51
|
Wu GMJ, Chen ACH, Yeung WSB, Lee YL. Current progress on in vitro differentiation of ovarian follicles from pluripotent stem cells. Front Cell Dev Biol 2023; 11:1166351. [PMID: 37325555 PMCID: PMC10267358 DOI: 10.3389/fcell.2023.1166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Mammalian female reproduction requires a functional ovary. Competence of the ovary is determined by the quality of its basic unit-ovarian follicles. A normal follicle consists of an oocyte enclosed within ovarian follicular cells. In humans and mice, the ovarian follicles are formed at the foetal and the early neonatal stage respectively, and their renewal at the adult stage is controversial. Extensive research emerges recently to produce ovarian follicles in-vitro from different species. Previous reports demonstrated the differentiation of mouse and human pluripotent stem cells into germline cells, termed primordial germ cell-like cells (PGCLCs). The germ cell-specific gene expressions and epigenetic features including global DNA demethylation and histone modifications of the pluripotent stem cells-derived PGCLCs were extensively characterized. The PGCLCs hold potential for forming ovarian follicles or organoids upon cocultured with ovarian somatic cells. Intriguingly, the oocytes isolated from the organoids could be fertilized in-vitro. Based on the knowledge of in-vivo derived pre-granulosa cells, the generation of these cells from pluripotent stem cells termed foetal ovarian somatic cell-like cells was also reported recently. Despite successful in-vitro folliculogenesis from pluripotent stem cells, the efficiency remains low, mainly due to the lack of information on the interaction between PGCLCs and pre-granulosa cells. The establishment of in-vitro pluripotent stem cell-based models paves the way for understanding the critical signalling pathways and molecules during folliculogenesis. This article aims to review the developmental events during in-vivo follicular development and discuss the current progress of generation of PGCLCs, pre-granulosa and theca cells in-vitro.
Collapse
Affiliation(s)
- Genie Min Ju Wu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Andy Chun Hang Chen
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - William Shu Biu Yeung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong—Shenzhen Hospital, Shenzhen, China
- Centre for Translational Stem Cell Biology, The Hong Kong Science and Technology Park, Hong Kong, China
| |
Collapse
|
52
|
Serour G, Ghaly M, Saifuddeen SM, Anwar A, Isa NM, Chin AHB. Sunni Islamic perspectives on lab-grown sperm and eggs derived from stem cells - in vitro gametogenesis (IVG). New Bioeth 2023; 29:108-120. [PMID: 36427532 DOI: 10.1080/20502877.2022.2142094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An exciting development in the field of assisted reproductive technologies is In Vitro Gametogenesis (IVG) that enables production of functional gametes from stem cells in the laboratory. Currently, development of this technology is still at an early stage and has demonstrated to work only in rodents. Upon critically examining the ethical dimensions of various possible IVG applications in human fertility treatment from a Sunni Islamic perspective, together with benefit-harm (maslahah-mafsadah) assessment; it is concluded that utilization of IVG, once its efficacy and safety are guaranteed, could be permissible by strictly adhering to Islamic ethical principles related to marriage, biological/genetic relatedness, sexual intercourse, and moral status of the embryo/fetus versus that of the gamete. As a result, IVG will be acceptable for treating primary infertility, age-related infertility, and preventing genetic diseases. However, it will be unacceptable for application in posthumous reproduction, donor gametes, genetic enhancement, and procreation in same-sex couples.
Collapse
Affiliation(s)
- Gamal Serour
- International Islamic Center for Population Studies and Research, Al Azhar University, Cairo, Egypt
| | - Mohammed Ghaly
- Research Center for Islamic Legislation and Ethics (CILE), College of Islamic Studies, Hamad Bin Khalifa University, Education City, Qatar
| | | | - Ayaz Anwar
- School of Medical & Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Noor Munirah Isa
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
53
|
Rodriguez-Wallberg KA, Jiang Y, Lekberg T, Nilsson HP. The Late Effects of Cancer Treatment on Female Fertility and the Current Status of Fertility Preservation-A Narrative Review. Life (Basel) 2023; 13:1195. [PMID: 37240840 PMCID: PMC10224240 DOI: 10.3390/life13051195] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Fertility counseling should be offered to all individuals of young reproductive age early in the patient's trajectory following a cancer diagnosis. Systemic cancer treatment and radiotherapy often have an inherent gonadotoxic effect with the potential to induce permanent infertility and premature ovarian failure. For the best chances to preserve a patient's fertility potential and to improve future quality of life, fertility preservation methods should be applied before cancer treatment initiation, thus multidisciplinary team-work and timely referral to reproductive medicine centers specialized in fertility preservation is recommended. We aim to review the current clinical possibilities for fertility preservation and summarize how infertility, as a late effect of gonadotoxic treatment, affects the growing population of young female cancer survivors.
Collapse
Affiliation(s)
- Kenny A. Rodriguez-Wallberg
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
- Department of Reproductive Medicine, Division of Gynecology and Reproduction, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Yanyu Jiang
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
| | - Tobias Lekberg
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
- Breast, Endocrine tumors and Sarcoma Cancer Theme, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Hanna P. Nilsson
- Department of Oncology-Pathology, Laboratory of translational Fertility Preservation, Karolinska Institutet, SE-17177 Stockholm, Sweden; (Y.J.); (T.L.); (H.P.N.)
| |
Collapse
|
54
|
Sasaki K, Sangrithi M. Developmental origins of mammalian spermatogonial stem cells: New perspectives on epigenetic regulation and sex chromosome function. Mol Cell Endocrinol 2023:111949. [PMID: 37201564 DOI: 10.1016/j.mce.2023.111949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Male and female germ cells undergo genome-wide reprogramming during their development, and execute sex-specific programs to complete meiosis and successfully generate healthy gametes. While sexually dimorphic germ cell development is fundamental, similarities and differences exist in the basic processes governing normal gametogenesis. At the simplest level, male gamete generation in mammals is centred on the activity of spermatogonial stem cells (SSCs), and an equivalent cell state is not present in females. Maintaining this unique SSC epigenetic state, while keeping to germ cell-intrinsic developmental programs, poses challenges for the correct completion of spermatogenesis. In this review, we highlight the origins of spermatogonia, comparing and contrasting them with female germline development to emphasize specific developmental processes that are required for their function as germline stem cells. We identify gaps in our current knowledge about human SSCs and further discuss the impact of the unique regulation of the sex chromosomes during spermatogenesis, and the roles of X-linked genes in SSCs.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, United States.
| | - Mahesh Sangrithi
- King's College London, Centre for Gene Therapy and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
55
|
Hu B, Wang R, Wu D, Long R, Ruan J, Jin L, Ma D, Sun C, Liao S. Prospects for fertility preservation: the ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front Physiol 2023; 14:1177443. [PMID: 37250136 PMCID: PMC10213246 DOI: 10.3389/fphys.2023.1177443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Today, fertility preservation is receiving more attention than ever. Cryopreservation, which preserves ovarian tissue to preserve fertility in young women and reduce the risk of infertility, is currently the most widely practiced. Transplantation, however, is less feasible for women with blood-borne leukemia or cancers with a high risk of ovarian metastasis because of the risk of cancer recurrence. In addition to cryopreservation and re-implantation of embryos, in vitro ovarian organ reconstruction techniques have been considered as an alternative strategy for fertility preservation. In vitro culture of oocytes in vitro Culture, female germ cells induction from pluripotent stem cells (PSC) in vitro, artificial ovary construction, and ovaria-related organoids construction have provided new solutions for fertility preservation, which will therefore maximize the potential for all patients undergoing fertility preservation. In this review, we discussed and thought about the latest ovarian organ function reconstruction techniques in vitro to provide new ideas for future ovarian disease research and fertility preservation of patients with cancer and premature ovarian failure.
Collapse
Affiliation(s)
- Bai Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
56
|
Wesevich VG, Arkfeld C, Seifer DB. In Vitro Gametogenesis in Oncofertility: A Review of Its Potential Use and Present-Day Challenges in Moving toward Fertility Preservation and Restoration. J Clin Med 2023; 12:3305. [PMID: 37176745 PMCID: PMC10179531 DOI: 10.3390/jcm12093305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Current fertility preservation options are limited for cancer survivor patients who wish to have their own biological children. Human in vitro gametogenesis (IVG) has the hypothetical ability to offer a unique solution to individuals receiving treatment for cancer which subsequently shortens their reproductive lifespan. Through a simple skin punch biopsy, a patient's fertility could be restored via reprogramming of dermal fibroblast cells to induced pluripotent stem cells, then from primordial germ cell-like cells into viable oocytes and spermatocytes which could be used for embryogenesis. Induced pluripotent stem cells could also be used to form in vitro environments, similar to the ovary or testes, necessary for the maturation of oogonia. This would allow for the entire creation of embryos outside the body, ex vivo. While this area in stem cell biology research offers the potential to revolutionize reproduction as we know it, there are many critical barriers, both scientific and ethical, that need to be overcome to one day see this technology utilized clinically.
