51
|
Geisterfer ZM, Zhu DY, Mitchison TJ, Oakey J, Gatlin JC. Microtubule Growth Rates Are Sensitive to Global and Local Changes in Microtubule Plus-End Density. Curr Biol 2020; 30:3016-3023.e3. [PMID: 32531285 DOI: 10.1016/j.cub.2020.05.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/14/2020] [Accepted: 05/18/2020] [Indexed: 01/02/2023]
Abstract
The microtubule cytoskeleton plays critically important roles in numerous cellular functions in eukaryotes, and it does so across a functionally diverse and morphologically disparate range of cell types [1]. In these roles, microtubule assemblies must adopt distinct morphologies and physical dimensions to perform specific functions [2-5]. As such, these macromolecular assemblies-as well as the dynamics of the individual microtubule polymers from which they are made-must scale and change in accordance with cell size, geometry, and function. Microtubules in cells typically assemble to a steady state in mass, leaving enough of their tubulin subunits soluble to allow rapid growth and turnover. This suggests some negative feedback that limits the extent of assembly, for example, decrease in growth rate, or increase in catastrophe rate, as the soluble subunit pool decreases. Although these ideas have informed the field for decades, they have not been observed experimentally. Here, we describe the application of an experimental approach that combines cell-free extracts with photo-patterned hydrogel micro-enclosures as a means to investigate microtubule dynamics in cytoplasmic volumes of defined size and shape. Our measurements reveal a negative correlation between microtubule plus-end density and microtubule growth rates and suggest that these rates are sensitive to the presence of nearby growing ends.
Collapse
Affiliation(s)
- Zachary M Geisterfer
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82070, USA.
| | - Daniel Y Zhu
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82070, USA
| | - Timothy J Mitchison
- Department of Systems Biology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Marine Biological Laboratory, Cell Division and Organization Group, 7 MBL Street, Woods Hole, MA 02543, USA
| | - John Oakey
- Marine Biological Laboratory, Cell Division and Organization Group, 7 MBL Street, Woods Hole, MA 02543, USA; Department of Chemical Engineering, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82070, USA
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82070, USA; Marine Biological Laboratory, Cell Division and Organization Group, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
52
|
Levy DL. Cell Biology: Tubulin Contributes to Spindle Size Scaling. Curr Biol 2020; 30:R637-R639. [PMID: 32516610 DOI: 10.1016/j.cub.2020.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sizes of intracellular structures are important for function, yet mechanisms underlying subcellular size control are largely unexplored. A new study reveals how differences in tubulin populations between two related Xenopus frog species influence microtubule dynamics and spindle length.
Collapse
Affiliation(s)
- Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
53
|
Abstract
The cell-free molecular synthesis of biochemical systems is a rapidly growing field of research. Advances in the Human Genome Project, DNA synthesis, and other technologies have allowed the in vitro construction of biochemical systems, termed cell-free biology, to emerge as an exciting domain of bioengineering. Cell-free biology ranges from the molecular to the cell-population scales, using an ever-expanding variety of experimental platforms and toolboxes. In this review, we discuss the ongoing efforts undertaken in the three major classes of cell-free biology methodologies, namely protein-based, nucleic acids–based, and cell-free transcription–translation systems, and provide our perspectives on the current challenges as well as the major goals in each of the subfields.
Collapse
Affiliation(s)
- Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Allen P. Liu
- Departments of Mechanical Engineering, Biomedical Engineering, Biophysics, and the Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
54
|
Nolet FE, Vandervelde A, Vanderbeke A, Piñeros L, Chang JB, Gelens L. Nuclei determine the spatial origin of mitotic waves. eLife 2020; 9:e52868. [PMID: 32452767 PMCID: PMC7314552 DOI: 10.7554/elife.52868] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Traveling waves play an essential role in coordinating mitosis over large distances, but what determines the spatial origin of mitotic waves remains unclear. Here, we show that such waves initiate at pacemakers, regions that oscillate faster than their surroundings. In cell-free extracts of Xenopus laevis eggs, we find that nuclei define such pacemakers by concentrating cell cycle regulators. In computational models of diffusively coupled oscillators that account for nuclear import, nuclear positioning determines the pacemaker location. Furthermore, we find that the spatial dimensions of the oscillatory medium change the nuclear positioning and strongly influence whether a pacemaker is more likely to be at a boundary or an internal region. Finally, we confirm experimentally that increasing the system width increases the proportion of pacemakers at the boundary. Our work provides insight into how nuclei and spatial system dimensions can control local concentrations of regulators and influence the emergent behavior of mitotic waves.
Collapse
Affiliation(s)
- Felix E Nolet
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Alexandra Vandervelde
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Arno Vanderbeke
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
- MeBioS - Biosensors Group, Department of Biosystems, KU LeuvenLeuvenBelgium
| | - Liliana Piñeros
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| | - Jeremy B Chang
- Department of Pharmaceutical ChemistryUniversity of California, San FranciscoUnited States
| | - Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU LeuvenLeuvenBelgium
| |
Collapse
|
55
|
Hirst WG, Biswas A, Mahalingan KK, Reber S. Differences in Intrinsic Tubulin Dynamic Properties Contribute to Spindle Length Control in Xenopus Species. Curr Biol 2020; 30:2184-2190.e5. [PMID: 32386526 DOI: 10.1016/j.cub.2020.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/13/2020] [Accepted: 03/26/2020] [Indexed: 01/21/2023]
Abstract
The function of cellular organelles relates not only to their molecular composition but also to their size. However, how the size of dynamic mesoscale structures is established and maintained remains poorly understood [1-3]. Mitotic spindle length, for example, varies several-fold among cell types and among different organisms [4]. Although most studies on spindle size control focus on changes in proteins that regulate microtubule dynamics [5-8], the contribution of the spindle's main building block, the αβ-tubulin heterodimer, has yet to be studied. Apart from microtubule-associated proteins and motors, two factors have been shown to contribute to the heterogeneity of microtubule dynamics: tubulin isoform composition [9, 10] and post-translational modifications [11]. In the past, studying the contribution of tubulin and microtubules to spindle assembly has been limited by the fact that physiologically relevant tubulins were not available. Here, we show that tubulins purified from two closely related frogs, Xenopus laevis and Xenopus tropicalis, have surprisingly different microtubule dynamics in vitro. X. laevis microtubules combine very fast growth and infrequent catastrophes. In contrast, X. tropicalis microtubules grow slower and catastrophe more frequently. We show that spindle length and microtubule mass can be controlled by titrating the ratios of the tubulins from the two frog species. Furthermore, we combine our in vitro reconstitution assay and egg extract experiments with computational modeling to show that differences in intrinsic properties of different tubulins contribute to the control of microtubule mass and therefore set steady-state spindle length.
