01139-16. [PMID: 27738045 PMCID: PMC5064118 DOI: 10.1128/genomea.01139-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The full genome sequence of Ectothiorhodospira sp. strain BSL-9 is reported here. This purple sulfur bacterium encodes an arxA-type arsenite oxidase within the arxB2AB1CD gene island and is capable of carrying out “photoarsenotrophy” anoxygenic photosynthetic arsenite oxidation. Its genome is composed of 3.5 Mb and has approximately 63% G+C content.
Collapse
|
62
|
Grim SL, Dick GJ. Photosynthetic Versatility in the Genome of Geitlerinema sp. PCC 9228 (Formerly Oscillatoria limnetica 'Solar Lake'), a Model Anoxygenic Photosynthetic Cyanobacterium. Front Microbiol 2016; 7:1546. [PMID: 27790189 PMCID: PMC5061849 DOI: 10.3389/fmicb.2016.01546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/15/2016] [Indexed: 12/27/2022] Open
Abstract
Anoxygenic cyanobacteria that use sulfide as the electron donor for photosynthesis are a potentially influential but poorly constrained force on Earth's biogeochemistry. Their versatile metabolism may have boosted primary production and nitrogen cycling in euxinic coastal margins in the Proterozoic. In addition, they represent a biological mechanism for limiting the accumulation of atmospheric oxygen, especially before the Great Oxidation Event and in the low-oxygen conditions of the Proterozoic. In this study, we describe the draft genome sequence of Geitlerinema sp. PCC 9228, formerly Oscillatoria limnetica 'Solar Lake', a mat-forming diazotrophic cyanobacterium that can switch between oxygenic photosynthesis and sulfide-based anoxygenic photosynthesis (AP). Geitlerinema possesses three variants of psbA, which encodes protein D1, a core component of the photosystem II reaction center. Phylogenetic analyses indicate that one variant is closely affiliated with cyanobacterial psbA genes that code for a D1 protein used for oxygen-sensitive processes. Another version is phylogenetically similar to cyanobacterial psbA genes that encode D1 proteins used under microaerobic conditions, and the third variant may be cued to high light and/or elevated oxygen concentrations. Geitlerinema has the canonical gene for sulfide quinone reductase (SQR) used in cyanobacterial AP and a putative transcriptional regulatory gene in the same operon. Another operon with a second, distinct sqr and regulatory gene is present, and is phylogenetically related to sqr genes used for high sulfide concentrations. The genome has a comprehensive nif gene suite for nitrogen fixation, supporting previous observations of nitrogenase activity. Geitlerinema possesses a bidirectional hydrogenase rather than the uptake hydrogenase typically used by cyanobacteria in diazotrophy. Overall, the genome sequence of Geitlerinema sp. PCC 9228 highlights potential cyanobacterial strategies to cope with fluctuating redox gradients and nitrogen availability that occur in benthic mats over a diel cycle. Such dynamic geochemical conditions likely also challenged Proterozoic cyanobacteria, modulating oxygen production. The genetic repertoire that underpins flexible oxygenic/anoxygenic photosynthesis in cyanobacteria provides a foundation to explore the regulation, evolutionary context, and biogeochemical implications of these co-occurring metabolisms in Earth history.
Collapse
Affiliation(s)
- Sharon L. Grim
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann ArborMI, USA
| |
Collapse
|
63
|
Hernandez-Maldonado J, Sanchez-Sedillo B, Stoneburner B, Boren A, Miller L, McCann S, Rosen M, Oremland RS, Saltikov CW. The genetic basis of anoxygenic photosynthetic arsenite oxidation. Environ Microbiol 2016; 19:130-141. [PMID: 27555453 DOI: 10.1111/1462-2920.13509] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
'Photoarsenotrophy', the use of arsenite as an electron donor for anoxygenic photosynthesis, is thought to be an ancient form of phototrophy along with the photosynthetic oxidation of Fe(II), H2 S, H2 and NO2-. Photoarsenotrophy was recently identified from Paoha Island's (Mono Lake, CA) arsenic-rich hot springs. The genomes of several photoarsenotrophs revealed a gene cluster, arxB2AB1CD, where arxA is predicted to encode for the sole arsenite oxidase. The role of arxA in photosynthetic arsenite oxidation was confirmed by disrupting the gene in a representative photoarsenotrophic bacterium, resulting in the loss of light-dependent arsenite oxidation. In situ evidence of active photoarsenotrophic microbes was supported by arxA mRNA detection for the first time, in red-pigmented microbial mats within the hot springs of Paoha Island. This work expands on the genetics for photosynthesis coupled to new electron donors and elaborates on known mechanisms for arsenic metabolism, thereby highlighting the complexities of arsenic biogeochemical cycling.
Collapse
Affiliation(s)
- Jaime Hernandez-Maldonado
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Benjamin Sanchez-Sedillo
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Brendon Stoneburner
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Alison Boren
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Laurence Miller
- US Geological Survey, 345 Middlefield Road Menlo Park, CA, 94025, USA
| | - Shelley McCann
- US Geological Survey, 345 Middlefield Road Menlo Park, CA, 94025, USA
| | - Michael Rosen
- US Geological Survey, 2730 N. Deer Run Road, Carson City, NV, 89701, USA
| | - Ronald S Oremland
- US Geological Survey, 345 Middlefield Road Menlo Park, CA, 94025, USA
| | - Chad W Saltikov
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
64
|
Microbial Antimony Biogeochemistry: Enzymes, Regulation, and Related Metabolic Pathways. Appl Environ Microbiol 2016; 82:5482-95. [PMID: 27342551 DOI: 10.1128/aem.01375-16] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimony (Sb) is a toxic metalloid that occurs widely at trace concentrations in soil, aquatic systems, and the atmosphere. Nowadays, with the development of its new industrial applications and the corresponding expansion of antimony mining activities, the phenomenon of antimony pollution has become an increasingly serious concern. In recent years, research interest in Sb has been growing and reflects a fundamental scientific concern regarding Sb in the environment. In this review, we summarize the recent research on bacterial antimony transformations, especially those regarding antimony uptake, efflux, antimonite oxidation, and antimonate reduction. We conclude that our current understanding of antimony biochemistry and biogeochemistry is roughly equivalent to where that of arsenic was some 20 years ago. This portends the possibility of future discoveries with regard to the ability of microorganisms to conserve energy for their growth from antimony redox reactions and the isolation of new species of "antimonotrophs."