Collapse
Affiliation(s)
- Victoria G Wesevich
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christopher Arkfeld
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale New Haven Hospital, New Haven, CT 06510, USA
| | - David B Seifer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
57
|
Gyobu‐Motani S, Yabuta Y, Mizuta K, Katou Y, Okamoto I, Kawasaki M, Kitamura A, Tsukiyama T, Iwatani C, Tsuchiya H, Tsujimura T, Yamamoto T, Nakamura T, Saitou M. Induction of fetal meiotic oocytes from embryonic stem cells in cynomolgus monkeys. EMBO J 2023; 42:e112962. [PMID: 36929479 PMCID: PMC10152148 DOI: 10.15252/embj.2022112962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/18/2023] Open
Abstract
Human in vitro oogenesis provides a framework for clarifying the mechanism of human oogenesis. To create its benchmark, it is vital to promote in vitro oogenesis using a model physiologically close to humans. Here, we establish a foundation for in vitro oogenesis in cynomolgus (cy) monkeys (Macaca fascicularis): cy female embryonic stem cells harboring one active and one inactive X chromosome (Xa and Xi, respectively) differentiate robustly into primordial germ cell-like cells, which in xenogeneic reconstituted ovaries develop efficiently into oogonia and, remarkably, further into meiotic oocytes at the zygotene stage. This differentiation entails comprehensive epigenetic reprogramming, including Xi reprogramming, yet Xa and Xi remain epigenetically asymmetric with, as partly observed in vivo, incomplete Xi reactivation. In humans and monkeys, the Xi epigenome in pluripotent stem cells functions as an Xi-reprogramming determinant. We further show that developmental pathway over-activations with suboptimal up-regulation of relevant meiotic genes impede in vitro meiotic progression. Cy in vitro oogenesis exhibits critical homology with the human system, including with respect to bottlenecks, providing a salient model for advancing human in vitro oogenesis.
Collapse
Affiliation(s)
- Sayuri Gyobu‐Motani
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ken Mizuta
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Masanori Kawasaki
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Ayaka Kitamura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Chizuru Iwatani
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Hideaki Tsuchiya
- Research Center for Animal Life ScienceShiga University of Medical ScienceOtsuJapan
| | - Taro Tsujimura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
- Center for Advanced Intelligence Project, RIKENTokyoJapan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- The Hakubi Center for Advanced ResearchKyoto UniversityKyotoJapan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI‐ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| |
Collapse
|
58
|
Strange A, Alberio R. Review: A barnyard in the lab: prospect of generating animal germ cells for breeding and conservation. Animal 2023; 17 Suppl 1:100753. [PMID: 37567650 DOI: 10.1016/j.animal.2023.100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro gametogenesis (IVG) offers broad opportunities for gaining detailed new mechanistic knowledge of germ cell biology that will enable progress in the understanding of human infertility, as well as for applications in the conservation of endangered species and for accelerating genetic selection of livestock. The realisation of this potential depends on overcoming key technical challenges and of gaining more detailed knowledge of the ontogeny and developmental programme in different species. Important differences in the molecular mechanisms of germ cell determination and epigenetic reprogramming between mice and other animals have been elucidated in recent years. These must be carefully considered when developing IVG protocols, as cellular kinetics in mice may not accurately reflect mechanisms in other mammals. Similarly, diverse stem cell models with potential for germ cell differentiation may reflect alternative routes to successful IVG. In conclusion, the fidelity of the developmental programme recapitulated during IVG must be assessed against reference information from each species to ensure the production of healthy animals using these methods, as well as for developing genuine models of gametogenesis.
Collapse
Affiliation(s)
- A Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - R Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK.
| |
Collapse
|
59
|
Goszczynski DE, Navarro M, Mutto AA, Ross PJ. Review: Embryonic stem cells as tools for in vitro gamete production in livestock. Animal 2023; 17 Suppl 1:100828. [PMID: 37567652 DOI: 10.1016/j.animal.2023.100828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 08/13/2023] Open
Abstract
The goal of in vitro gametogenesis is to reproduce the events of sperm and oocyte development in the laboratory. Significant advances have been made in the mouse in the last decade, but evolutionary divergence from the murine developmental program has prevented the replication of these advances in large mammals. In recent years, intensive work has been done in humans, non-human primates and livestock to elucidate species-specific differences that regulate germ cell development, due to the number of potential applications. One of the most promising applications is the use of in vitro gametes to optimize the spread of elite genetics in cattle. In this context, embryonic stem cells have been posed as excellent candidates for germ cell platforms. Here, we present the most relevant advances in in vitro gametogenesis of interest to livestock science, including new types of pluripotent stem cells with potential for germline derivation, characterization of the signaling environment in the gonadal niche, and experimental systems used to reproduce different stages of germ cell development in the laboratory.
Collapse
Affiliation(s)
- D E Goszczynski
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - M Navarro
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - A A Mutto
- Instituto de Investigaciones Biotecnológicas "Dr. Rodolfo Ugalde"- UNSAM-CONICET, Buenos Aires CP 1650, Argentina
| | - P J Ross
- Department of Animal Science, University of California Davis, Davis, CA, USA; STgenetics, Navasota, TX, USA.
| |
Collapse
|
60
|
Haider S, Beristain AG. Human organoid systems in modeling reproductive tissue development, function, and disease. Hum Reprod 2023:7147082. [PMID: 37119533 DOI: 10.1093/humrep/dead085] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/12/2023] [Indexed: 05/01/2023] Open
Abstract
Research focused on human reproductive biology has primarily relied upon clinical samples affording mainly descriptive studies with limited implementation of functional or mechanistic understanding. More importantly, restricted access to human embryonic material has necessitated the use of animals, primarily rats and mice, and short-term primary cell cultures derived from human patient material. While reproductive developmental processes are generally conserved across mammals, specific features unique to human reproduction have resulted in the development of human-based in vitro systems designed to retain or recapitulate key molecular and cellular processes important in humans. Of note, major advances in 3D epithelial stem cell-based systems modeling human reproductive organ development have been made. These cultures, broadly referred to as organoids, enable research aimed at understanding cellular hierarchies and processes controlling cellular differentiation and function. Moreover, organoids allow the pre-clinical testing of pharmacological substances, both from safety and efficacy standpoints, and hold large potential in driving aspects of personalized medicine that were previously not possible with traditional models. In this mini-review, we focus on summarizing the current state of regenerative organoid culture systems of the female and male reproductive tracts that model organ development, maintenance, and function. Specifically, we will introduce stem cell-based organoid models of the ovary/fallopian tube, endometrium, cervix, prostate gland, and testes. We will also describe organoid systems of the pre-implanting blastocyst and trophoblast, as the blastocyst and its extraembryonic trophectoderm are central to fetal, maternal, and overall pregnancy health. We describe the foundational studies leading to their development and outline the utility as well as specific limitations that are unique and common to many of these in vitro platforms.
Collapse
Affiliation(s)
- Sandra Haider
- Department of Obstetrics & Gynecology, Medical University of Vienna, Vienna, Austria
| | - Alexander G Beristain
- The British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
61
|
Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J 2023; 480:521-537. [PMID: 37096944 PMCID: PMC10212525 DOI: 10.1042/bcj20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/26/2023]
Abstract
In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.
Collapse
Affiliation(s)
- Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
62
|
Liu X, Li J, Wang W, Ren X, Hu JF. Therapeutic restoration of female reproductive and endocrine dysfunction using stem cells. Life Sci 2023; 322:121658. [PMID: 37023951 DOI: 10.1016/j.lfs.2023.121658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Millions of women worldwide suffer from infertility associated with gynecologic disorders such as premature ovarian insufficiency, polycystic ovary syndrome, Asherman syndrome, endometriosis, preeclampsia, and fallopian tube obstruction. These disorders can lead to infertility and thereby affect the quality of life of the infertile couple because of their psychological impact and significant costs. In recent years, stem cell therapy has emerged as a therapeutic approach to repair or replace damaged tissues or organs. This review describes the recent development as well as the underlying mechanisms of stem cell therapy for a variety of female reproductive diseases, offering us new therapeutic options for the treatment of female reproductive and endocrine dysfunction.
Collapse
Affiliation(s)
- Xiaobo Liu
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Jiajia Li
- The Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin 130061, China; Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Wenjun Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Xue Ren
- Department of Gynecologic Oncology, Gynecology and Obstetrics Centre, the First Hospital of Jilin University, Changchun, Jilin 130012, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
63
|
State of the art in assisted reproductive technologies for patients with advanced maternal age. ZYGOTE 2023; 31:149-156. [PMID: 36810125 DOI: 10.1017/s0967199422000624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
According to the World Health Organization, the female reproductive age lasts up to 49 years, but problems with the realization of women's reproductive rights may arise much earlier. Significant numbers of factors affect the state of reproductive health: socioeconomic, ecological, lifestyle features, the level of medical literacy, and the state of the organization and medical care quality. Among the reasons for fertility decline in advanced reproductive age are the loss of cellular receptors for gonadotropins, an increase in the threshold of sensitivity of the hypothalamic-pituitary system to the action of hormones and their metabolites, and many others. Furthermore, negative changes accumulate in the oocyte genome, reducing the possibility of fertilization, normal development and implantation of the embryo and healthy offspring birth. Another theory of ageing causing changes in oocytes is the mitochondrial free radical theory of ageing. Taking into account all these age-related changes in gametogenesis, this review considers modern technologies aimed at the preservation and realization of female fertility. Among the existing approaches, two main ones can be distinguished: methods allowing the preservation of reproductive cells at a younger age using ART intervention and cryobanking, as well as methods aimed at improving the basic functional state of advanced-age women's oocytes and embryos.