Collapse
Affiliation(s)
- William G Hirst
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Abin Biswas
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Simone Reber
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Marine Biological Laboratory, Woods Hole, MA 02543, USA; University of Applied Sciences Berlin, 13353 Berlin, Germany.
| |
Collapse
|
56
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
57
|
Chen P, Tomschik M, Nelson KM, Oakey J, Gatlin JC, Levy DL. Nucleoplasmin is a limiting component in the scaling of nuclear size with cytoplasmic volume. J Cell Biol 2019; 218:4063-4078. [PMID: 31636119 PMCID: PMC6891103 DOI: 10.1083/jcb.201902124] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/08/2019] [Accepted: 09/06/2019] [Indexed: 12/27/2022] Open
Abstract
How nuclear size is regulated relative to cell size is a fundamental cell biological question. Reductions in both cell and nuclear sizes during Xenopus laevis embryogenesis provide a robust scaling system to study mechanisms of nuclear size regulation. To test if the volume of embryonic cytoplasm is limiting for nuclear growth, we encapsulated gastrula-stage embryonic cytoplasm and nuclei in droplets of defined volume using microfluidics. Nuclei grew and reached new steady-state sizes as a function of cytoplasmic volume, supporting a limiting component mechanism of nuclear size control. Through biochemical fractionation, we identified the histone chaperone nucleoplasmin (Npm2) as a putative nuclear size effector. Cellular amounts of Npm2 decrease over development, and nuclear size was sensitive to Npm2 levels both in vitro and in vivo, affecting nuclear histone levels and chromatin organization. We propose that reductions in cell volume and the amounts of limiting components, such as Npm2, contribute to developmental nuclear size scaling.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | | | - Katherine M Nelson
- Department of Molecular Biology, University of Wyoming, Laramie, WY
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY
| |
Collapse
|
58
|
Bisht J, LeValley P, Noren B, McBride R, Kharkar P, Kloxin A, Gatlin J, Oakey J. Light-inducible activation of cell cycle progression in Xenopus egg extracts under microfluidic confinement. LAB ON A CHIP 2019; 19:3499-3511. [PMID: 31544194 PMCID: PMC7819639 DOI: 10.1039/c9lc00569b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-free Xenopus egg extract is a widely used and biochemically tractable model system that allows recapitulation and elucidation of fundamental cellular processes. Recently, the introduction of microfluidic extract manipulation has enabled compartmentalization of bulk extract and a newfound ability to study organelles on length scales that recapitulate key features of cellular morphology. While the microfluidic confinement of extracts has produced a compelling platform for the in vitro study of cell processes at physiologically-relevant length scales, it also imposes experimental limitations by restricting dynamic control over extract properties. Here, we introduce photodegradable polyethylene glycol (PEG) hydrogels as a vehicle to passively and selectively manipulate extract composition through the release of proteins encapsulated within the hydrogel matrix. Photopatterned PEG hydrogels, passive to both extract and encapsulated proteins, serve as protein depots within microfluidic channels, which are subsequently flooded with extract. Illumination by ultraviolet light (UV) degrades the hydrogel structures and releases encapsulated protein. We show that an engineered fluorescent protein with a nuclear localization signal (GST-GFP-NLS) retains its ability to localize within nearby nuclei following UV-induced release from hydrogel structures. When diffusion is considered, the kinetics of nuclear accumulation are similar to those in experiments utilizing conventional, bulk fluid handling. Similarly, the release of recombinant cyclin B Δ90, a mutant form of the master cell cycle regulator cyclin B which lacks the canonical destruction box, was able to induce the expected cell cycle transition from interphase to mitosis. This transition was confirmed by the observation of nuclear envelope breakdown (NEBD), a phenomenological hallmark of mitosis, and the induction of mitosis-specific biochemical markers. This approach to extract manipulation presents a versatile and customizable route to regulating the spatial and temporal dynamics of cellular events in microfluidically confined cell-free extracts.
Collapse
Affiliation(s)
- Jitender Bisht
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Paige LeValley
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Benjamin Noren
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Ralph McBride
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
| | - Prathamesh Kharkar
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - April Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716
| | - Jesse Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071
- Cell Organization and Division Group, Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
59
|
Sun M, Li Z, Wang S, Maryu G, Yang Q. Building Dynamic Cellular Machineries in Droplet-Based Artificial Cells with Single-Droplet Tracking and Analysis. Anal Chem 2019; 91:9813-9818. [PMID: 31284720 PMCID: PMC7260773 DOI: 10.1021/acs.analchem.9b01481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the application of droplet microfluidics has grown exponentially in chemistry and biology over the past decades, robust universal platforms for the routine generation and comprehensive analysis of droplet-based artificial cells are still rare. Here we report using microfluidic droplets to reproduce a variety of types of cellular machinery in in vitro artificial cells. In combination with a unique image-based analysis method, the system enables full automation in tracking single droplets with high accuracy, high throughput, and high sensitivity. These powerful performances allow broad applicability evident in three representative droplet-based analytical prototypes that we develop for (i) droplet digital detection, (ii) in vitro transcription and translation reactions, and (iii) spatiotemporal dynamics of cell-cycle oscillations. The capacities of this platform to generate, incubate, track, and analyze individual microdroplets via real-time, long-term imaging unleash its great potential in accelerating cell-free synthetic biology. Moreover, the wide scope covering from digital to analog to morphological detections makes this droplet analysis technique adaptable for many other divergent types of droplet-based chemical and biological assays.
Collapse
Affiliation(s)
- Meng Sun
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhengda Li
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Shiyuan Wang
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Gembu Maryu
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| | - Qiong Yang
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
60
|
Rieckhoff EM, Ishihara K, Brugués J. How to tune spindle size relative to cell size? Curr Opin Cell Biol 2019; 60:139-144. [PMID: 31377657 DOI: 10.1016/j.ceb.2019.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022]
Abstract
Cells need to regulate the size and shape of their organelles for proper function. For example, the mitotic spindle adapts its size to changes in cell size over several orders of magnitude, but we lack a mechanistic understanding of how this is achieved. Here, we review our current knowledge of how small and large spindles assemble and ask which microtubule-based biophysical processes (nucleation, polymerization dynamics, transport) may be responsible for spindle size regulation. Finally, we review possible cell-scale mechanisms that put spindle size under the regulation of cell size.