Collapse
|
65
|
Sure S, Ackland ML, Gaur A, Gupta P, Adholeya A, Kochar M. Probing Synechocystis-Arsenic Interactions through Extracellular Nanowires. Front Microbiol 2016; 7:1134. [PMID: 27486454 PMCID: PMC4949250 DOI: 10.3389/fmicb.2016.01134] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/07/2016] [Indexed: 11/13/2022] Open
Abstract
Microbial nanowires (MNWs) can play an important role in the transformation and mobility of toxic metals/metalloids in environment. The potential role of MNWs in cell-arsenic (As) interactions has not been reported in microorganisms and thus we explored this interaction using Synechocystis PCC 6803 as a model system. The effect of half maximal inhibitory concentration (IC50) [~300 mM As (V) and ~4 mM As (III)] and non-inhibitory [4X lower than IC50, i.e., 75 mM As (V) and 1 mM As (III)] of As was studied on Synechocystis cells in relation to its effect on Chlorophyll (Chl) a, type IV pili (TFP)-As interaction and intracellular/extracellular presence of As. In silico analysis showed that subunit PilA1 of electrically conductive TFP, i.e., microbial nanowires of Synechocystis have putative binding sites for As. In agreement with in silico analysis, transmission electron microscopy analysis showed that As was deposited on Synechocystis nanowires at all tested concentrations. The potential of Synechocystis nanowires to immobilize As can be further enhanced and evaluated on a large scale and thus can be applied for bioremediation studies.
Collapse
Affiliation(s)
- Sandeep Sure
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| | - M L Ackland
- Centre for Cellular & Molecular Biology, Deakin University, Melbourne VIC, Australia
| | - Aditya Gaur
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| | - Priyanka Gupta
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| | - Alok Adholeya
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| | - Mandira Kochar
- TERI-Deakin Nano biotechnology Centre, The Energy and Resources Institute Gurgaon, India
| |
Collapse
|
66
|
Heavy metal resistance in halophilicBacteriaandArchaea. FEMS Microbiol Lett 2016; 363:fnw146. [DOI: 10.1093/femsle/fnw146] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2016] [Indexed: 12/25/2022] Open
|
67
|
Xiao KQ, Li LG, Ma LP, Zhang SY, Bao P, Zhang T, Zhu YG. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 211:1-8. [PMID: 26736050 DOI: 10.1016/j.envpol.2015.12.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans.
Collapse
Affiliation(s)
- Ke-Qing Xiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Li-Guan Li
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Li-Ping Ma
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Si-Yu Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Bao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing, 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
68
|
Varaljay VA, Satagopan S, North JA, Witte B, Dourado MN, Anantharaman K, Arbing MA, McCann SH, Oremland RS, Banfield JF, Wrighton KC, Tabita FR. Functional metagenomic selection of ribulose 1, 5-bisphosphate carboxylase/oxygenase from uncultivated bacteria. Environ Microbiol 2016; 18:1187-99. [PMID: 26617072 PMCID: PMC10035430 DOI: 10.1111/1462-2920.13138] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 01/29/2023]
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a critical yet severely inefficient enzyme that catalyses the fixation of virtually all of the carbon found on Earth. Here, we report a functional metagenomic selection that recovers physiologically active RubisCO molecules directly from uncultivated and largely unknown members of natural microbial communities. Selection is based on CO2 -dependent growth in a host strain capable of expressing environmental deoxyribonucleic acid (DNA), precluding the need for pure cultures or screening of recombinant clones for enzymatic activity. Seventeen functional RubisCO-encoded sequences were selected using DNA extracted from soil and river autotrophic enrichments, a photosynthetic biofilm and a subsurface groundwater aquifer. Notably, three related form II RubisCOs were recovered which share high sequence similarity with metagenomic scaffolds from uncultivated members of the Gallionellaceae family. One of the Gallionellaceae RubisCOs was purified and shown to possess CO2 /O2 specificity typical of form II enzymes. X-ray crystallography determined that this enzyme is a hexamer, only the second form II multimer ever solved and the first RubisCO structure obtained from an uncultivated bacterium. Functional metagenomic selection leverages natural biological diversity and billions of years of evolution inherent in environmental communities, providing a new window into the discovery of CO2 -fixing enzymes not previously characterized.
Collapse
Affiliation(s)
- Vanessa A. Varaljay
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Brian Witte
- The Botanical Research Institute of Texas, Fort Worth, TX 76107, USA
| | | | - Karthik Anantharaman
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - Mark A. Arbing
- Protein Expression Technology Center, UCLA-DOE Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - Kelly C. Wrighton
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- For correspondence. ; Tel. +1 614 292 4297; Fax: +1 614 292 6337
| |
Collapse
|
69
|
Lin TY, Wei CC, Huang CW, Chang CH, Hsu FL, Liao VHC. Both Phosphorus Fertilizers and Indigenous Bacteria Enhance Arsenic Release into Groundwater in Arsenic-Contaminated Aquifers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2214-2222. [PMID: 26937943 DOI: 10.1021/acs.jafc.6b00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arsenic (As) is a human carcinogen, and arsenic contamination in groundwater is a worldwide public health concern. Arsenic-affected areas are found in many places but are reported mostly in agricultural farmlands, yet the interaction of fertilizers, microorganisms, and arsenic mobilization in arsenic-contaminated aquifers remains uncharacterized. This study investigates the effects of fertilizers and bacteria on the mobilization of arsenic in two arsenic-contaminated aquifers. We performed microcosm experiments using arsenic-contaminated sediments and amended with inorganic nitrogenous or phosphorus fertilizers for 1 and 4 months under aerobic and anaerobic conditions. The results show that microcosms amended with 100 mg/L phosphorus fertilizers (dipotassium phosphate), but not nitrogenous fertilizers (ammonium sulfate), significantly increase aqueous As(III) release in arsenic-contaminated sediments under anaerobic condition. We also show that concentrations of iron, manganese, potassium, sodium, calcium, and magnesium are increased in the aqueous phase and that the addition of dipotassium phosphate causes a further increase in aqueous iron, potassium, and sodium, suggesting that multiple metal elements may take part in the arsenic release process. Furthermore, microbial analysis indicates that the dominant microbial phylum is shifted from α-proteobacteria to β- and γ-proteobacteria when the As(III) is increased and phosphate is added in the aquifer. Our results provide evidence that both phosphorus fertilizers and microorganisms can mediate the release of arsenic to groundwater in arsenic-contaminated sediments under anaerobic condition. Our study suggests that agricultural activity such as the use of fertilizers and monitoring phosphate concentration in groundwater should be taken into consideration for the management of arsenic in groundwater.