Collapse
|
64
|
MacDonald JA, Sheehan HC, Piasecki A, Faustino LR, Hauschildt C, Stolzenbach V, Woods DC, Tilly JL. Characterization of Oogonial Stem Cells in Adult Mouse Ovaries with Age and Comparison to In Silico Data on Human Ovarian Aging. Stem Cells Dev 2023; 32:99-114. [PMID: 36594561 PMCID: PMC9986025 DOI: 10.1089/scd.2022.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Many adult somatic stem cell lineages are comprised of subpopulations that differ in gene expression, mitotic activity, and differentiation status. In this study, we explored if cellular heterogeneity also exists within oogonial stem cells (OSCs), and how chronological aging impacts OSCs. In OSCs isolated from mouse ovaries by flow cytometry and established in culture, we identified subpopulations of OSCs that could be separated based on differential expression of stage-specific embryonic antigen 1 (SSEA1) and cluster of differentiation 61 (CD61). Levels of aldehyde dehydrogenase (ALDH) activity were inversely related to OSC differentiation, whereas commitment of OSCs to differentiation through transcriptional activation of stimulated by retinoic acid gene 8 was marked by a decline in ALDH activity and in SSEA1 expression. Analysis of OSCs freshly isolated from ovaries of mice between 3 and 20 months of age revealed that these subpopulations were present and persisted throughout adult life. However, expression of developmental pluripotency associated 3 (Dppa3), an epigenetic modifier that promotes OSC differentiation into oocytes, was lost as the mice transitioned from a time of reproductive compromise (10 months) to reproductive failure (15 months). Further analysis showed that OSCs from aged females could be established in culture, and that once established the cultured cells reactivated Dppa3 expression and the capacity for oogenesis. Analysis of single-nucleus RNA sequence data sets generated from ovaries of women in their 20s versus those in their late 40s to early 50s showed that the frequency of DPPA3-expressing cells decreased with advancing age, and this was paralleled by reduced expression of several key meiotic differentiation genes. These data support the existence of OSC subpopulations that differ in gene expression profiles and differentiation status. In addition, an age-related decrease in Dppa3/DPPA3 expression, which is conserved between mice and humans, may play a role in loss of the ability of OSCs to maintain oogenesis with age.
Collapse
Affiliation(s)
- Julie A MacDonald
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Hannah C Sheehan
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Andrew Piasecki
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Luciana R Faustino
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Charlotte Hauschildt
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Victor Stolzenbach
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Dori C Woods
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Jonathan L Tilly
- Laboratory of Aging and Infertility Research, Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
65
|
Murakami K, Hamazaki N, Hamada N, Nagamatsu G, Okamoto I, Ohta H, Nosaka Y, Ishikura Y, Kitajima TS, Semba Y, Kunisaki Y, Arai F, Akashi K, Saitou M, Kato K, Hayashi K. Generation of functional oocytes from male mice in vitro. Nature 2023; 615:900-906. [PMID: 36922585 DOI: 10.1038/s41586-023-05834-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/13/2023] [Indexed: 03/18/2023]
Abstract
Sex chromosome disorders severely compromise gametogenesis in both males and females. In oogenesis, the presence of an additional Y chromosome or the loss of an X chromosome disturbs the robust production of oocytes1-5. Here we efficiently converted the XY chromosome set to XX without an additional Y chromosome in mouse pluripotent stem (PS) cells. In addition, this chromosomal alteration successfully eradicated trisomy 16, a model of Down's syndrome, in PS cells. Artificially produced euploid XX PS cells differentiated into mature oocytes in culture with similar efficiency to native XX PS cells. Using this method, we differentiated induced pluripotent stem cells from the tail of a sexually mature male mouse into fully potent oocytes, which gave rise to offspring after fertilization. This study provides insights that could ameliorate infertility caused by sex chromosome or autosomal disorders, and opens the possibility of bipaternal reproduction.
Collapse
Affiliation(s)
- Kenta Murakami
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norio Hamada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ikuhiro Okamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukiko Ishikura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoya S Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Yuichiro Semba
- Department of Medicine and Biosystemic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Medicine and Biosystemic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Japan.
| |
Collapse
|
66
|
Shono M, Kishimoto K, Hikabe O, Hayashi M, Semi K, Takashima Y, Sasaki E, Kato K, Hayashi K. Induction of primordial germ cell-like cells from common marmoset embryonic stem cells by inhibition of WNT and retinoic acid signaling. Sci Rep 2023; 13:3186. [PMID: 36823310 PMCID: PMC9950483 DOI: 10.1038/s41598-023-29850-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
Reconstitution of the germ cell lineage using pluripotent stem cells provides a unique platform to deepen our understanding of the mechanisms underlying germ cell development and to produce functional gametes for reproduction. This study aimed to establish a culture system that induces a robust number of primordial germ cell-like cells (PGCLCs) from common marmoset (Callithrix jacchus) embryonic stem cells. The robust induction was achieved by not only activation of the conserved PGC-inducing signals, WNT and BMP4, but also temporal inhibitions of WNT and retinoic acid signals, which prevent mesodermal and neural differentiation, respectively, during PGCLC differentiation. Many of the gene expression and differentiation properties of common marmoset PGCLCs were similar to those of human PGCLCs, making this culture system a reliable and useful primate model. Finally, we identified PDPN and KIT as surface marker proteins by which PGCLCs can be isolated from embryonic stem cells without genetic manipulation. This study will expand the opportunities for research on germ cell development and production of functional gametes to the common marmoset.
Collapse
Affiliation(s)
- Mayumi Shono
- grid.177174.30000 0001 2242 4849Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.177174.30000 0001 2242 4849Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Keiko Kishimoto
- grid.452212.20000 0004 0376 978XDepartment of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821 Japan
| | - Orie Hikabe
- grid.177174.30000 0001 2242 4849Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masafumi Hayashi
- grid.136593.b0000 0004 0373 3971Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Katsunori Semi
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507 Japan
| | - Yasuhiro Takashima
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507 Japan
| | - Erika Sasaki
- grid.452212.20000 0004 0376 978XDepartment of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821 Japan
| | - Kiyoko Kato
- grid.177174.30000 0001 2242 4849Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
67
|
Yu X, Wang N, Wang X, Ren H, Zhang Y, Zhang Y, Qiu Y, Wang H, Wang G, Pei X, Chen P, Ren Y, Ha C, Wang L, Wang H. Oocyte Arrested at Metaphase II Stage were Derived from Human Pluripotent Stem Cells in vitro. Stem Cell Rev Rep 2023; 19:1067-1081. [PMID: 36735215 DOI: 10.1007/s12015-023-10511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023]
Abstract
Initiation of meiosis is the most difficult aspect of inducing competent oocytes differentiation from human stem cells in vitro. Human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) were cultured with follicle fluid, cytokines and small molecule to induced oocyte-like cells (OLCs) formation through a three-step induction procedure. Expression of surface markers and differentiation potential of germ cells were analyzed in vitro by flow cytometry, gene expression, immunocytochemistry, western blotting and RNA Sequencing. To induce the differentiation of hiPSCs into OLCs, cells were firstly cultured with a primordial germ cell medium for 10 days. The cells exhibited similar morphological features to primordial germ cells (PGCs), high expressing of germ cell markers and primordial follicle development associated genes. The induced PGCs were then cultured with the primordial follicle-like cell medium for 5 days to form the induced follicle-like structures (iFLs), which retained both primordial oocytes-like cells and granulosa-like cells. In the third step, the detached iFLs were harvested and transferred to the OLC-medium for additional 10 days. The cultured cells developed cumulus-oocyte-complexes (COCs) structures and OLCs with different sizes (50-150 μm diameter) and a zona pellucida. The in vitro matured OLCs had polar bodies and were arrested at metaphase II (MII) stage. Some OLCs were self-activated and spontaneously developed into multiple-cell structures similar to preimplantation embryos, indicating that OLCs were parthenogenetically activated though in vitro fertilization potential of OLCs are yet to be proved. in vitro maturation of OLCs derived from hiPSCs provides a new means to study human germ cell formation and oogenesis.