Collapse
Affiliation(s)
- Elisa Maria Rieckhoff
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Keisuke Ishihara
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
| |
Collapse
|
61
|
Sonnen KF, Merten CA. Microfluidics as an Emerging Precision Tool in Developmental Biology. Dev Cell 2019; 48:293-311. [PMID: 30753835 DOI: 10.1016/j.devcel.2019.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/13/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
Microfluidics has become a precision tool in modern biology. It enables omics data to be obtained from individual cells, as compared to averaged signals from cell populations, and it allows manipulation of biological specimens in entirely new ways. Cells and organisms can be perturbed at extraordinary spatiotemporal resolution, revealing mechanistic insights that would otherwise remain hidden. In this perspective article, we discuss the current and future impact of microfluidic technology in the field of developmental biology. In addition, we provide detailed information on how to start using this technology even without prior experience.
Collapse
Affiliation(s)
| | - Christoph A Merten
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
62
|
Garcia-Jove Navarro M, Kashida S, Chouaib R, Souquere S, Pierron G, Weil D, Gueroui Z. RNA is a critical element for the sizing and the composition of phase-separated RNA-protein condensates. Nat Commun 2019; 10:3230. [PMID: 31324804 PMCID: PMC6642089 DOI: 10.1038/s41467-019-11241-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/27/2019] [Indexed: 01/01/2023] Open
Abstract
Liquid-liquid phase separation is thought to be a key organizing principle in eukaryotic cells to generate highly concentrated dynamic assemblies, such as the RNP granules. Numerous in vitro approaches have validated this model, yet a missing aspect is to take into consideration the complex molecular mixture and promiscuous interactions found in vivo. Here we report the versatile scaffold ArtiG to generate concentration-dependent RNA-protein condensates within living cells, as a bottom-up approach to study the impact of co-segregated endogenous components on phase separation. We demonstrate that intracellular RNA seeds the nucleation of the condensates, as it provides molecular cues to locally coordinate the formation of endogenous high-order RNP assemblies. Interestingly, the co-segregation of intracellular components ultimately impacts the size of the phase-separated condensates. Thus, RNA arises as an architectural element that can influence the composition and the morphological outcome of the condensate phases in an intracellular context.
Collapse
Affiliation(s)
- Marina Garcia-Jove Navarro
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Shunnichi Kashida
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
| | - Racha Chouaib
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005, Paris, France.,School of Arts and Sciences, Lebanese International University (LIU), Beirut, Lebanon.,Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Sylvie Souquere
- CNRS UMR-9196, Institut Gustave Roussy, F-94800, Villejuif, France
| | - Gérard Pierron
- CNRS UMR-9196, Institut Gustave Roussy, F-94800, Villejuif, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire de Biologie du Développement, F-75005, Paris, France
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
63
|
Chen Y, Nam S, Chaudhuri O, Huang HC. The evolution of spindles and their mechanical implications for cancer metastasis. Cell Cycle 2019; 18:1671-1675. [PMID: 31234701 DOI: 10.1080/15384101.2019.1632137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The mitotic spindle has long been known to play a crucial role in mitosis, orchestrating the segregation of chromosomes into two daughter cells during mitosis with high fidelity. Intracellular forces generated by the mitotic spindle are increasingly well understood, and recent work has revealed that the efficiency and the accuracy of mitosis is ensured by the scaling of mitotic spindle size with cell size. However, the role of the spindle in cancer progression has largely been ignored. Two recent studies point toward the role of mitotic spindle evolution in cancer progression through extracellular force generation. Cancer cells with lengthened spindles exhibit highly increased metastatic potential. Further, interpolar spindle elongation drives protrusive extracellular force generation along the mitotic axis to allow mitotic elongation, a morphological change that is required for cell division. Together, these findings open a new research area studying the role of the mitotic spindle evolution in cancer metastasis.
Collapse
Affiliation(s)
- Yun Chen
- a Institute of Molecular and Cellular Biology , National Taiwan University , Taipei , Taiwan
| | - Sungmin Nam
- b Department of Mechanical Engineering , Stanford University , Stanford , CA , USA
| | - Ovijit Chaudhuri
- b Department of Mechanical Engineering , Stanford University , Stanford , CA , USA
| | - Hsiao-Chun Huang
- a Institute of Molecular and Cellular Biology , National Taiwan University , Taipei , Taiwan
| |
Collapse
|
64
|
Gibeaux R, Heald R. The Use of Cell-Free Xenopus Extracts to Investigate Cytoplasmic Events. Cold Spring Harb Protoc 2019; 2019:pdb.top097048. [PMID: 29980587 DOI: 10.1101/pdb.top097048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experiments using cytoplasmic extracts prepared from Xenopus eggs have made important contributions to our understanding of the cell cycle, the cytoskeleton, and cytoplasmic membrane systems. Here we introduce the extract system and describe methods for visualizing and manipulating diverse cytoplasmic processes, and for assaying the functions, dynamics, and stability of individual factors. These in vitro approaches uniquely enable investigation of events at specific cell cycle states, including the assembly of actin- and microtubule-based structures, and the formation of the endoplasmic reticulum. Maternal stockpiles in extracts recapitulate diverse processes in the near absence of gene expression, and this biochemical system combined with microscopy empowers a wide range of mechanistic investigations.
Collapse
Affiliation(s)
- Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
65
|
Abstract
The assembly of the mitotic spindle and the subsequent segregation of sister chromatids are based on the self-organized action of microtubule filaments, motor proteins, and other microtubule-associated proteins, which constitute the fundamental force-generating elements in the system. Many of the components in the spindle have been identified, but until recently it remained unclear how their collective behaviors resulted in such a robust bipolar structure. Here, we review the current understanding of the physics of the metaphase spindle that is only now starting to emerge.