Collapse
Affiliation(s)
- Tzu-Yu Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chia-Cheng Wei
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chi-Wei Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| | - Fu-Lan Hsu
- Forest Chemistry Division, Taiwan Forestry Research Institute , 53 Nanhai Road, Taipei 100, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
70
|
Sanyal SK, Mou TJ, Chakrabarty RP, Hoque S, Hossain MA, Sultana M. Diversity of arsenite oxidase gene and arsenotrophic bacteria in arsenic affected Bangladesh soils. AMB Express 2016; 6:21. [PMID: 26980601 PMCID: PMC4792827 DOI: 10.1186/s13568-016-0193-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 11/10/2022] Open
Abstract
Arsenic (As) contaminated soils are enriched with arsenotrophic bacteria. The present study analyzes the microbiome and arsenotrophic genes-from As affected soil samples of Bhanga, Charvadrason and Sadarpur of Faridpur district in Bangladesh in summer (SFDSL1, 2, 3) and in winter (WFDSL1, 2, 3). Total As content of the soils was within the range of 3.24-17.8 mg/kg as per atomic absorption spectroscopy. The aioA gene, conferring arsenite [As (III)] oxidation, was retrieved from the soil sample, WFDSL-2, reported with As concentration of 4.9 mg/kg. Phylogenetic analysis revealed that the aioA genes of soil WFDSL-2 were distributed among four major phylogenetic lineages comprised of α, β, γ Proteobacteria and Archaea with a dominance of β Proteobacteria (56.67 %). An attempt to enrich As (III) metabolizing bacteria resulted 53 isolates. ARDRA (amplified ribosomal DNA restriction analysis) followed by 16S rRNA gene sequencing of the 53 soil isolates revealed that they belong to six genera; Pseudomonas spp., Bacillus spp., Brevibacillus spp., Delftia spp., Wohlfahrtiimonas spp. and Dietzia spp. From five different genera, isolates Delftia sp. A2i, Pseudomonas sp. A3i, W. chitiniclastica H3f, Dietzia sp. H2f, Bacillus sp. H2k contained arsB gene and showed arsenite tolerance up-to 27 mM. Phenotypic As (III) oxidation potential was also confirmed with the isolates of each genus and isolate Brevibacillus sp. A1a showed significant As (III) transforming potential of 0.2425 mM per hour. The genetic information of bacterial arsenotrophy and arsenite oxidation added scientific information about the possible bioremediation potential of the soil isolates in Bangladesh.
Collapse
|
71
|
Andres J, Bertin PN. The microbial genomics of arsenic. FEMS Microbiol Rev 2016; 40:299-322. [DOI: 10.1093/femsre/fuv050] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
|
72
|
Abstract
A fluorescent probe showed high selectivity and sensitivity for an organoarsenic blister agent simulant, arsenic trichloride.
Collapse
Affiliation(s)
- Doo-Hee Lee
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Dong-Nam Lee
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jong-In Hong
- Department of Chemistry
- College of Natural Sciences
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
73
|
Comparative genome analysis of Lysinibacillus B1-CDA, a bacterium that accumulates arsenics. Genomics 2015; 106:384-92. [DOI: 10.1016/j.ygeno.2015.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/29/2015] [Accepted: 09/15/2015] [Indexed: 11/18/2022]
|
74
|
Terry LR, Kulp TR, Wiatrowski H, Miller LG, Oremland RS. Microbiological oxidation of antimony(III) with oxygen or nitrate by bacteria isolated from contaminated mine sediments. Appl Environ Microbiol 2015; 81:8478-88. [PMID: 26431974 PMCID: PMC4644646 DOI: 10.1128/aem.01970-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/29/2015] [Indexed: 11/20/2022] Open
Abstract
Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [(14)C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.
Collapse
Affiliation(s)
- Lee R Terry
- Department of Geological Sciences and Environmental Studies, Binghamton University, SUNY, Binghamton, New York, USA
| | - Thomas R Kulp
- Department of Geological Sciences and Environmental Studies, Binghamton University, SUNY, Binghamton, New York, USA
| | | | | | | |
Collapse
|
75
|
Ying SC, Damashek J, Fendorf S, Francis CA. Indigenous arsenic(V)-reducing microbial communities in redox-fluctuating near-surface sediments of the Mekong Delta. GEOBIOLOGY 2015; 13:581-587. [PMID: 26466963 DOI: 10.1111/gbi.12152] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/10/2015] [Indexed: 06/05/2023]
Abstract
Arsenic (As) cycling within soils and sediments of the Mekong Delta of Cambodia is affected by drastic redox fluctuations caused by seasonal monsoons. Extensive flooding during monsoon seasons creates anoxic soil conditions that favor anaerobic microbial processes, including arsenate [As(V)] respiration-a process contributing to the mobilization of As. Repeated oxidation and reduction in near-surface sediments, which contain 10-40 mg kg(-1) As, lead to the eventual downward movement of As to the underlying aquifer. Amplification of a highly conserved functional gene encoding dissimilatory As(V) reductase, arrA, can be used as a molecular marker to detect the genetic potential for As(V) respiration in environmental samples. However, few studies have successfully amplified arrA from sediments without prior enrichment, which can drastically shift community structure. In the present study, we examine the distribution and diversity of arrA genes amplified from multiple sites within the Cambodian Mekong Delta as a function of near-surface depth (10, 50, 100, 200, and 400 cm), where sediments undergo seasonal redox fluctuations. We report successful amplification of 302 arrA gene sequences (72 OTUs) from near-surface Cambodian soils (without prior enrichment or stimulation with carbon amendments), where a large majority (>70%) formed a well-supported clade that is phylogenetically distinct from previously reported sequences from Cambodia and other South and Southeast Asian sediments, with highest sequence similarity to known Geobacter species capable of As(V) respiration, further supporting the potentially important role of Geobacter sp. in arsenic mobilization in these regions.