Collapse
Affiliation(s)
- Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China.
| | - Ning Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Xiang Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Hehe Ren
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yanping Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yingxin Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Yikai Qiu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Hongyan Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Guoping Wang
- Yinchuan Maternal and Child Health Care Hospital, 75004, Yinchuan, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, 750004, Yinchuan, Ningxia, China
| | - Ping Chen
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Yahui Ren
- College of Life Science and Engineering, Henan University of Urban Construction, 467000, Pingdingshan, China
| | - Chunfang Ha
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Li Wang
- Department of Gynecology, General Hospital of Ningxia Medical University, Ningxia Human Sperm Bank, 750004, Yinchuan, Ningxia, China
| | - Huayan Wang
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| |
Collapse
|
68
|
Short telomeres impede germ cell specification by upregulating MAPK and TGFβ signaling. SCIENCE CHINA. LIFE SCIENCES 2023; 66:324-339. [PMID: 36125668 DOI: 10.1007/s11427-022-2151-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/21/2022] [Indexed: 10/14/2022]
Abstract
Functional telomeres protect chromosome ends and play important roles in stem cell maintenance and differentiation. Short telomeres negatively impact germ cell development and can contribute to age-associated infertility. Moreover, telomere syndrome resulting from mutations of telomerase or telomere-associated genes exhibits short telomeres and reduced fertility. It remains elusive whether and how telomere lengths affect germ cell specification. We report that functional telomere is required for the coordinated germ cell and somatic cell fate decisions. Using telomerase gene Terc deficient mice as a model, we show that short telomeres restrain germ cell specification of epiblast cells but promote differentiation towards somatic lineage. Short telomeres increase chromatin accessibility to elevate TGFβ and MAPK/ERK signaling for somatic cell differentiation. Notably, elevated Fst expression in TGFβ pathway represses the BMP4-pSmad signaling pathway, thus reducing germ cell formation. Re-elongation of telomeres by targeted knock-in of Terc restores normal chromatin accessibility to suppress TGFβ and MAPK signaling, thereby facilitating germ cell formation. Taken together, our data reveal that functional telomeres are required for germ cell specification by repressing TGFβ and MAPK signaling.
Collapse
|
69
|
Seita Y, Cheng K, McCarrey JR, Yadu N, Cheeseman IH, Bagwell A, Ross CN, Santana Toro I, Yen LH, Vargas S, Navara CS, Hermann BP, Sasaki K. Efficient generation of marmoset primordial germ cell-like cells using induced pluripotent stem cells. eLife 2023; 12:e82263. [PMID: 36719274 PMCID: PMC9937652 DOI: 10.7554/elife.82263] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/31/2023] [Indexed: 02/01/2023] Open
Abstract
Reconstitution of germ cell fate from pluripotent stem cells provides an opportunity to understand the molecular underpinnings of germ cell development. Here, we established robust methods for induced pluripotent stem cell (iPSC) culture in the common marmoset (Callithrix jacchus [cj]), allowing stable propagation in an undifferentiated state. Notably, iPSCs cultured on a feeder layer in the presence of a WNT signaling inhibitor upregulated genes related to ubiquitin-dependent protein catabolic processes and enter a permissive state that enables differentiation into primordial germ cell-like cells (PGCLCs) bearing immunophenotypic and transcriptomic similarities to pre-migratory cjPGCs in vivo. Induction of cjPGCLCs is accompanied by transient upregulation of mesodermal genes, culminating in the establishment of a primate-specific germline transcriptional network. Moreover, cjPGCLCs can be expanded in monolayer while retaining the germline state. Upon co-culture with mouse testicular somatic cells, these cells acquire an early prospermatogonia-like phenotype. Our findings provide a framework for understanding and reconstituting marmoset germ cell development in vitro, thus providing a comparative tool and foundation for a preclinical modeling of human in vitro gametogenesis.
Collapse
Affiliation(s)
- Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary MedicinePhiladelphiaUnited States
- Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Bell Research Center for Reproductive Health and CancerNagoyaJapan
| | - Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary MedicinePhiladelphiaUnited States
- Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - John R McCarrey
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Nomesh Yadu
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Ian H Cheeseman
- Texas Biomedical Research InstituteSan AntonioUnited States
- Southwest National Primate Research CenterSan AntonioUnited States
| | - Alec Bagwell
- Texas Biomedical Research InstituteSan AntonioUnited States
- Southwest National Primate Research CenterSan AntonioUnited States
| | - Corinna N Ross
- Texas Biomedical Research InstituteSan AntonioUnited States
- Southwest National Primate Research CenterSan AntonioUnited States
| | - Isamar Santana Toro
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Li-hua Yen
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Sean Vargas
- Genomics Core, The University of Texas at San AntonioSan AntonioUnited States
| | - Christopher S Navara
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
| | - Brian P Hermann
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San AntonioSan AntonioUnited States
- Genomics Core, The University of Texas at San AntonioSan AntonioUnited States
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary MedicinePhiladelphiaUnited States
- Institute for Regenerative Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
70
|
Alves-Lopes JP, Wong FCK, Tang WWC, Gruhn WH, Ramakrishna NB, Jowett GM, Jahnukainen K, Surani MA. Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids. Cell Rep 2023; 42:111907. [PMID: 36640324 DOI: 10.1016/j.celrep.2022.111907] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Human primordial germ cells (hPGCs), the precursors of sperm and eggs, are specified during weeks 2-3 after fertilization. Few studies on ex vivo and in vitro cultured human embryos reported plausible hPGCs on embryonic day (E) 12-13 and in an E16-17 gastrulating embryo. In vitro, hPGC-like cells (hPGCLCs) can be specified from the intermediary pluripotent stage or peri-gastrulation precursors. Here, we explore the broad spectrum of hPGCLC precursors and how different precursors impact hPGCLC development. We show that resetting precursors can give rise to hPGCLCs (rhPGCLCs) in response to BMP. Strikingly, rhPGCLCs co-cultured with human hindgut organoids progress at a pace reminiscent of in vivo hPGC development, unlike those derived from peri-gastrulation precursors. Moreover, rhPGCLC specification depends on both EOMES and TBXT, not just on EOMES as for peri-gastrulation hPGCLCs. Importantly, our study provides the foundation for developing efficient in vitro models of human gametogenesis.
Collapse
Affiliation(s)
- João Pedro Alves-Lopes
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, Solna, 17164 Stockholm, Sweden.
| | - Frederick C K Wong
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Walfred W C Tang
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Wolfram H Gruhn
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Navin B Ramakrishna
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Genome Institute of Singapore, A(∗)STAR, Biopolis, Singapore 138672, Singapore
| | - Geraldine M Jowett
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kirsi Jahnukainen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, Solna, 17164 Stockholm, Sweden; New Children's Hospital, Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Pl 281, 00029 Helsinki, Finland
| | - M Azim Surani
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
71
|
Seita Y, Hwang YS, Sasaki K. Reconstitution of Human Prospermatogonial Development from Human-Induced Pluripotent Stem Cells. Methods Mol Biol 2023; 2656:145-159. [PMID: 37249870 DOI: 10.1007/978-1-0716-3139-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
There is a scarcity of information regarding the molecular mechanisms underlying human germ cell development due to limitations in obtaining the relevant materials. Reconstitution of human germ cell development from pluripotent stem cells in vitro would provide critical insight into the etiology of various reproductive conditions and disorders, including infertility.Recently, we reported the in vitro reconstitution of human prospermatogonial development from human-induced pluripotent stem cells through human primordial germ cell (PGC)-like cells (hPGCLCs) using long-term cultured xenogeneic reconstituted testes. Here, we describe a method to generate M-prospermatogonia-like cells (MLCs) and T1-prospermatogonia-like cells (T1LCs), which closely resemble M- and T1-prospermatogonia present in second-trimester human fetal testes in vivo.
Collapse
Affiliation(s)
- Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Young Sun Hwang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
72
|
Cyranoski D, Contreras JL, Carrington VT. Intellectual property and assisted reproductive technology. Nat Biotechnol 2023; 41:14-20. [PMID: 36653491 DOI: 10.1038/s41587-022-01592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- David Cyranoski
- Institute for the Advanced Studies of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| | - Jorge L Contreras
- S.J. Quinney College of Law, University of Utah, Salt Lake City, UT, USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
73
|
Bahmanpour S, Moasses Z, Zarei-Fard N. Comparative effects of retinoic acid, granulosa cells conditioned medium or forskolin in combination with granulosa cell co-culturing on mouse germ cell differentiation. Mol Biol Rep 2023; 50:631-640. [PMID: 36371553 DOI: 10.1007/s11033-022-07920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/06/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Devising of an appropriate in vitro culture method for germ cells differentiation in the presence of soluble factors has attracted considerable attention, which results will provide new insight into reproductive biology. In this study, we compared the effects of forskolin, retinoic acid (RA) or granulosa cell-conditioned medium in the presence or absence of granulosa cell co-culturing on germ cell differentiation from embryonic stem cells (ESCs). METHODS AND RESULTS Embryonic stem cells were differentiated using embryoid bodies (EBs) for 5 days, and then EB-derived cells were co-cultured with or without adult mouse granulosa cells using monolayer protocol and treated with 50 µM forskolin, 1 µM RA and 50% granulosa cell-conditioned medium for 4 days. Granulosa cell-conditioned medium significantly increased the levels of Scp3, Rec8, Mvh and Gdf9 expression in the granulosa cell co-culture method compared to untreated cells. A significant elevation of Stra8, Rec8 and Mvh was observed after treatment with RA in the absence of granulosa cells and there was no significant increase in the levels of expression of germ cell-specific genes after treatment with forskolin compared to control. Furthermore, forskolin and RA significantly increased viability and proliferation of germ-like cells, compared with granulosa cell-conditioned medium. CONCLUSIONS Our study revealed that granulosa cell-conditioned medium and RA effectively can induce germ cell differentiation from ESCs, however combined application of granulosa cell-conditioned medium and co-culturing with granulosa cells had synergic effect on germ cell development in vitro as optimized protocol.