Collapse
Affiliation(s)
- David Oriola
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; .,Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 021382, USA
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; .,Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Center for Systems Biology Dresden, 01307, Dresden, Germany
| |
Collapse
|
66
|
Krüger LK, Sanchez JL, Paoletti A, Tran PT. Kinesin-6 regulates cell-size-dependent spindle elongation velocity to keep mitosis duration constant in fission yeast. eLife 2019; 8:42182. [PMID: 30806623 PMCID: PMC6391065 DOI: 10.7554/elife.42182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/13/2019] [Indexed: 01/01/2023] Open
Abstract
The length of the mitotic spindle scales with cell size in a wide range of organisms during embryonic development. Interestingly, in C. elegans embryos, this goes along with temporal regulation: larger cells speed up spindle assembly and elongation. We demonstrate that, similarly in fission yeast, spindle length and spindle dynamics adjust to cell size, which allows to keep mitosis duration constant. Since prolongation of mitosis was shown to affect cell viability, this may resemble a mechanism to regulate mitosis duration. We further reveal how the velocity of spindle elongation is regulated: coupled to cell size, the amount of kinesin-6 Klp9 molecules increases, resulting in an acceleration of spindle elongation in anaphase B. In addition, the number of Klp9 binding sites to microtubules increases overproportionally to Klp9 molecules, suggesting that molecular crowding inversely correlates to cell size and might have an impact on spindle elongation velocity control.
Collapse
Affiliation(s)
| | | | - Anne Paoletti
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - Phong Thanh Tran
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
67
|
Brownlee C, Heald R. Importin α Partitioning to the Plasma Membrane Regulates Intracellular Scaling. Cell 2019; 176:805-815.e8. [PMID: 30639102 DOI: 10.1016/j.cell.2018.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/25/2018] [Accepted: 11/30/2018] [Indexed: 01/05/2023]
Abstract
Early embryogenesis is accompanied by reductive cell divisions requiring that subcellular structures adapt to a range of cell sizes. The interphase nucleus and mitotic spindle scale with cell size through both physical and biochemical mechanisms, but control systems that coordinately scale intracellular structures are unknown. We show that the nuclear transport receptor importin α is modified by palmitoylation, which targets it to the plasma membrane and modulates its binding to nuclear localization signal (NLS)-containing proteins that regulate nuclear and spindle size in Xenopus egg extracts. Reconstitution of importin α targeting to the outer boundary of extract droplets mimicking cell-like compartments recapitulated scaling relationships observed during embryogenesis, which were altered by inhibitors that shift levels of importin α palmitoylation. Modulation of importin α palmitoylation in human cells similarly affected nuclear and spindle size. These experiments identify importin α as a conserved surface area-to-volume sensor that scales intracellular structures to cell size.
Collapse
Affiliation(s)
- Christopher Brownlee
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
68
|
Gasic I, Mitchison TJ. Autoregulation and repair in microtubule homeostasis. Curr Opin Cell Biol 2018; 56:80-87. [PMID: 30415186 DOI: 10.1016/j.ceb.2018.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/24/2018] [Accepted: 10/21/2018] [Indexed: 10/27/2022]
Abstract
Even in the face of damaging insults, most cells maintain stability over time through multiple homeostatic pathways, including maintenance of the microtubule cytoskeleton that is fundamental to numerous cellular processes. The dynamic instability-perpetual growth and shrinkage-is the best-known microtubule regulatory pathway, which allows rapid rebuilding of the microtubule cytoskeleton in response to internal or external cues. Much less investigated is homeostatic regulation through availability of α-β tubulin heterodimers-microtubules' main building blocks-which influences total mass and dynamic behavior of microtubules. Finally, the most recently discovered is microtubule homeostasis through self-repair, where new GTP-bound tubulin heterodimers replace the lost ones in the microtubule lattice. In this review we try to integrate our current knowledge on how dynamic instability, regulation of tubulin mass, and self-repair work together to achieve microtubule homeostasis.
Collapse
Affiliation(s)
- Ivana Gasic
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
69
|
Elting MW, Suresh P, Dumont S. The Spindle: Integrating Architecture and Mechanics across Scales. Trends Cell Biol 2018; 28:896-910. [PMID: 30093097 PMCID: PMC6197898 DOI: 10.1016/j.tcb.2018.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023]
Abstract
The spindle segregates chromosomes at cell division, and its task is a mechanical one. While we have a nearly complete list of spindle components, how their molecular-scale mechanics give rise to cellular-scale spindle architecture, mechanics, and function is not yet clear. Recent in vitro and in vivo measurements bring new levels of molecular and physical control and shed light on this question. Highlighting recent findings and open questions, we introduce the molecular force generators of the spindle, and discuss how they organize microtubules into diverse architectural modules and give rise to the emergent mechanics of the mammalian spindle. Throughout, we emphasize the breadth of space and time scales at play, and the feedback between spindle architecture, dynamics, and mechanics that drives robust function.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Physics, Riddick Hall 258A, Box 8202, North Carolina State University, Raleigh, NC 27695, USA; These authors contributed equally
| | - Pooja Suresh
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; These authors contributed equally
| | - Sophie Dumont
- Department of Cell & Tissue Biology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Biophysics Graduate Program, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA; Department of Cellular & Molecular Pharmacology, 513 Parnassus Ave, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
70
|
Guan Y, Wang S, Jin M, Xu H, Yang Q. Reconstitution of Cell-cycle Oscillations in Microemulsions of Cell-free Xenopus Egg Extracts. J Vis Exp 2018:58240. [PMID: 30320763 PMCID: PMC6235322 DOI: 10.3791/58240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Real-time measurement of oscillations at the single-cell level is important to uncover the mechanisms of biological clocks. Although bulk extracts prepared from Xenopus laevis eggs have been powerful in dissecting biochemical networks underlying the cell-cycle progression, their ensemble average measurement typically leads to a damped oscillation, despite each individual oscillator being sustained. This is due to the difficulty of perfect synchronization among individual oscillators in noisy biological systems. To retrieve the single-cell dynamics of the oscillator, we developed a droplet-based artificial cell system that can reconstitute mitotic cycles in cell-like compartments encapsulating cycling cytoplasmic extracts of Xenopus laevis eggs. These simple cytoplasmic-only cells exhibit sustained oscillations for over 30 cycles. To build more complicated cells with nuclei, we added demembranated sperm chromatin to trigger nuclei self-assembly in the system. We observed a periodic progression of chromosome condensation/decondensation and nuclei envelop breakdown/reformation, like in real cells. This indicates that the mitotic oscillator functions faithfully to drive multiple downstream mitotic events. We simultaneously tracked the dynamics of the mitotic oscillator and downstream processes in individual droplets using multi-channel time-lapse fluorescence microscopy. The artificial cell-cycle system provides a high-throughput framework for quantitative manipulation and analysis of mitotic oscillations with single-cell resolution, which likely provides important insights into the regulatory machinery and functions of the clock.