Collapse
Affiliation(s)
- S C Ying
- Department of Environmental Sciences, University of California-Riverside, Riverside, CA, USA
| | - J Damashek
- Earth System Science Department, Stanford University, Stanford, CA, USA
| | - S Fendorf
- Earth System Science Department, Stanford University, Stanford, CA, USA
| | - C A Francis
- Earth System Science Department, Stanford University, Stanford, CA, USA
| |
Collapse
|
76
|
Chen F, Cao Y, Wei S, Li Y, Li X, Wang Q, Wang G. Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1. Front Microbiol 2015; 6:923. [PMID: 26441863 PMCID: PMC4563254 DOI: 10.3389/fmicb.2015.00923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 01/25/2023] Open
Abstract
Previously, the expression of arsenite [As(III)] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III)-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III)-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and gene knock-out mutation were performed, and two mutants, HAL1-phoR931 and HAL1-▵phoB, were obtained in strain HAL1. The phoR and phoB constitute a two-component system which is responsible for phosphate (Pi) acquisition and assimilation. Both of the mutants showed negative As(III)-oxidation phenotypes in low Pi condition (0.1 mM) but not under normal Pi condition (1 mM). The phoBR complementation strain HAL1-▵phoB-C reversed the mutants' null phenotypes back to wild type status. Meanwhile, lacZ reporter fusions using pCM-lacZ showed that the expression of phoBR and aioBA were both induced by As(III) but were not induced in HAL1-phoR931 and HAL1-▵phoB. Using 15 consensus Pho box sequences, a putative Pho box was found in the aioBA regulation region. PhoB was able to bind to the putative Pho box in vivo (bacterial one-hybrid detection) and in vitro (electrophoretic mobility gel shift assay), and an 18-bp binding sequence containing nine conserved bases were determined. This study provided the evidence that PhoBR regulates the expression of aioBA in Halomonas sp. HAL1 under low Pi condition. The new regulation model further implies the close metabolic connection between As and Pi.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Yajing Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Sha Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Yanzhi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Xiangyang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Qian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
77
|
Metagenomic study of red biofilms from Diamante Lake reveals ancient arsenic bioenergetics in haloarchaea. ISME JOURNAL 2015; 10:299-309. [PMID: 26140530 DOI: 10.1038/ismej.2015.109] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 11/08/2022]
Abstract
Arsenic metabolism is proposed to be an ancient mechanism in microbial life. Different bacteria and archaea use detoxification processes to grow under high arsenic concentration. Some of them are also able to use arsenic as a bioenergetic substrate in either anaerobic arsenate respiration or chemolithotrophic growth on arsenite. However, among the archaea, bioenergetic arsenic metabolism has only been found in the Crenarchaeota phylum. Here we report the discovery of haloarchaea (Euryarchaeota phylum) biofilms forming under the extreme environmental conditions such as high salinity, pH and arsenic concentration at 4589 m above sea level inside a volcano crater in Diamante Lake, Argentina. Metagenomic analyses revealed a surprisingly high abundance of genes used for arsenite oxidation (aioBA) and respiratory arsenate reduction (arrCBA) suggesting that these haloarchaea use arsenic compounds as bioenergetics substrates. We showed that several haloarchaea species, not only from this study, have all genes required for these bioenergetic processes. The phylogenetic analysis of aioA showed that haloarchaea sequences cluster in a novel and monophyletic group, suggesting that the origin of arsenic metabolism in haloarchaea is ancient. Our results also suggest that arsenite chemolithotrophy likely emerged within the archaeal lineage. Our results give a broad new perspective on the haloarchaea metabolism and shed light on the evolutionary history of arsenic bioenergetics.
Collapse
|
78
|
Planer-Friedrich B, Härtig C, Lohmayer R, Suess E, McCann SH, Oremland R. Anaerobic Chemolithotrophic Growth of the Haloalkaliphilic Bacterium Strain MLMS-1 by Disproportionation of Monothioarsenate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6554-6563. [PMID: 25941832 DOI: 10.1021/acs.est.5b01165] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel chemolithotrophic metabolism based on a mixed arsenic-sulfur species has been discovered for the anaerobic deltaproteobacterium, strain MLMS-1, a haloalkaliphile isolated from Mono Lake, California, U.S. Strain MLMS-1 is the first reported obligate arsenate-respiring chemoautotroph which grows by coupling arsenate reduction to arsenite with the oxidation of sulfide to sulfate. In that pathway the formation of a mixed arsenic-sulfur species was reported. That species was assumed to be monothioarsenite ([H2As(III)S(-II)O2](-)), formed as an intermediate by abiotic reaction of arsenite with sulfide. We now report that this species is monothioarsenate ([HAs(V)S(-II)O3](2-)) as revealed by X-ray absorption spectroscopy. Monothioarsenate forms by abiotic reaction of arsenite with zerovalent sulfur. Monothioarsenate is kinetically stable under a wide range of pH and redox conditions. However, it was metabolized rapidly by strain MLMS-1 when incubated with arsenate. Incubations using monothioarsenate confirmed that strain MLMS-1 was able to grow (μ = 0.017 h(-1)) on this substrate via a disproportionation reaction by oxidizing the thio-group-sulfur (S(-II)) to zerovalent sulfur or sulfate while concurrently reducing the central arsenic atom (As(V)) to arsenite. Monothioarsenate disproportionation could be widespread in nature beyond the already studied arsenic and sulfide rich hot springs and soda lakes where it was discovered.
Collapse
Affiliation(s)
- B Planer-Friedrich
- †Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - C Härtig
- †Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - R Lohmayer
- †Department of Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - E Suess
- ‡Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- §Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), 8600 Dübendorf, Switzerland
| | - S H McCann
- ∥U.S. Geological Survey, Menlo Park, California, United States
| | - R Oremland
- ∥U.S. Geological Survey, Menlo Park, California, United States
| |
Collapse
|
79
|
Roy M, Giri AK, Dutta S, Mukherjee P. Integrated phytobial remediation for sustainable management of arsenic in soil and water. ENVIRONMENT INTERNATIONAL 2015; 75:180-98. [PMID: 25481297 DOI: 10.1016/j.envint.2014.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 05/08/2023]
Abstract
Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications of phytoremediation programs.
Collapse
Affiliation(s)
- Madhumita Roy
- Techno India University, Salt Lake, Kolkata 700091, India
| | - Ashok K Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4Raja S.C. Mallick Road, Kolkata 700032, West Bengal, India
| | - Sourav Dutta
- Techno India University, Salt Lake, Kolkata 700091, India
| | | |
Collapse
|
80
|
Huertas MJ, López-Maury L, Giner-Lamia J, Sánchez-Riego AM, Florencio FJ. Metals in cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life (Basel) 2014; 4:865-86. [PMID: 25501581 PMCID: PMC4284471 DOI: 10.3390/life4040865] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022] Open
Abstract
Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803.