Collapse
Affiliation(s)
- Soghra Bahmanpour
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zia Moasses
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei-Fard
- Laboratory for stem cell research, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
74
|
Hayashi M, Zywitza V, Naitou Y, Hamazaki N, Goeritz F, Hermes R, Holtze S, Lazzari G, Galli C, Stejskal J, Diecke S, Hildebrandt TB, Hayashi K. Robust induction of primordial germ cells of white rhinoceros on the brink of extinction. SCIENCE ADVANCES 2022; 8:eabp9683. [PMID: 36490332 PMCID: PMC9733929 DOI: 10.1126/sciadv.abp9683] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/27/2022] [Indexed: 05/27/2023]
Abstract
In vitro gametogenesis, the process of generating gametes from pluripotent cells in culture, is a powerful tool for improving our understanding of germ cell development and an alternative source of gametes. Here, we induced primordial germ cell-like cells (PGCLCs) from pluripotent stem cells of the northern white rhinoceros (NWR), a species for which only two females remain, and southern white rhinoceros (SWR), the closest species to the NWR. PGCLC differentiation from SWR embryonic stem cells is highly reliant on bone morphogenetic protein and WNT signals. Genetic analysis revealed that SRY-box transcription factor 17 (SOX17) is essential for SWR-PGCLC induction. Under the defined condition, NWR induced pluripotent stem cells differentiated into PGCLCs. We also identified cell surface markers, CD9 and Integrin subunit alpha 6 (ITGA6), that enabled us to isolate PGCLCs without genetic alteration in pluripotent stem cells. This study provides a first step toward the production of NWR gametes in culture and understanding of the basic mechanism of primordial germ cell specification in a large animal.
Collapse
Affiliation(s)
- Masafumi Hayashi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Vera Zywitza
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Yuki Naitou
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Nobuhiko Hamazaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Frank Goeritz
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Robert Hermes
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
| | - Giovanna Lazzari
- Avantea, Laboratory of Reproductive Technologies, Cremona 26100, Italy
- Fondazione Avantea, Cremona 26100, Italy
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, Cremona 26100, Italy
- Fondazione Avantea, Cremona 26100, Italy
| | - Jan Stejskal
- ZOO Dvůr Králové, Dvůr Králové nad Labem 54401, Czech Republic
| | - Sebastian Diecke
- Technology Platform Pluripotent Stem Cells, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin 13125, Germany
| | - Thomas B. Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany
- Freie Universitaet Berlin, Berlin D-14195, Germany
| | - Katsuhiko Hayashi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
75
|
Roelen BAJ, Chuva de Sousa Lopes SM. Stay on the road: from germ cell specification to gonadal colonization in mammals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210259. [PMID: 36252219 PMCID: PMC9574628 DOI: 10.1098/rstb.2021.0259] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The founder cells of the gametes are primordial germ cells (PGCs). In mammals, PGCs are specified early during embryonic development, at the boundary between embryonic and extraembryonic tissue, long before their later residences, the gonads, have developed. Despite the differences in form and behaviour when differentiated into oocytes or sperm cells, in the period between specification and gonadal colonization, male and female PGCs are morphologically indistinct and largely regulated by similar mechanisms. Here, we compare different modes and mechanisms that lead to the formation of PGCs, putting in context protocols that are in place to differentiate both human and mouse pluripotent stem cells into PGC-like cells. In addition, we review important aspects of the migration of PGCs to the gonadal ridges, where they undergo further sex-specific differentiation. Defects in migration need to be effectively corrected, as misplaced PGCs can become tumorigenic. Concluding, a combination of in vivo studies and the development of adequate innovative in vitro models, ensuring both robustness and standardization, are providing us with the tools for a greater understanding of the first steps of gametogenesis and to develop disease models to study the origin of germ cell tumours. This article is part of the theme issue ‘Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom’.
Collapse
Affiliation(s)
- Bernard A J Roelen
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL Utrecht, The Netherlands.,Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Susana M Chuva de Sousa Lopes
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy.,Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
76
|
Reconstitution of reproductive organ system that produces functional oocytes. Curr Opin Genet Dev 2022; 77:101982. [PMID: 36179583 DOI: 10.1016/j.gde.2022.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 01/27/2023]
Abstract
Reproductive organs have unique developmental and functional properties that enable them to manage both germ cell development and the endocrine system in a sex-dependent manner. Proper reconstitution of the reproductive organs, therefore, will contribute to a deeper understanding of the mechanisms underlying germ cell development and sex-determination. However, reproductive organs have not yet been systematically reconstituted from pluripotent stem cells. This is largely due to technical problems in the reconstitution of the germ cell and somatic cell lineages, which have very different developmental trajectories. Accordingly, faithful construction of reproductive organoids requires that the reconstitution and evaluation of these two different cell lineages be performed separately. Here, we update the state-of-the-art in the reconstitution of reproductive organoids that produce functional oocytes.
Collapse
|
77
|
Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:590-610. [PMID: 37724254 PMCID: PMC10471094 DOI: 10.1515/mr-2022-0031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/25/2022] [Indexed: 09/20/2023]
Abstract
Ovarian reserve is essential for fertility and influences healthy aging in women. Advanced maternal age correlates with the progressive loss of both the quantity and quality of oocytes. The molecular mechanisms and various contributing factors underlying ovarian aging have been uncovered. In this review, we highlight some of critical factors that impact oocyte quantity and quality during aging. Germ cell and follicle reserve at birth determines reproductive lifespan and timing the menopause in female mammals. Accelerated diminishing ovarian reserve leads to premature ovarian aging or insufficiency. Poor oocyte quality with increasing age could result from chromosomal cohesion deterioration and misaligned chromosomes, telomere shortening, DNA damage and associated genetic mutations, oxidative stress, mitochondrial dysfunction and epigenetic alteration. We also discuss the intervention strategies to delay ovarian aging. Both the efficacy of senotherapies by antioxidants against reproductive aging and mitochondrial therapy are discussed. Functional oocytes and ovarioids could be rejuvenated from pluripotent stem cells or somatic cells. We propose directions for future interventions. As couples increasingly begin delaying parenthood in life worldwide, understanding the molecular mechanisms during female reproductive aging and potential intervention strategies could benefit women in making earlier choices about their reproductive health.
Collapse
Affiliation(s)
- Zhengmao Zhu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
| | - Wanxue Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Lin Liu
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
- Tianjin Union Medical Center, Institute of Translational Medicine, Nankai University, Tianjin, China
| |
Collapse
|
78
|
Paulino LRFM, de Assis EIT, Azevedo VAN, Silva BR, da Cunha EV, Silva JRV. Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles? Reprod Sci 2022; 29:3321-3334. [PMID: 35084715 DOI: 10.1007/s43032-021-00840-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.
Collapse
Affiliation(s)
- Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ellen V da Cunha
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil.
| |
Collapse
|
79
|
DeCherney AH, Brolinson M, Whiteley G, Legro RS, Santoro N. Is the "E" being removed from Reproductive Endocrinology to be replaced by a "G" for Genetics? Fertil Steril 2022; 118:1036-1043. [PMID: 36357198 DOI: 10.1016/j.fertnstert.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alan H DeCherney
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Marja Brolinson
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Grace Whiteley
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University, Hershey, Pennsylvania
| | - Nanette Santoro
- Department of Obstetrics and Gynecology, University of Colorado, Aurora, Colorado.
| |
Collapse
|
80
|
Zhang J, Wei L, Deng X, Luo C, Zhu Q, Lu S, Mao C. Current status and reflections on fertility preservation in China. J Assist Reprod Genet 2022; 39:2835-2845. [PMID: 36322229 PMCID: PMC9790826 DOI: 10.1007/s10815-022-02648-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE With the progress of medical technology and renovated conception of fertility, the prospective studies and practice of fertility preservation are drawing more and more attention from medical workers. With the largest population of over 1.4 billion, China makes the experience accumulated in fertility preservation efforts even more relevant. This article summarizes China's experience and shares it with the world to promote the healthy development of fertility preservation. METHODS This study was based on multiple Chinese expert consensuses on fertility preservation issued in 2021 and the current national regulations and principles, compared with the latest advice and guidelines issued by global reproductive authorities such as the ASRM and ESHRE. Summarize the experience and reflection of Chinese scholars in the process of fertility preservation. RESULTS This study reports on the current situation of fertility preservation in China, sharing the Chinese experience gained in the process of development, and offering Chinese reflections on worrying issues. CONCLUSION Fertility preservation is a medical and social issue of reproductive health security, which is conducive to the sound development of the world population and social production.