Collapse
Affiliation(s)
- Ye Guan
- Department of Biophysics, University of Michigan, Ann Arbor; Department of Chemistry, University of Michigan, Ann Arbor
| | - Shiyuan Wang
- Department of Biophysics, University of Michigan, Ann Arbor
| | - Minjun Jin
- Department of Chemistry, University of Michigan, Ann Arbor
| | - Haotian Xu
- Department of Computer Science, Wayne State University
| | - Qiong Yang
- Department of Biophysics, University of Michigan, Ann Arbor; Department of Physics, University of Michigan, Ann Arbor;
| |
Collapse
|
71
|
Colin A, Singaravelu P, Théry M, Blanchoin L, Gueroui Z. Actin-Network Architecture Regulates Microtubule Dynamics. Curr Biol 2018; 28:2647-2656.e4. [PMID: 30100343 DOI: 10.1016/j.cub.2018.06.028] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 03/13/2018] [Accepted: 06/14/2018] [Indexed: 11/25/2022]
Abstract
Coordination between actin filaments and microtubules is critical to complete important steps during cell division. For instance, cytoplasmic actin filament dynamics play an active role in the off-center positioning of the spindle during metaphase I in mouse oocytes [1-3] or in gathering the chromosomes to ensure proper spindle formation in starfish oocytes [4, 5], whereas cortical actin filaments control spindle rotation and positioning in adherent cells or in mouse oocytes [6-9]. Several molecular effectors have been found to facilitate anchoring between the meiotic spindle and the cortical actin [10-14]. In vitro reconstitutions have provided detailed insights in the biochemical and physical interactions between microtubules and actin filaments [15-20]. Yet how actin meshwork architecture affects microtubule dynamics is still unclear. Here, we reconstituted microtubule aster in the presence of a meshwork of actin filaments using confined actin-intact Xenopus egg extracts. We found that actin filament branching reduces the lengths and growth rates of microtubules and constrains the mobility of microtubule asters. By reconstituting the interaction between dynamic actin filaments and microtubules in a minimal system based on purified proteins, we found that the branching of actin filaments is sufficient to block microtubule growth and trigger microtubule disassembly. In a further exploration of Xenopus egg extracts, we found that dense and static branched actin meshwork perturbs monopolar spindle assembly by constraining the motion of the spindle pole. Interestingly, monopolar spindle assembly was not constrained in conditions supporting dynamic meshwork rearrangements. We propose that branched actin filament meshwork provides physical barriers that limit microtubule growth.
Collapse
Affiliation(s)
- Alexandra Colin
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pavithra Singaravelu
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France
| | - Manuel Théry
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France; Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | - Laurent Blanchoin
- Université Grenoble-Alpes, CEA, CNRS, INRA, Biosciences & Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire & Végétale, CytoMorpho Lab, 17 rue des Martyrs, 38054 Grenoble, France; Université Paris Diderot, INSERM, CEA, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 1 Avenue Claude Vellefaux, 75010 Paris, France.
| | - Zoher Gueroui
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
72
|
Oakey J, Gatlin JC. Microfluidic Encapsulation of Demembranated Sperm Nuclei in Xenopus Egg Extracts. Cold Spring Harb Protoc 2018; 2018:pdb.prot102913. [PMID: 29437999 DOI: 10.1101/pdb.prot102913] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The cell-free nature of Xenopus egg extract makes it a uniquely tractable experimental model system. The extract, effectively unconfined cytoplasm, allows the direct and relatively straight-forward addition of purified proteins and other reagents, a characteristic that renders the system amenable to many biochemical and cell biological manipulations. Accessibility to the system also facilitates the direct physical manipulation and probing of biological structures, in turn enabling mechanical properties of intracellular assemblies and organelles, such as the mitotic spindle and nucleus, to be measured. Recently, multiphase microfluidics have been combined with Xenopus egg extracts to encapsulate discrete cytoplasmic volumes. Described here is a protocol detailing the use of multiphase microfluidic devices to encapsulate sperm nuclei within extract droplets of defined size and shape. This protocol can also be applied more generally to encapsulation of microbeads and other particles.
Collapse
Affiliation(s)
- John Oakey
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071;
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
73
|
Lacroix B, Letort G, Pitayu L, Sallé J, Stefanutti M, Maton G, Ladouceur AM, Canman JC, Maddox PS, Maddox AS, Minc N, Nédélec F, Dumont J. Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Dev Cell 2018; 45:496-511.e6. [PMID: 29787710 DOI: 10.1016/j.devcel.2018.04.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/22/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
Successive cell divisions during embryonic cleavage create increasingly smaller cells, so intracellular structures must adapt accordingly. Mitotic spindle size correlates with cell size, but the mechanisms for this scaling remain unclear. Using live cell imaging, we analyzed spindle scaling during embryo cleavage in the nematode Caenorhabditis elegans and sea urchin Paracentrotus lividus. We reveal a common scaling mechanism, where the growth rate of spindle microtubules scales with cell volume, which explains spindle shortening. Spindle assembly timing is, however, constant throughout successive divisions. Analyses in silico suggest that controlling the microtubule growth rate is sufficient to scale spindle length and maintain a constant assembly timing. We tested our in silico predictions to demonstrate that modulating cell volume or microtubule growth rate in vivo induces a proportional spindle size change. Our results suggest that scalability of the microtubule growth rate when cell size varies adapts spindle length to cell volume.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| | - Gaëlle Letort
- Institut Curie, Mines Paris Tech, Inserm, U900, PSL Research University, 75005 Paris, France
| | - Laras Pitayu
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Jérémy Sallé
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Marine Stefanutti
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | | | - Julie C Canman
- Columbia University Medical Center, Department of Pathology and Cell Biology, New York, NY 10032, USA
| | - Paul S Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amy S Maddox
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicolas Minc
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France.
| |
Collapse
|
74
|
Abstract
As cell size decreases during the reductive divisions of early development, intracellular structures must shrink to fit. In this issue of Developmental Cell, Lacroix et al. (2018) identify a conserved mechanism of spindle scaling in nematode and sea urchin embryos whereby spindle microtubule polymerization rates decrease as development proceeds.
Collapse
|
75
|
Heald R, Gibeaux R. Subcellular scaling: does size matter for cell division? Curr Opin Cell Biol 2018; 52:88-95. [PMID: 29501026 PMCID: PMC5988940 DOI: 10.1016/j.ceb.2018.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
Abstract
Among different species or cell types, or during early embryonic cell divisions that occur in the absence of cell growth, the size of subcellular structures, including the nucleus, chromosomes, and mitotic spindle, scale with cell size. Maintaining correct subcellular scales is thought to be important for many cellular processes and, in particular, for mitosis. In this review, we provide an update on nuclear and chromosome scaling mechanisms and their significance in metazoans, with a focus on Caenorhabditis elegans, Xenopus and mammalian systems, for which a common role for the Ran (Ras-related nuclear protein)-dependent nuclear transport system has emerged.