Collapse
Affiliation(s)
- María José Huertas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Luis López-Maury
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, IBB-CBME, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Ana María Sánchez-Riego
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| | - Francisco Javier Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Américo Vespucio 49, E-41092 Sevilla, Spain.
| |
Collapse
|
81
|
Wang NX, Huang B, Xu S, Wei ZB, Miao AJ, Ji R, Yang LY. Effects of nitrogen and phosphorus on arsenite accumulation, oxidation, and toxicity in Chlamydomonas reinhardtii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:167-174. [PMID: 25456231 DOI: 10.1016/j.aquatox.2014.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/14/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
We studied arsenite (iAs(III)) accumulation, oxidation, and toxicity in the freshwater green alga Chlamydomonas reinhardtii under nutrient-enriched (+NP), phosphorus-limited (-P), and nitrogen-limited (-N) conditions. The -P alga (55.1 μM) had a Michaelis constant (Kd) for uptake approximately one tenth of the +NP (419 μM) and -N (501 μM) cells, indicating iAs(III) uptake inhibition by extracellular phosphate. This conclusion was supported by the hyperbolic reduction in iAs(III) uptake rate (V) from 9.2 to 0.8 μmol/g-dw/h when the extracellular phosphate concentration went up from 0 to 250 μM. The maximal iAs(III) uptake rate (Vmax) of the -N alga (24.3 μmol/g-dw/h) was twice as much as that of the +NP (12 μmol/g-dw/h) and -P (8.1 μmol/g-dw/h) cells. It implies that more arsenic transporters were synthesized under the -N condition. Once accumulated, iAs(III) was oxidized and a higher proportion of arsenate (iAs(V)) was observed at lower [As]dis or under nutrient-limited conditions. Nevertheless, iAs(III) oxidation mainly occurred outside the cells with the extent of oxidation reciprocal to [As]dis. Based on the logistic modeling of the concentration-response curves in the +NP, -P, and -N toxicity tests, iAs(III) had an [As]dis-based EC50 of 1763, 13.1, and 1208 μM and an intracellular arsenic concentration based EC50 of 35.6, 28.8, and 195 μmol/g-dw, respectively. Higher iAs(III) toxicity to the -P cells occured because of their increased iAs(III) accumulation, whereas the underlying mechanisms why the -N alga was more tolerant need to be further revealed. Overall, both N and P had remarkable effects on the behavior and effects of iAs(III), which cannot be disregarded in the biogeochemical cycling research of arsenic.
Collapse
Affiliation(s)
- Ning-Xin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Bin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Shen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Zhong-Bo Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu Province, China
| | - Ai-Jun Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu Province, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu Province, China.
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, Jiangsu Province, China
| |
Collapse
|
82
|
Edwardson CF, Planer-Friedrich B, Hollibaugh JT. Transformation of monothioarsenate by haloalkaliphilic, anoxygenic photosynthetic purple sulfur bacteria. FEMS Microbiol Ecol 2014; 90:858-68. [PMID: 25318694 DOI: 10.1111/1574-6941.12440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 10/24/2022] Open
Abstract
Thioarsenates are the dominant arsenic species in arsenic-rich, alkaline, and sulfidic waters, but bacterial interactions with these compounds have only recently been examined. Previous studies have shown that microorganisms play a role in the transformation of monothioarsenate to arsenate, including use of monothioarsenate as a chemolithotrophic electron donor coupled with oxygen as an electron acceptor. We obtained enrichment cultures from two saline, alkaline lakes (Mono Lake, CA and Big Soda Lake, NV) that are able to use monothioarsenate as the sole electron donor for anoxygenic photosynthesis. These anoxic cultures were able to convert a 1 mM mixture of thioarsenates completely to arsenate in c. 13 days and 4 mM monothioarsenate to arsenate in c. 17 days. This conversion was light dependent; thus, monothioarsenate can be used as the sole electron donor for anoxygenic photosynthesis. Both of the Mono Lake and Big Soda Lake enrichment cultures were dominated by an organism closely related to Ectothiorhodospira species. We tested additional strains of purple sulfur bacteria and found widespread ability to use monothioarsenate as an electron donor. The ability of bacteria to transform thioarsenates directly via anoxygenic photosynthesis adds a new perspective to the well-studied arsenic and sulfur cycles.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, USA; Department of Microbiology, University of Georgia, Athens, GA, USA
| | | | | |
Collapse
|
83
|
Chang FJ, Chung CH, Chen PA, Liu CW, Coynel A, Vachaud G. Assessment of arsenic concentration in stream water using neuro fuzzy networks with factor analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 494-495:202-210. [PMID: 25046611 DOI: 10.1016/j.scitotenv.2014.06.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/27/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
We propose a systematical approach to assessing arsenic concentration in a river through: important factor extraction by a nonlinear factor analysis; arsenic concentration estimation by the neuro-fuzzy network; and impact assessment of important factors on arsenic concentration by the membership degrees of the constructed neuro-fuzzy network. The arsenic-contaminated Huang Gang Creek in northern Taiwan is used as a study case. Results indicate that rainfall, nitrite nitrogen and temperature are important factors and the proposed estimation model (ANFIS(GT)) is superior to the two comparative models, in which 50% and 52% improvements in RMSE are made over ANFIS(CC) and ANFIS(all), respectively. Results reveal that arsenic concentration reaches the highest in an environment of lower temperature, higher nitrite nitrogen concentration and larger one-month antecedent rainfall; while it reaches the lowest in an environment of higher temperature, lower nitrite nitrogen concentration and smaller one-month antecedent rainfall. It is noted that these three selected factors are easy-to-collect. We demonstrate that the proposed methodology is a useful and effective methodology, which can be adapted to other similar settings to reliably model water quality based on parameters of interest and/or study areas of interest for universal usage. The proposed methodology gives a quick and reliable way to estimate arsenic concentration, which makes good contribution to water environment management.
Collapse
Affiliation(s)
- Fi-John Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC.
| | - Chang-Han Chung
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Pin-An Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chen-Wuing Liu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Alexandra Coynel
- Laboratoire d'Environnements et Paléoenvironnements Océaniques et Continentaux, University Bordeaux 1, UMR EPOC, France
| | - Georges Vachaud
- Laboratoire Transferts en Hydrologie et Environnement, LTHE, UMR 5564 CNRS-IRD-UJF, Grenoble, France
| |
Collapse
|
84
|
Hamamura N, Itai T, Liu Y, Reysenbach AL, Damdinsuren N, Inskeep WP. Identification of anaerobic arsenite-oxidizing and arsenate-reducing bacteria associated with an alkaline saline lake in Khovsgol, Mongolia. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:476-482. [PMID: 25646538 DOI: 10.1111/1758-2229.12144] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microbial arsenic transformation pathways associated with a saline lake located in northern Mongolia were examined using molecular biological and culturing approaches. Bacterial 16S rRNA gene sequences recovered from saline lake sediments and soils were affiliated with haloalkaliphiles, including Bacillus and Halomonas spp. Diverse sequences of arsenate respiratory reductase (arrA) and a new group of arsenite oxidase (arxA) genes were also identified. Pure cultures of arsenate-reducing Nitrincola strain and anaerobic arsenite-oxidizing Halomonas strain were isolated. The chemoorganotrophic Halomonas strain contains arxA gene similar to that of a chemoautotrophic arsenite-oxidizing Alkalilimnicola ehrlichii strain MLHE-1. These results revealed the diversity of arsenic transformation pathways associated with a geographically distinct saline system and the potential contribution of arx-dependent arsenite oxidation by heterotrophic bacteria.