Collapse
Affiliation(s)
- Jiakai Zhang
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou Suzhou, Jiangsu, 215000 China
- Marxism Research Institute, Soochow University, Suzhou, Jiangsu, 215123 China
- Suzhou High School Affiliated to Xi’an Jiaotong University, Suzhou, Jiangsu, 215000 China
| | - Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou Suzhou, Jiangsu, 215000 China
| | - Xiaoling Deng
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou Suzhou, Jiangsu, 215000 China
| | - Chao Luo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou Suzhou, Jiangsu, 215000 China
| | - Qianmeng Zhu
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou Suzhou, Jiangsu, 215000 China
| | - Shucheng Lu
- Marxism Research Institute, Soochow University, Suzhou, Jiangsu, 215123 China
| | - Caiping Mao
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, 899 Pinghai Rd, Suzhou Suzhou, Jiangsu, 215000 China
| |
Collapse
|
81
|
Arkoun B, Moison P, Guerquin MJ, Messiaen S, Moison D, Tourpin S, Monville C, Livera G. Sorting and Manipulation of Human PGC-LC Using PDPN and Hanging Drop Cultures. Cells 2022; 11:3832. [PMID: 36497094 PMCID: PMC9736549 DOI: 10.3390/cells11233832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The generation of oocytes from induced pluripotent stem cells (iPSCs) was proven efficient with mouse cells. However, no human iPSCs have yet been reported to generate cells able to complete oogenesis. Additionally, efficient sorting of human Primordial Germ Cell-like Cells (hPGC-LCs) without genomic integration of fluorescent reporter for their downstream manipulation is still lacking. Here, we aimed to develop a model that allows human germ cell differentiation in vitro in order to study the developing human germline. The hPGC-LCs specified from two iPS cell lines were sorted and manipulated using the PDPN surface marker without genetic modification. hPGC-LCs obtained remain arrested at early stages of maturation and no further differentiation nor meiotic onset occurred when these were cultured with human or mouse fetal ovarian somatic cells. However, when cultured independently of somatic ovarian cells, using BMP4 and the hanging drop-transferred EBs system, early hPGC-LCs further differentiate efficiently and express late PGC (DDX4) and meiotic gene markers, although no SYCP3 protein was detected. Altogether, we characterized a tool to sort hPGC-LCs and an efficient in vitro differentiation system to obtain pre-meiotic germ cell-like cells without using a gonadal niche.
Collapse
Affiliation(s)
- Brahim Arkoun
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Pauline Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Marie-Justine Guerquin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sophie Tourpin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Paris-Saclay Evry, U861, 91100 Corbeil-Essonnes, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
82
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
83
|
Liu WX, Tan SJ, Wang YF, Zhang FL, Feng YQ, Ge W, Dyce PW, Reiter RJ, Shen W, Cheng SF. Melatonin promotes the proliferation of primordial germ cell-like cells derived from porcine skin-derived stem cells: A mechanistic analysis. J Pineal Res 2022; 73:e12833. [PMID: 36106819 DOI: 10.1111/jpi.12833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
In vitro differentiation of stem cells into functional gametes remains of great interest in the biomedical field. Skin-derived stem cells (SDSCs) are an adult stem cells that provides a wide range of clinical applications without inherent ethical restrictions. In this paper, porcine SDSCs were successfully differentiated into primordial germ cell-like cells (PGCLCs) in conditioned media. The PGCLCs were characterized in terms of cell morphology, marker gene expression, and epigenetic properties. Furthermore, we also found that 25 μM melatonin (MLT) significantly increased the proliferation of the SDSC-derived PGCLCs while acting through the MLT receptor type 1 (MT1). RNA-seq results found the mitogen-activated protein kinase (MAPK) signaling pathway was more active when PGCLCs were cultured with MLT. Moreover, the effect of MLT was attenuated by the use of S26131 (MT1 antagonist), crenolanib (platelet-derived growth factor receptor inhibitor), U0126 (mitogen-activated protein kinase kinase inhibitor), or CCG-1423 (serum response factor transcription inhibitor), suggesting that MLT promotes the proliferation processes through the MAPK pathway. Taken together, this study highlights the role of MLT in promoting PGCLCs proliferation. Importantly, this study provides a suitable in vitro model for use in translational studies and could help to answer numerous remaining questions related to germ cell physiology.
Collapse
Affiliation(s)
- Wen-Xiang Liu
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shao-Jing Tan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Feng Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Fa-Li Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yu-Qing Feng
- School Hospital, Qingdao Agricultural University, Qingdao, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Paul W Dyce
- Department of Animal Sciences, Auburn University, Auburn, Alabama, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, Texas, USA
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
84
|
Chan CJ, Hirashima T. Tissue hydraulics in reproduction. Semin Cell Dev Biol 2022; 131:124-133. [PMID: 35606275 DOI: 10.1016/j.semcdb.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The development of functional eggs and sperm are critical processes in mammalian development as they ensure successful reproduction and species propagation. While past studies have identified important genes that regulate these processes, the roles of luminal flow and fluid stress in reproductive biology remain less well understood. Here, we discuss recent evidence that support the diverse functions of luminal fluid in oogenesis, spermatogenesis and embryogenesis. We also review emerging techniques that allow for precise quantification and perturbation of tissue hydraulics in female and male reproductive systems, and propose new questions and approaches in this field. We hope this review will provide a useful resource to inspire future research in tissue hydraulics in reproductive biology and diseases.
Collapse
Affiliation(s)
- Chii Jou Chan
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| | - Tsuyoshi Hirashima
- Mechanobiology Institute, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; The Hakubi Center/Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan.
| |
Collapse
|
85
|
Briski O, Salamone DF. Past, present and future of ICSI in livestock species. Anim Reprod Sci 2022; 246:106925. [PMID: 35148927 DOI: 10.1016/j.anireprosci.2022.106925] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/03/2022] [Accepted: 01/16/2022] [Indexed: 12/14/2022]
Abstract
During the past 2 decades, intracytoplasmic sperm injection (ICSI) has become a routine technique for clinical applications in humans. The widespread use among domestic species, however, has been limited to horses. In horses, ICSI is used to reproduce elite individuals and, as well as in humans, to mitigate or even circumvent reproductive barriers. Failures in superovulation and conventional in vitro fertilization (IVF) have been the main reason for the use of this technology in horses. In pigs, ICSI has been successfully used to produce transgenic animals. A series of factors have resulted in implementation of ICSI in pigs: need to use zygotes for numerous technologies, complexity of collecting zygotes surgically, and problems of polyspermy when there is utilization of IVF procedures. Nevertheless, there have been very few additional reports confirming positive results with the use of ICSI in pigs. The ICSI procedure could be important for use in cattle of high genetic value by maximizing semen utilization, as well as for utilization of spermatozoa from prepubertal bulls, by providing the opportunity to shorten the generation interval. When attempting to utilize ICSI in ruminants, there are some biological limitations that need to be overcome if this procedure is going to be efficacious for making genetic improvements in livestock in the future. In this review article, there is an overview and projection of the methodologies and applications that are envisioned for ICSI utilization in these species in the future.
Collapse
Affiliation(s)
- O Briski
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina
| | - D F Salamone
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Producción Animal, Buenos Aires, Laboratorio Biotecnología Animal (LabBA), Av. San Martin 4453, Ciudad Autónoma de, Buenos Aires 1417, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Producción Animal (INPA), Buenos Aires, Argentina.
| |
Collapse
|
86
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
87
|
Tahmasbpour Marzouni E, Stern C, Henrik Sinclair A, Tucker EJ. Stem Cells and Organs-on-chips: New Promising Technologies for Human Infertility Treatment. Endocr Rev 2022; 43:878-906. [PMID: 34967858 DOI: 10.1210/endrev/bnab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Indexed: 11/19/2022]
Abstract
Having biological children remains an unattainable dream for most couples with reproductive failure or gonadal dysgenesis. The combination of stem cells with gene editing technology and organ-on-a-chip models provides a unique opportunity for infertile patients with impaired gametogenesis caused by congenital disorders in sex development or cancer survivors. But how will these technologies overcome human infertility? This review discusses the regenerative mechanisms, applications, and advantages of different types of stem cells for restoring gametogenesis in infertile patients, as well as major challenges that must be overcome before clinical application. The importance and limitations of in vitro generation of gametes from patient-specific human-induced pluripotent stem cells (hiPSCs) will be discussed in the context of human reproduction. The potential role of organ-on-a-chip models that can direct differentiation of hiPSC-derived primordial germ cell-like cells to gametes and other reproductive organoids is also explored. These rapidly evolving technologies provide prospects for improving fertility to individuals and couples who experience reproductive failure.