Collapse
Affiliation(s)
- Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Romain Gibeaux
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
76
|
Göpfrich K, Platzman I, Spatz JP. Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells. Trends Biotechnol 2018; 36:938-951. [PMID: 29685820 PMCID: PMC6100601 DOI: 10.1016/j.tibtech.2018.03.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
With the ultimate aim to construct a living cell, bottom-up synthetic biology strives to reconstitute cellular phenomena in vitro - disentangled from the complex environment of a cell. Recent work towards this ambitious goal has provided new insights into the mechanisms governing life. With the fast-growing library of functional modules for synthetic cells, their classification and integration become increasingly important. We discuss strategies to reverse-engineer and recombine functional parts for synthetic eukaryotes, mimicking the characteristics of nature's own prototype. Particularly, we focus on large outer compartments, complex endomembrane systems with organelles, and versatile cytoskeletons as hallmarks of eukaryotic life. Moreover, we identify microfluidics and DNA nanotechnology as two technologies that can integrate these functional modules into sophisticated multifunctional synthetic cells.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, D 69120, Heidelberg, Germany; Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, D 69120 Heidelberg, Germany.
| |
Collapse
|
77
|
Rank M, Mitra A, Reese L, Diez S, Frey E. Limited Resources Induce Bistability in Microtubule Length Regulation. PHYSICAL REVIEW LETTERS 2018; 120:148101. [PMID: 29694156 DOI: 10.1103/physrevlett.120.148101] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The availability of protein is an important factor for the determination of the size of the mitotic spindle. Involved in spindle-size regulation is kinesin-8, a molecular motor and microtubule (MT) depolymerase, which is known to tightly control MT length. Here, we propose and analyze a theoretical model in which kinesin-induced MT depolymerization competes with spontaneous polymerization while supplies of both tubulin and kinesin are limited. In contrast to previous studies where resources were unconstrained, we find that, for a wide range of concentrations, MT length regulation is bistable. We test our predictions by conducting in vitro experiments and find that the bistable behavior manifests in a bimodal MT length distribution.
Collapse
Affiliation(s)
- Matthias Rank
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany
| | - Aniruddha Mitra
- B CUBE-Center for Molecular Bioengineering and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Louis Reese
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany
| |
Collapse
|
78
|
Milunovic-Jevtic A, Jevtic P, Levy DL, Gatlin JC. In vivo mitotic spindle scaling can be modulated by changing the levels of a single protein: the microtubule polymerase XMAP215. Mol Biol Cell 2018; 29:1311-1317. [PMID: 29851557 PMCID: PMC5994900 DOI: 10.1091/mbc.e18-01-0011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In many organisms, early embryonic development is characterized by a series of reductive cell divisions that result in rapid increases in cell number and concomitant decreases in cell size. Intracellular organelles, such as the nucleus and mitotic spindle, also become progressively smaller during this developmental window, but the molecular and mechanistic underpinnings of these scaling relationships are not fully understood. For the mitotic spindle, changes in cytoplasmic volume are sufficient to account for size scaling during early development in certain organisms. This observation is consistent with models that evoke a limiting component, whereby the smaller absolute number of spindle components in smaller cells limits spindle size. Here we investigate the role of a candidate factor for developmental spindle scaling, the microtubule polymerase XMAP215. Microinjection of additional XMAP215 protein into Xenopus laevis embryos was sufficient to induce the assembly of larger spindles during developmental stages 6.5, 7, and 8, whereas addition of a polymerase-incompetent XMAP215 mutant resulted in a downward shift in the in vivo spindle scaling curve. In sum, these results indicate that even small cells are able to produce larger spindles if microtubule growth rates are increased and suggest that structural components are not limiting.
Collapse
Affiliation(s)
- Ana Milunovic-Jevtic
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071
| | - Predrag Jevtic
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071
| | - J C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071.,Molecular and Cellular Life Sciences Program, University of Wyoming, Laramie, WY 82071
| |
Collapse
|
79
|
Jevtić P, Milunović-Jevtić A, Dilsaver MR, Gatlin JC, Levy DL. Use of Xenopus cell-free extracts to study size regulation of subcellular structures. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2018; 60:277-288. [PMID: 27759156 DOI: 10.1387/ijdb.160158dl] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Striking size variations are prominent throughout biology, at the organismal, cellular, and subcellular levels. Important fundamental questions concern organelle size regulation and how organelle size is regulated relative to cell size, also known as scaling. Uncovering mechanisms of organelle size regulation will inform the functional significance of size as well as the implications of misregulated size, for instance in the case of nuclear enlargement in cancer. Xenopus egg and embryo extracts are powerful cell-free systems that have been utilized extensively for mechanistic and functional studies of various organelles and subcellular structures. The open biochemical nature of the extract permits facile manipulation of its composition, and in recent years extract approaches have illuminated mechanisms of organelle size regulation. This review largely focuses on in vitro Xenopus studies that have identified regulators of nuclear and spindle size. We also discuss potential relationships between size scaling of the nucleus and spindle, size regulation of other subcellular structures, and extract experiments that have clarified developmental timing mechanisms. We conclude by offering some future prospects, notably the integration of Xenopus extract with microfluidic technology.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | | | | | | | | |
Collapse
|
80
|
de-Carvalho J, Deshpande O, Nabais C, Telley IA. A cell-free system of Drosophila egg explants supporting native mitotic cycles. Methods Cell Biol 2018; 144:233-257. [DOI: 10.1016/bs.mcb.2018.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
81
|
Yao J, Oakey J. Geometrically-mediated snap-off of water-in-oil emulsion droplets in microfluidic flow focusing devices. JOURNAL OF OIL, GAS AND PETROCHEMICAL SCIENCES 2018; 1:42-46. [PMID: 32864607 DOI: 10.30881/jogps.00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Microfluidic channel networks allow the control of flowing fluids within structures with length scales on the order of single or tens of micrometers (μm). This affords the opportunity to mix and separate fluids with fine precision and, in the case of immiscible multiphase flows, generate stable emulsions with well-controlled sizes and size distributions. It is generally well understood that emulsion droplet size can be regulated by carefully balancing capillary-associated parameters, such as relative fluid velocity, with the interfacial tension of the immiscible phases. Channel size and geometry, particularly that of the junction where fluids merge in microfluidic flow focusing (or "pinch flow") devices, has been shown to scale droplet size and bound the lower droplet size. Channel constrictions or "nozzles" are commonly employed to amplify the extensional flow at channel junctions, but their function has not been quantified and is, therefore, not well understood. This paper describes the use of geometry as a tunable parameter in microfluidic droplet generator design by focusing upon the effect of nozzle geometry (relative width, length and depth) upon droplet snap off behavior. Our results show that nozzle geometry can dramatically influence droplet size by shifting its snap-off position, an effect that can be anticipated by Raleigh-Plateau theory.