Collapse
|
85
|
Coregulated genes link sulfide:quinone oxidoreductase and arsenic metabolism in Synechocystis sp. strain PCC6803. J Bacteriol 2014; 196:3430-40. [PMID: 25022856 DOI: 10.1128/jb.01864-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the biogeochemistry of the two environmentally hazardous compounds arsenic and sulfide has been extensively investigated, the biological interference of these two toxic but potentially energy-rich compounds has only been hypothesized and indirectly proven. Here we provide direct evidence for the first time that in the photosynthetic model organism Synechocystis sp. strain PCC6803 the two metabolic pathways are linked by coregulated genes that are involved in arsenic transport, sulfide oxidation, and probably in sulfide-based alternative photosynthesis. Although Synechocystis sp. strain PCC6803 is an obligate photoautotrophic cyanobacterium that grows via oxygenic photosynthesis, we discovered that specific genes are activated in the presence of sulfide or arsenite to exploit the energy potentials of these chemicals. These genes form an operon that we termed suoRSCT, located on a transposable element of type IS4 on the plasmid pSYSM of the cyanobacterium. suoS (sll5036) encodes a light-dependent, type I sulfide:quinone oxidoreductase. The suoR (sll5035) gene downstream of suoS encodes a regulatory protein that belongs to the ArsR-type repressors that are normally involved in arsenic resistance. We found that this repressor has dual specificity, resulting in 200-fold induction of the operon upon either arsenite or sulfide exposure. The suoT gene encodes a transmembrane protein similar to chromate transporters but in fact functioning as an arsenite importer at permissive concentrations. We propose that the proteins encoded by the suoRSCT operon might have played an important role under anaerobic, reducing conditions on primordial Earth and that the operon was acquired by the cyanobacterium via horizontal gene transfer.
Collapse
|
86
|
Lin J, Chen N, Pan Y. Arsenic speciation in newberyite (MgHPO(4)·3H(2)O) determined by synchrotron X-ray absorption and electron paramagnetic resonance spectroscopies: implications for the fate of arsenic in green fertilizers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6938-6946. [PMID: 24870812 DOI: 10.1021/es405735p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Newberyite (MgHPO4·3H2O), a biomineral and common constituent in guano deposits, is an important decomposition product of struvite that is an increasingly popular green fertilizer recovered from wastewaters. Two samples of newberyite containing 1099 and 25 ppm As have been obtained at pH = 6.4, by using Na2HAsO4·7H2O and NaAsO2 as the dopant, respectively (i.e., Synthesis 1 and Synthesis 2). Synchrotron arsenic K-edge X-ray absorption spectroscopic data of newberyite from Synthesis 1 show that As(5+) is dominant and has a local environment typical of the arsenate species. Single-crystal electron paramagnetic resonance (EPR) spectra of gamma-ray-irradiated newberyite from Synthesis 1 contain two arsenic-associated oxyradicals: [AsO3](2-) and [AsO2](2-) derived from As(5+) and As(3+), respectively, at the P site. Quantitative analyses of powder EPR spectra allow determinations of the As(5+) and As(3+) contents in newberyite from Synthesis 1 and Synthesis 2. Elevated concentrations of arsenic also occur in natural newberyite transformed from struvite in guano deposits and record the accumulation of this metalloid in the food chain. Therefore, newberyite, which sequesters As during crystallization and retains this metalloid during the transformation from struvite, can attenuate arsenic contamination from green fertilizers in moderately acidic soils. Also, the capacity for accommodating both As(5+) and As(3+) in the crystal lattice coupled with simple chemistry and easy crystallization at ambient conditions makes newberyite an attractive material for remediation of arsenic contamination in aqueous environments.
Collapse
Affiliation(s)
- Jinru Lin
- Department of Geological Sciences, University of Saskatchewan , Saskatoon, SK S7N 5E2, Canada
| | | | | |
Collapse
|
87
|
Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 2014; 9:e96826. [PMID: 24797411 PMCID: PMC4010505 DOI: 10.1371/journal.pone.0096826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/11/2014] [Indexed: 12/02/2022] Open
Abstract
Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [AsIII] and arsenate [AsV]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.
Collapse
|
88
|
Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP. Earth Abides Arsenic Biotransformations. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES 2014; 42:443-467. [PMID: 26778863 PMCID: PMC4712701 DOI: 10.1146/annurev-earth-060313-054942] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Fang-Jie Zhao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| |
Collapse
|
89
|
Costa PS, Scholte LLS, Reis MP, Chaves AV, Oliveira PL, Itabayana LB, Suhadolnik MLS, Barbosa FAR, Chartone-Souza E, Nascimento AMA. Bacteria and genes involved in arsenic speciation in sediment impacted by long-term gold mining. PLoS One 2014; 9:e95655. [PMID: 24755825 PMCID: PMC3995719 DOI: 10.1371/journal.pone.0095655] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
Abstract
The bacterial community and genes involved in geobiocycling of arsenic (As) from sediment impacted by long-term gold mining were characterized through culture-based analysis of As-transforming bacteria and metagenomic studies of the arsC, arrA, and aioA genes. Sediment was collected from the historically gold mining impacted Mina stream, located in one of the world’s largest mining regions known as the “Iron Quadrangle”. A total of 123 As-resistant bacteria were recovered from the enrichment cultures, which were phenotypically and genotypically characterized for As-transformation. A diverse As-resistant bacteria community was found through phylogenetic analyses of the 16S rRNA gene. Bacterial isolates were affiliated with Proteobacteria, Firmicutes, and Actinobacteria and were represented by 20 genera. Most were AsV-reducing (72%), whereas AsIII-oxidizing accounted for 20%. Bacteria harboring the arsC gene predominated (85%), followed by aioA (20%) and arrA (7%). Additionally, we identified two novel As-transforming genera, Thermomonas and Pannonibacter. Metagenomic analysis of arsC, aioA, and arrA sequences confirmed the presence of these genes, with arrA sequences being more closely related to uncultured organisms. Evolutionary analyses revealed high genetic similarity between some arsC and aioA sequences obtained from isolates and clone libraries, suggesting that those isolates may represent environmentally important bacteria acting in As speciation. In addition, our findings show that the diversity of arrA genes is wider than earlier described, once none arrA-OTUs were affiliated with known reference strains. Therefore, the molecular diversity of arrA genes is far from being fully explored deserving further attention.