Collapse
Affiliation(s)
- Eisa Tahmasbpour Marzouni
- Laboratory of Regenerative Medicine & Biomedical Innovations, Pasteur Institute of Iran, Tehran, Iran
| | - Catharyn Stern
- Royal Women's Hospital, Parkville and Melbourne IVF, Melbourne, Australia
| | - Andrew Henrik Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Elena Jane Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
88
|
Sparrow R. Human Germline Genome Editing: On the Nature of Our Reasons to Genome Edit. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2022; 22:4-15. [PMID: 33871321 DOI: 10.1080/15265161.2021.1907480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ever since the publication of Derek Parfit's Reasons and Persons, bioethicists have tended to distinguish between two different ways in which reproductive technologies may have implications for the welfare of future persons. Some interventions harm or benefit particular individuals: they are "person affecting." Other interventions determine which individual, of a number of possible individuals, comes into existence: they are "identity affecting" and raise the famous "non-identity problem." For the past several decades, bioethical debate has, for the most part, proceeded on the assumption that direct genetic modification of human embryos would be person affecting. In this paper, I argue that that genome editing is highly unlikely to be person affecting for the foreseeable future and, as a result, will neither benefit nor harm edited individuals.
Collapse
|
89
|
Ishikura Y, Ohta H, Nagano M, Saitou M. Optimized protocol to derive germline stem-cell-like cells from mouse pluripotent stem cells. STAR Protoc 2022; 3:101544. [PMID: 35842863 PMCID: PMC9294266 DOI: 10.1016/j.xpro.2022.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022] Open
Abstract
Male germ-cell development comprises primordial germ-cell (PGC) development, spermatogonium differentiation, and ensuing spermatogenesis. We present a step-by-step protocol for differentiation of mouse pluripotent stem cells (PSCs) into germline stem-cell-like cells (GSCLCs) via PGC-like cell and spermatogonium-like cell intermediates. The differentiation protocol has higher fidelity than our previous protocol. Upon transplantation into testes in vivo or culture for testis transplants, GSCLCs robustly contribute to spermatogenesis, providing a paradigm for PSC-based reconstitution of mammalian male germ-cell development. For complete details on the use and execution of this protocol, please refer to Ishikura et al. (2021). Protocol for generating germline stem-cell-like cells (GSCLC) from mouse PSCs GSCLCs bear robust spermatogenic potential In vitro reconstitution of whole male germ-cell development in mammals
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Yukiko Ishikura
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Nagano
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
90
|
Mizuta K, Katou Y, Nakakita B, Kishine A, Nosaka Y, Saito S, Iwatani C, Tsuchiya H, Kawamoto I, Nakaya M, Tsukiyama T, Nagano M, Kojima Y, Nakamura T, Yabuta Y, Horie A, Mandai M, Ohta H, Saitou M. Ex vivo reconstitution of fetal oocyte development in humans and cynomolgus monkeys. EMBO J 2022; 41:e110815. [PMID: 35912849 PMCID: PMC9475534 DOI: 10.15252/embj.2022110815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/14/2022] Open
Abstract
In vitro oogenesis is key to elucidating the mechanism of human female germ-cell development and its anomalies. Accordingly, pluripotent stem cells have been induced into primordial germ cell-like cells and into oogonia with epigenetic reprogramming, yet further reconstitutions remain a challenge. Here, we demonstrate ex vivo reconstitution of fetal oocyte development in both humans and cynomolgus monkeys (Macaca fascicularis). With an optimized culture of fetal ovary reaggregates over three months, human and monkey oogonia enter and complete the first meiotic prophase to differentiate into diplotene oocytes that form primordial follicles, the source for oogenesis in adults. The cytological and transcriptomic progressions of fetal oocyte development in vitro closely recapitulate those in vivo. A comparison of single-cell transcriptomes among humans, monkeys, and mice unravels primate-specific and conserved programs driving fetal oocyte development, the former including a distinct transcriptomic transformation upon oogonia-to-oocyte transition and the latter including two active X chromosomes with little X-chromosome upregulation. Our study provides a critical step forward for realizing human in vitro oogenesis and uncovers salient characteristics of fetal oocyte development in primates.
Collapse
Affiliation(s)
- Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Katou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Baku Nakakita
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aoi Kishine
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Saki Saito
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Ikuo Kawamoto
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masataka Nakaya
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masahiro Nagano
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoji Kojima
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihito Horie
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
91
|
Dong MH, Kim YY, Ku SY. Identification of Stem Cell-Like Cells in the Ovary. Tissue Eng Regen Med 2022; 19:675-685. [PMID: 35119648 PMCID: PMC9294092 DOI: 10.1007/s13770-021-00424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding the function of stem cells and cellular microenvironments in in vitro oogenesis, including ovarian folliculogenesis, is crucial for reproductive biology. Because mammalian females cannot generate oocytes after birth, the number of oocyte decreases with the progression of reproductive age. Meanwhile, there is an emerging need for the neogenesis of female germ cells to treat the increasing infertility-related issues in cancer survivors. The concept of oocytes neogenesis came from the promising results of stem cells in reproductive medicine. The stem cells that generate oocytes are defined as stem cell-like cells in the ovary (OSCs). Several recent studies have focused on the origin, isolation, and characteristic of OSCs and the differentiation of OSCs into oocytes, ovarian follicles and granulosa cells. Hence, in this review, we focus on the experimental trends in OSC research and discuss the methods of OSC isolation. We further summarized the characteristics of OSCs and discuss the markers used to identify OSCs differentiated from various cell sources. We believe that this review will be beneficial for advancing the research and clinical applications of OSCs.
Collapse
Affiliation(s)
- Myung Hoon Dong
- Department of Premedicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71 Ihwajang-gil, Jongno-gu, Seoul, 03080, Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University, 71 Ihwajang-gil, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
92
|
Recchia K, Pessôa LVDF, Pieri NCG, Pires PRL, Bressan FF. Influence of Cell Type in In Vitro Induced Reprogramming in Cattle. Life (Basel) 2022; 12:1139. [PMID: 36013318 PMCID: PMC9409886 DOI: 10.3390/life12081139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have been considered an essential tool in stem cell research due to their potential to develop new therapies and technologies and answer essential questions about mammalian early development. An important step in generating iPSCs is selecting their precursor cell type, influencing the reprogramming efficiency and maintenance in culture. In this study, we aim to characterize bovine mesenchymal cells from adipose tissue (bAdMSCs) and fetal fibroblasts (bFFs) and to compare the reprogramming efficiency of these cells when induced to pluripotency. The cells were characterized by immunostaining (CD90, SSEA1, SSEA3, and SSEA4), induced differentiation in vitro, proliferation rates, and were subjected to cell reprogramming using the murine OSKM transcription factors. The bFFs presented morphological changes resembling pluripotent cells after reprogramming and culture with different supplementation, and putative iPSCs were characterized by immunostaining (OCT4, SOX2, NANOG, and AP). In the present study, we demonstrated that cell line origin and cellular proliferation rate are determining factors for reprogramming cells into pluripotency. The generation of biPSCs is a valuable tool to improve both translational medicine and animal production and to study the different supplements required to maintain the pluripotency of bovine cells in vitro.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Pedro Ratto Lisboa Pires
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo 05508-270, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (L.V.d.F.P.); (N.C.G.P.); (P.R.L.P.)
| |
Collapse
|
93
|
Yang S, Liu Z, Wu S, Zou L, Cao Y, Xu H, Huang J, Tian Q, Wu F, Li P, Peng S, Shuai C. Meiosis resumption in human primordial germ cells from induced pluripotent stem cells by in vitro activation and reconstruction of ovarian nests. Stem Cell Res Ther 2022; 13:339. [PMID: 35883163 PMCID: PMC9327357 DOI: 10.1186/s13287-022-03019-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Background The differentiation of human induced pluripotent stem cells (iPSCs) into oocytes, which involves the transformation from mitosis to meiosis, has been a hotspot of biological research for many years and represents a desirable experimental model and potential strategy for treating infertility. At present, studies have shown that most cells stagnate in the oogonium stage after differentiation into primordial germ cells (PGCs) from human iPSCs. Methods iPSCs carrying a SYCP3-mkate2 knock-in reporter were generated by the CRISPR/Cas9 strategy to monitor meiosis status during induced differentiation from iPSCs into oocytes. These induced PGCs/oogonia were activated by small molecules from the Wnt signaling pathway and then cocultured with reconstructed human ovarian nests in vivo for further development. Results First, human PGCs and oogonia were efficiently induced from iPSCs. Second, induced dormant PGCs resumed meiosis and then differentiated into primary oocytes through the in vitro activation of the Wnt signaling pathway. Finally, a new coculture system involving the reconstruction of ovarian nests in vitro could facilitate the differentiation of oocytes. Conclusions Human PGCs/oogonia induced from iPSCs can be activated and used to resume meiosis by molecules of the Wnt signaling pathway. The coculture of activated PGCs and reconstruction of ovarian nests facilitated differentiation into primary oocytes and the generation of haploid human oocytes in vivo. These findings established a new strategy for germline competence in primary oocytes and provided a keystone for human gametogenesis in vitro and in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03019-3.