Collapse
Affiliation(s)
- Jia Yao
- Department of Petroleum Engineering, University of Wyoming, USA
| | - John Oakey
- Department of Chemical Engineering, University of Wyoming, USA
| |
Collapse
|
82
|
Li J, Jiang H. Regulating positioning and orientation of mitotic spindles via cell size and shape. Phys Rev E 2018; 97:012407. [PMID: 29448469 DOI: 10.1103/physreve.97.012407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 06/08/2023]
Abstract
Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.
Collapse
Affiliation(s)
- Jingchen Li
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hongyuan Jiang
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
83
|
Decker F, Oriola D, Dalton B, Brugués J. Autocatalytic microtubule nucleation determines the size and mass of Xenopus laevis egg extract spindles. eLife 2018; 7:31149. [PMID: 29323637 PMCID: PMC5814149 DOI: 10.7554/elife.31149] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/09/2018] [Indexed: 01/27/2023] Open
Abstract
Regulation of size and growth is a fundamental problem in biology. A prominent example is the formation of the mitotic spindle, where protein concentration gradients around chromosomes are thought to regulate spindle growth by controlling microtubule nucleation. Previous evidence suggests that microtubules nucleate throughout the spindle structure. However, the mechanisms underlying microtubule nucleation and its spatial regulation are still unclear. Here, we developed an assay based on laser ablation to directly probe microtubule nucleation events in Xenopus laevis egg extracts. Combining this method with theory and quantitative microscopy, we show that the size of a spindle is controlled by autocatalytic growth of microtubules, driven by microtubule-stimulated microtubule nucleation. The autocatalytic activity of this nucleation system is spatially regulated by the limiting amounts of active microtubule nucleators, which decrease with distance from the chromosomes. This mechanism provides an upper limit to spindle size even when resources are not limiting.
Collapse
Affiliation(s)
- Franziska Decker
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - David Oriola
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Benjamin Dalton
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany,Center for Systems Biology DresdenDresdenGermany,Max Planck Institute for the Physics of Complex SystemsDresdenGermany
| |
Collapse
|
84
|
Bizzotto S, Uzquiano A, Dingli F, Ershov D, Houllier A, Arras G, Richards M, Loew D, Minc N, Croquelois A, Houdusse A, Francis F. Eml1 loss impairs apical progenitor spindle length and soma shape in the developing cerebral cortex. Sci Rep 2017; 7:17308. [PMID: 29229923 PMCID: PMC5725533 DOI: 10.1038/s41598-017-15253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023] Open
Abstract
The ventricular zone (VZ) of the developing cerebral cortex is a pseudostratified epithelium that contains progenitors undergoing precisely regulated divisions at its most apical side, the ventricular lining (VL). Mitotic perturbations can contribute to pathological mechanisms leading to cortical malformations. The HeCo mutant mouse exhibits subcortical band heterotopia (SBH), likely to be initiated by progenitor delamination from the VZ early during corticogenesis. The causes for this are however, currently unknown. Eml1, a microtubule (MT)-associated protein of the EMAP family, is impaired in these mice. We first show that MT dynamics are perturbed in mutant progenitor cells in vitro. These may influence interphase and mitotic MT mechanisms and indeed, centrosome and primary cilia were altered and spindles were found to be abnormally long in HeCo progenitors. Consistently, MT and spindle length regulators were identified in EML1 pulldowns from embryonic brain extracts. Finally, we found that mitotic cell shape is also abnormal in the mutant VZ. These previously unidentified VZ characteristics suggest altered cell constraints which may contribute to cell delamination.
Collapse
Affiliation(s)
- Sara Bizzotto
- INSERM UMR-S 839, 17 rue du Fer à Moulin, Paris, 75005, France.,Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France.,Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris, 75005, France.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Ana Uzquiano
- INSERM UMR-S 839, 17 rue du Fer à Moulin, Paris, 75005, France.,Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France.,Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris, 75005, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | | | - Anne Houllier
- INSERM UMR-S 839, 17 rue du Fer à Moulin, Paris, 75005, France.,Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France.,Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris, 75005, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Mark Richards
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Nicolas Minc
- Institut Jacques Monod, UMR7592 CNRS, Paris, France
| | - Alexandre Croquelois
- Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 21 rue du Bugnon, 1011, Lausanne, Switzerland.,Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Anne Houdusse
- Structural Motility, Institut Curie, Centre de Recherche; CNRS, UMR144, 26 rue d'Ulm, Cedex 05, Paris, 75248, France
| | - Fiona Francis
- INSERM UMR-S 839, 17 rue du Fer à Moulin, Paris, 75005, France. .,Sorbonne Universités, Université Pierre et Marie Curie, 4 Place Jussieu, Paris, 75005, France. .,Institut du Fer à Moulin, 17 rue du Fer à Moulin, Paris, 75005, France.
| |
Collapse
|
85
|
Hierarchical Size Scaling during Multicellular Growth and Development. Cell Rep 2017; 17:345-352. [PMID: 27705784 DOI: 10.1016/j.celrep.2016.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/12/2016] [Accepted: 09/01/2016] [Indexed: 01/09/2023] Open
Abstract
Multicellular organisms must regulate their growth across the diverse length scales of biological organization, but how this growth is controlled from organelle to body, while coordinating interdependent functions at each scale, remains poorly understood. We utilized the C. elegans worm intestine as a model system to identify distinct allometric scaling laws, revealing that the growth of individual structures is differentially regulated during development. We show that the volume of the nucleolus, a subcellular organelle, is directly proportional (isometric) to cell size during larval development. In contrast to findings in a variety of other systems, the size of the nucleus grows more slowly and is hypoallometric to the cell. We further demonstrate that the relative size of the nucleolus, the site of ribosome biogenesis, is predictive of the growth rate of the entire worm. These results highlight the importance of subcellular size for organism-level function in multicellular organisms.