Collapse
Affiliation(s)
- Patrícia S. Costa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Larissa L. S. Scholte
- Grupo de Genômica e Biologia Computacional, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Mariana P. Reis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Anderson V. Chaves
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Pollyanna L. Oliveira
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Luiza B. Itabayana
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Maria Luiza S. Suhadolnik
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Francisco A. R. Barbosa
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Edmar Chartone-Souza
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
| | - Andréa M. A. Nascimento
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais; Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
90
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
91
|
Microbiology of inorganic arsenic: From metabolism to bioremediation. J Biosci Bioeng 2014; 118:1-9. [PMID: 24507904 DOI: 10.1016/j.jbiosc.2013.12.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/11/2013] [Accepted: 12/11/2013] [Indexed: 01/30/2023]
Abstract
Arsenic (As) contamination of drinking water and soils poses a threat to a large number of people worldwide, especially in Southeast Asia. The predominant forms of As in soils and aquifers are inorganic arsenate [As(V)] and arsenite [As(III)], with the latter being more mobile and toxic. Thus, redox transformations of As are of great importance to predict its fate in the environment, as well as to achieve remediation of As-contaminated water and soils. Although As has been recognized as a toxic element, a wide variety of microorganisms, mainly bacteria, can use it as an electron donor for autotrophic growth or as an electron acceptor for anaerobic respiration. In addition, As detoxification systems in which As is oxidized to the less toxic form or reduced for subsequent excretion are distributed widely in microorganisms. This review describes current development of physiology, biochemistry, and genomics of arsenic-transforming bacteria. Potential application of such bacteria to removal of As from soils and water is also highlighted.
Collapse
|
92
|
Lin HZ, Yue YH, Lü JC, Zhao GC, Yang PS. Variation in composition and relative content of accumulated photopigments in a newly isolated Rhodobacter capsulatus strain XJ-1 in response to arsenic. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:1493-1500. [PMID: 25137537 DOI: 10.1080/10934529.2014.937168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study aimed to isolate and characterize a new arsenic (As)-tolerant bacterial strain (XJ-1) from the Halosol soil, to evaluate its As tolerance, and to examine the variation in composition and relative content of accumulated photosynthetic pigments in response to As. The experiments were performed with high-performance liquid chromatography (HPLC), inductively-coupled plasma mass spectrometry (ICP-MS), liquid chromatography/mass spectrometry (LC/MS), thin-layer chromatography (TLC) and grayscale intensity image analysis using Gel-Pro analyzer software. Strain XJ-1 was identified as Rhodobacter (R.) capsulatus based on 16S rRNA gene sequencing and physiological characteristics. Strain XJ-1 was able to grow when exposed to arsenite [As(III)] and arsenate [As(V)] under anaerobic-light conditions. The median effective concentrations (EC50) of As(III) and As(V) were 0.61 mM and 2.03 mM, respectively. Strain XJ-1 could reduce As(V) to As(III), but As(III) could not be transformed back to As(V) or other organic As compounds. Accumulation of bacteriochlorophylls and carotenoids in strain XJ-1 varied in the presence of 0.2-1.2 mM As(III) and 0-2.5 mM As(V). As exposure resulted in pronounced variation in compositions and contents of photosynthetic pigments, especially hydroxyspheroidene, bacteriophaeophytin, the ratio of tetrahydrogeranylgeranyl to phytylated BChl a, and the ratio of spheroidene to spheroidenone. This research highlights the adaptative response of R. capsulatus strain XJ-1 photosystems to environmental As, and demonstrates the potential of utilizing the sensitivity of its photosynthetic pigments to As(III) and As(V) for the biodetection of As in the environment.
Collapse
Affiliation(s)
- Hua Z Lin
- a College of Life Science , Shanxi University , Taiyuan , China
| | | | | | | | | |
Collapse
|
93
|
Rahman MA, Hassler C. Is arsenic biotransformation a detoxification mechanism for microorganisms? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 146:212-219. [PMID: 24321575 DOI: 10.1016/j.aquatox.2013.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 06/03/2023]
Abstract
Arsenic (As) is extremely toxic to living organisms at high concentration. In aquatic systems, As exists in different chemical forms. The two major inorganic As (iAs) species are As(V), which is thermodynamically stable in oxic waters, and As(III), which is predominant in anoxic conditions. Photosynthetic microorganisms (e.g., phytoplankton and cyanobacteria) take up As(V), biotransform it to As(III), then biomethylate it to methylarsenic (MetAs) forms. Although As(III) is more toxic than As(V), As(III) is much more easily excreted from the cells than As(V). Therefore, majority of researchers consider the reduction of As(V) to As(III) as a detoxification process. The biomethylation process results in the conversion of toxic iAs to the less toxic pentavalent MetAs forms (monomethylarsonate; MMA(V), dimethylarsonate; DMA(V), and trimethylarsenic oxide; TMAO(V)) and trimethylarsine (TMAO(III)). However, biomethylation by microorganisms also produces monomethylarsenite (MMA(III)) and dimethylarsenite (DMA(III)), which are more toxic than iAs, as a result of biomethylation by the microorganisms, demonstrates the need to reconsider to what extent As biomethylation contributes to a detoxification process. In this review, we focused on the discussion of whether the biotransformation of As species in microorganisms is really a detoxification process with recent data.