Collapse
Affiliation(s)
- Sheng Yang
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China. .,Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China.
| | - Zhen Liu
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Shengda Wu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China.,Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, People's Republic of China
| | - Lang Zou
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yanpei Cao
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China
| | - Hongjia Xu
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China
| | - Jingfeng Huang
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, 518053, Guangdong Province, People's Republic of China
| | - Qingyan Tian
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Fanggui Wu
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Panpan Li
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.
| | - Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, 330013, People's Republic of China. .,State Key Laboratory of High-Performance Complex Manufacturing, Central South University, Changsha, 410083, People's Republic of China.
| |
Collapse
|
94
|
Xie Y, Wu C, Li Z, Wu Z, Hong L. Early Gonadal Development and Sex Determination in Mammal. Int J Mol Sci 2022; 23:ijms23147500. [PMID: 35886859 PMCID: PMC9323860 DOI: 10.3390/ijms23147500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Sex determination is crucial for the transmission of genetic information through generations. In mammal, this process is primarily regulated by an antagonistic network of sex-related genes beginning in embryonic development and continuing throughout life. Nonetheless, abnormal expression of these sex-related genes will lead to reproductive organ and germline abnormalities, resulting in disorders of sex development (DSD) and infertility. On the other hand, it is possible to predetermine the sex of animal offspring by artificially regulating sex-related gene expression, a recent research hotspot. In this paper, we reviewed recent research that has improved our understanding of the mechanisms underlying the development of the gonad and primordial germ cells (PGCs), progenitors of the germline, to provide new directions for the treatment of DSD and infertility, both of which involve manipulating the sex ratio of livestock offspring.
Collapse
Affiliation(s)
- Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Changhua Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510630, China; (Y.X.); (C.W.); (Z.L.)
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510630, China
- Correspondence: (Z.W.); (L.H.)
| |
Collapse
|
95
|
Yoshimatsu S, Kisu I, Qian E, Noce T. A New Horizon in Reproductive Research with Pluripotent Stem Cells: Successful In Vitro Gametogenesis in Rodents, Its Application to Large Animals, and Future In Vitro Reconstitution of Reproductive Organs Such as “Uteroid” and “Oviductoid”. BIOLOGY 2022; 11:biology11070987. [PMID: 36101367 PMCID: PMC9312112 DOI: 10.3390/biology11070987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Functional gametes, such as oocytes and spermatozoa, have been derived from rodent pluripotent stem cells, which can be applied to large animals and ultimately, to humans. In addition to summarizing these topics, we also review additional approaches for in vitro reconstitution of reproductive organs. This review illustrates intensive past efforts and future challenges on stem cell research for in vitro biogenesis in various mammalian models. Abstract Recent success in derivation of functional gametes (oocytes and spermatozoa) from pluripotent stem cells (PSCs) of rodents has made it feasible for future application to large animals including endangered species and to ultimately humans. Here, we summarize backgrounds and recent studies on in vitro gametogenesis from rodent PSCs, and similar approaches using PSCs from large animals, including livestock, nonhuman primates (NHPs), and humans. We also describe additional developing approaches for in vitro reconstitution of reproductive organs, such as the ovary (ovarioid), testis (testisoid), and future challenges in the uterus (uteroid) and oviduct (oviductoid), all of which may be derived from PSCs. Once established, these in vitro systems may serve as a robust platform for elucidating the pathology of infertility-related disorders and ectopic pregnancy, principle of reproduction, and artificial biogenesis. Therefore, these possibilities, especially when using human cells, require consideration of ethical issues, and international agreements and guidelines need to be raised before opening “Pandora’s Box”.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-City 351-0198, Japan;
- Correspondence:
| | - Iori Kisu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Emi Qian
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-City 351-0198, Japan;
| |
Collapse
|
96
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
97
|
Okada Y. Sperm chromatin condensation: epigenetic mechanisms to compact the genome and spatiotemporal regulation from inside and outside the nucleus. Gene 2022; 97:41-53. [PMID: 35491100 DOI: 10.1266/ggs.21-00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sperm chromatin condensation is a critical step in mammalian spermatogenesis to protect the paternal DNA from external damaging factors and to acquire fertility. During chromatin condensation, various events proceed in a chronological order, independently or in sequence, interacting with each other both inside and outside the nucleus to support the dramatic chromatin changes. Among these events, histone-protamine replacement, which is concomitant with acrosome biogenesis and cytoskeletal alteration, is the most critical step associated with nuclear elongation. Failures of not only intranuclear events but also extra-nuclear events severely affect sperm shape and chromatin state and are subsequently linked to infertility. This review focuses on nuclear and non-nuclear factors that affect sperm chromatin condensation and its effects, and further discusses the possible utility of sperm chromatin for clinical applications.
Collapse
Affiliation(s)
- Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo
| |
Collapse
|
98
|
Shirane K. The dynamic chromatin landscape and mechanisms of DNA methylation during mouse germ cell development. Gene 2022; 97:3-14. [PMID: 35431282 DOI: 10.1266/ggs.21-00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epigenetic marks including DNA methylation (DNAme) play a critical role in the transcriptional regulation of genes and retrotransposons. Defects in DNAme are detected in infertility, imprinting disorders and congenital diseases in humans, highlighting the broad importance of this epigenetic mark in both development and disease. While DNAme in terminally differentiated cells is stably propagated following cell division by the maintenance DNAme machinery, widespread erasure and subsequent de novo establishment of this epigenetic mark occur early in embryonic development as well as in germ cell development. Combined with deep sequencing, low-input methods that have been developed in the past several years have enabled high-resolution and genome-wide mapping of both DNAme and histone post-translational modifications (PTMs) in rare cell populations including developing germ cells. Epigenome studies using these novel methods reveal an unprecedented view of the dynamic chromatin landscape during germ cell development. Furthermore, integrative analysis of chromatin marks in normal germ cells and in those deficient in chromatin-modifying enzymes uncovers a critical interplay between histone PTMs and de novo DNAme in the germline. This review discusses work on mechanisms of the erasure and subsequent de novo DNAme in mouse germ cells as well as the outstanding questions relating to the regulation of the dynamic chromatin landscape in germ cells.
Collapse
Affiliation(s)
- Kenjiro Shirane
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
99
|
Severino J, Bauer M, Mattimoe T, Arecco N, Cozzuto L, Lorden P, Hamada N, Nosaka Y, Nagaoka SI, Audergon P, Tarruell A, Heyn H, Hayashi K, Saitou M, Payer B. Controlled X-chromosome dynamics defines meiotic potential of female mouse in vitro germ cells. EMBO J 2022; 41:e109457. [PMID: 35603814 PMCID: PMC9194795 DOI: 10.15252/embj.2021109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X‐chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X‐inactivation and reactivation dynamics using a tailor‐made in vitro system of primordial germ cell‐like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X‐inactivation in PGCLCs in vitro and in germ cell‐competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X‐inactivation is followed by step‐wise X‐reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X‐inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine‐tuned X‐chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.
Collapse
Affiliation(s)
- Jacqueline Severino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Patricia Lorden
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - So I Nagaoka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Pauline Audergon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Tarruell
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
100
|
Regin M, Spits C, Sermon K. On the origins and fate of chromosomal abnormalities in human preimplantation embryos: an unsolved riddle. Mol Hum Reprod 2022; 28:6566308. [DOI: 10.1093/molehr/gaac011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
About 8 out of 10 human embryos obtained in vitro harbour chromosomal abnormalities of either meiotic or mitotic origin. Abnormalities of mitotic origin lead to chromosomal mosaicism, a phenomenon which has sparked much debate lately as it confounds results obtained through preimplantation genetic testing for aneuploidy (PGT-A). PGT-A in itself is still highly debated, not only on the modalities of its execution, but also on whether it should be offered to patients at all.
We will focus on post-zygotic chromosomal abnormalities leading to mosaicism. First, we will summarize what is known of the rates of chromosomal abnormalities at different developmental stages. Next, based on the current understanding of the origin and cellular consequences of chromosomal abnormalities, which is largely based on studies on cancer cells and model organisms, we will offer a number of hypotheses on which mechanisms may be at work in early human development. Finally, and very briefly, we will touch upon the impact our current knowledge has on the practice of PGT-A. What is the level of abnormal cells that an embryo can tolerate before it loses its potential for full development? And is blastocyst biopsy as harmless as it seems?
Collapse
Affiliation(s)
- Marius Regin
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Claudia Spits
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| | - Karen Sermon
- Research group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, 1090, Belgium
| |
Collapse
|