Collapse
Affiliation(s)
- M Azizur Rahman
- Centre for Environmental Sustainability, School of the Environment, Faculty of Science, University of Technology, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| | - Christel Hassler
- Marine and Lake Biogeochemistry, Institute F. A. Forel, University of Geneva, 10 rte de Suisse, Versoix, 1290 Switzerland
| |
Collapse
|
94
|
Ohtsuka T, Yamaguchi N, Makino T, Sakurai K, Kimura K, Kudo K, Homma E, Dong DT, Amachi S. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6263-6271. [PMID: 23668621 DOI: 10.1021/es400231x] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Dissimilatory As(V) (arsenate)-reducing bacteria may play an important role in arsenic release from anoxic sediments in the form of As(III) (arsenite). Although respiratory arsenate reductase genes (arrA) closely related to Geobacter species have been frequently detected in arsenic-rich sediments, it is still unclear whether they directly participate in arsenic release, mainly due to lack of pure cultures capable of arsenate reduction. In this study, we isolated a novel dissimilatory arsenate-reducing bacterium, strain OR-1, from Japanese paddy soil, and found that it was phylogenetically closely related to Geobacter pelophilus. OR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, and fumarate as electron acceptors. OR-1 catalyzed dissolution of arsenic from arsenate-adsorbed ferrihydrite, while Geobacter metallireducens GS-15 did not. Furthermore, inoculation of washed cells of OR-1 into sterilized paddy soil successfully restored arsenic release. Arsenic K-edge X-ray absorption near-edge structure analysis revealed that strain OR-1 reduced arsenate directly on the soil solid phase. Analysis of putative ArrA sequences from paddy soils suggested that Geobacter-related bacteria, including those closely related to OR-1, play an important role in arsenic release from paddy soils. Our results provide direct evidence for arsenic dissolution by Geobacter species and support the hypothesis that Geobacter species play a significant role in reduction and mobilization of arsenic in flooded soils and anoxic sediments.
Collapse
Affiliation(s)
- Toshihiko Ohtsuka
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-city, Chiba 271-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 2013; 8:753-68. [DOI: 10.2217/fmb.13.38] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This review highlights the current understanding of the ecology, biochemistry and genomics of these bacteria, and their potential application in the treatment of arsenic-polluted water.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Anna Corsini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy
| | - Vincenza Andreoni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Gerard Muyzer
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
- Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
96
|
Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F. Bacterial metabolism of environmental arsenic--mechanisms and biotechnological applications. Appl Microbiol Biotechnol 2013; 97:3827-41. [PMID: 23546422 DOI: 10.1007/s00253-013-4838-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 01/13/2023]
Abstract
Arsenic causes threats for environmental and human health in numerous places around the world mainly due to its carcinogenic potential at low doses. Removing arsenic from contaminated sites is hampered by the occurrence of several oxidation states with different physicochemical properties. The actual state of arsenic strongly depends on its environment whereby microorganisms play important roles in its geochemical cycle. Due to its toxicity, nearly all organisms possess metabolic mechanisms to resist its hazardous effects, mainly by active extrusion, but also by extracellular precipitation, chelation, and intracellular sequestration. Some microbes are even able to actively use various arsenic compounds in their metabolism, either as an electron donor or as a terminal electron acceptor for anaerobic respiration. Some microorganisms can also methylate inorganic arsenic, probably as a resistance mechanism, or demethylate organic arsenicals. Bioavailability of arsenic in water and sediments is strongly influenced by such microbial activities. Therefore, understanding microbial reactions to arsenic is of importance for the development of technologies for improved bioremediation of arsenic-contaminated waters and environments. This review gives an overview of the current knowledge on bacterial interactions with arsenic and on biotechnologies for its detoxification and removal.
Collapse
Affiliation(s)
- Martin C Kruger
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | |
Collapse
|
97
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
98
|
Slyemi D, Bonnefoy V. How prokaryotes deal with arsenic(†). ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:571-586. [PMID: 23760928 DOI: 10.1111/j.1758-2229.2011.00300.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Arsenic is a notorious poison classified as a carcinogen, a teratogen and a clastogen that ranks number one on the Environmental Protection Agency's priority list of drinking water contaminants. It is ubiquitous and relatively abundant in the Earth's crust. Its mobilization in waters by weathering, volcanic, anthropogenic or biological activities represents a major hazard to public health, exemplified in India and Bangladesh where 50 million people are acutely at risk. Since basically the origin of life, microorganisms have been exposed to this toxic compound and have evolved a variety of resistance mechanisms, such as extracellular precipitation, chelation, intracellular sequestration, active extrusion from the cell or biochemical transformation (redox or methylation). Arsenic efflux systems are widespread and are found in nearly all organisms. Some microorganisms are also able to utilize this metalloid as a metabolic energy source through either arsenite oxidation or arsenate reduction. The energy metabolism involving redox reactions of arsenic has been suggested to have evolved during early life on Earth. This review highlights the different systems evolved by prokaryotes to cope with arsenic and how they participate in its biogeochemical cycle.
Collapse
Affiliation(s)
- Djamila Slyemi
- Laboratoire de Chimie Bactérienne, UPR-CNRS 9043, Institut de Microbiologie de la Méditerranée, 31 chemin Joseph Aiguier, 13402, Marseille, Cedex 20, France. Aix-Marseille Université, Marseille, France
| | | |
Collapse
|
99
|
Assessing the microbial community and functional genes in a vertical soil profile with long-term arsenic contamination. PLoS One 2012; 7:e50507. [PMID: 23226297 PMCID: PMC3511582 DOI: 10.1371/journal.pone.0050507] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 10/22/2012] [Indexed: 11/19/2022] Open
Abstract
Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO3− and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management.
Collapse
|
100
|
Engel AS, Johnson LR, Porter ML. Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile. FEMS Microbiol Ecol 2012; 83:745-56. [PMID: 23066664 DOI: 10.1111/1574-6941.12030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/05/2012] [Accepted: 10/07/2012] [Indexed: 11/29/2022] Open
Abstract
Arsenic concentrations (450-600 μmol L(-1)) at the El Tatio Geyser Field in northern Chile are an order of magnitude greater than at other natural geothermal sites, making El Tatio an ideal location to investigate unique microbial diversity and metabolisms associated with the arsenic cycle in low sulfide, > 50 °C, and circumneutral pH waters. 16S rRNA gene and arsenite oxidase gene (aioA) diversities were evaluated from biofilms and microbial mats from two geyser-discharge stream transects. Chloroflexi was the most prevalent bacterial phylum at flow distances where arsenite was converted to arsenate, corresponding to roughly 60 °C. Among aioA-like gene sequences retrieved, most had homology to whole genomes of Chloroflexus aurantiacus, but others were homologous to alphaproteobacterial and undifferentiated beta- and gammaproteobacterial groups. No Deinococci, Thermus, Aquificales, or Chlorobi aioA-like genes were retrieved. The functional importance of amino acid sites was evaluated from evolutionary trace analyses of all retrieved aioA genes. Fifteen conserved residue sites identified across all phylogenetic groups highlight a conserved functional core, while six divergent sites demonstrate potential differences in electron transfer modes. This research expands the known distribution and diversity of arsenite oxidation in natural geothermal settings, and provides information about the evolutionary history of microbe-arsenic interactions.
Collapse
Affiliation(s)
- Annette Summers Engel
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA.
| | | | | |
Collapse
|