Collapse
|
86
|
Lane SIR, Jones KT. Chromosome biorientation and APC activity remain uncoupled in oocytes with reduced volume. J Cell Biol 2017; 216:3949-3957. [PMID: 28978643 PMCID: PMC5716262 DOI: 10.1083/jcb.201606134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Lane and Jones use serial bisection of mouse oocytes to analyze the influence of cytoplasmic volume on spindle assembly checkpoint function. Volume reduction promotes inhibition of APC but cannot prevent chromosome segregation errors at anaphase. The spindle assembly checkpoint (SAC) prevents chromosome missegregation by coupling anaphase onset with correct chromosome attachment and tension to microtubules. It does this by generating a diffusible signal from free kinetochores into the cytoplasm, inhibiting the anaphase-promoting complex (APC). The volume in which this signal remains effective is unknown. This raises the possibility that cell volume may be the reason the SAC is weak, and chromosome segregation error-prone, in mammalian oocytes. Here, by a process of serial bisection, we analyzed the influence of oocyte volume on the ability of the SAC to inhibit bivalent segregation in meiosis I. We were able to generate oocytes with cytoplasmic volumes reduced by 86% and observed changes in APC activity consistent with increased SAC control. However, bivalent biorientation remained uncoupled from APC activity, leading to error-prone chromosome segregation. We conclude that volume is one factor contributing to SAC weakness in oocytes. However, additional factors likely uncouple chromosome biorientation with APC activity.
Collapse
Affiliation(s)
- Simon I R Lane
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK .,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Keith T Jones
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
87
|
Arellano-Santoyo H, Geyer EA, Stokasimov E, Chen GY, Su X, Hancock W, Rice LM, Pellman D. A Tubulin Binding Switch Underlies Kip3/Kinesin-8 Depolymerase Activity. Dev Cell 2017; 42:37-51.e8. [PMID: 28697331 DOI: 10.1016/j.devcel.2017.06.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 02/04/2023]
Abstract
Kinesin-8 motors regulate the size of microtubule structures, using length-dependent accumulation at the plus end to preferentially disassemble long microtubules. Despite extensive study, the kinesin-8 depolymerase mechanism remains under debate. Here, we provide evidence for an alternative, tubulin curvature-sensing model of microtubule depolymerization by the budding yeast kinesin-8, Kip3. Kinesin-8/Kip3 uses ATP hydrolysis, like other kinesins, for stepping on the microtubule lattice, but at the plus end Kip3 undergoes a switch: its ATPase activity is suppressed when it binds tightly to the curved conformation of tubulin. This prolongs plus-end binding, stabilizes protofilament curvature, and ultimately promotes microtubule disassembly. The tubulin curvature-sensing model is supported by our identification of Kip3 structural elements necessary and sufficient for plus-end binding and depolymerase activity, as well as by the identification of an α-tubulin residue specifically required for the Kip3-curved tubulin interaction. Together, these findings elucidate a major regulatory mechanism controlling the size of cellular microtubule structures.
Collapse
Affiliation(s)
- Hugo Arellano-Santoyo
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | | | - Ema Stokasimov
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Geng-Yuan Chen
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Xiaolei Su
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94143, USA
| | - William Hancock
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
| | - Luke M Rice
- Department of Biophysics, UT Southwestern, Dallas, TX 75390, USA
| | - David Pellman
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
88
|
Two-phase displacements in microchannels of triangular cross-section. J Colloid Interface Sci 2017; 507:234-241. [PMID: 28800447 DOI: 10.1016/j.jcis.2017.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 11/21/2022]
Abstract
Varying microfluidic channel cross-sectional geometry can dramatically alter fluid flow behavior, particularly for capillary-driven flow. Most fabrication techniques, however, are planar and therefore incapable of providing depth-dependent variations in width. We introduce an ultrafast laser ablation technique that enables the fabrication of microchannels with arbitrary triangular cross sectional geometry. Triangular channels were fabricated with widths ranging from 45 to 116µm and aspect ratios between 0.7 and 1.9. This experimental platform was utilized to observe two-phase flow and evaluate the capillary pressures required to initiate flow within triangular capillaries. Applying Mayer, Stowe and Princen (MS-P) theory, critical drainage capillary pressures were predicted for varying cross sections and compared to experimental observations. Results indicate the capability to predict capillary pressures inside triangular channels with perfectly water wet surfaces, providing the first instance of experimental validation of the theory for arbitrary triangular cross sections. This work was extended to intermediate wet conditions, which provides an insight into the prediction of capillary pressure under more realistic conditions. The fabrication techniques and validation of predictive frameworks presented here provide an approach to microfluidic experimental design that will impact a wide range of fundamental and applied technology areas.
Collapse
|
89
|
Spindle Size Scaling Contributes to Robust Silencing of Mitotic Spindle Assembly Checkpoint. Biophys J 2017; 111:1064-77. [PMID: 27602734 DOI: 10.1016/j.bpj.2016.07.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 06/25/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Chromosome segregation during mitosis hinges on proper assembly of the microtubule spindle that establishes bipolar attachment to each chromosome. Experiments demonstrate allometry of mitotic spindles and a universal scaling relationship between spindle size and cell size across metazoans, which indicates a conserved principle of spindle assembly at play during evolution. However, the nature of this principle is currently unknown. Researchers have focused on deriving the mechanistic underpinning of the size scaling from the mechanical aspects of the spindle assembly process. In this work we take a different standpoint and ask: What is the size scaling for? We address this question from the functional perspectives of spindle assembly checkpoint (SAC). SAC is the critical surveillance mechanism that prevents premature chromosome segregation in the presence of unattached or misattached chromosomes. The SAC signal gets silenced after and only after the last chromosome-spindle attachment in mitosis. We previously established a model that explains the robustness of SAC silencing based on spindle-mediated spatiotemporal regulation of SAC proteins. Here, we refine the previous model, and find that robust and timely SAC silencing entails proper size scaling of mitotic spindle. This finding provides, to our knowledge, a novel, function-oriented angle toward understanding the observed spindle allometry, and the universal scaling relationship between spindle size and cell size in metazoans. In a broad sense, the functional requirement of robust SAC silencing could have helped shape the spindle assembly mechanism in evolution.
Collapse
|
90
|
Abstract
Engineering as a field has fundamentally different goals than biology, but the perspective that engineers take-that systems can be designed and built-is helping to advance biological sciences by motivating and equipping efforts to construct biological systems from the bottom up.
Collapse
|
91
|
Bermudez JG, Chen H, Einstein LC, Good MC. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts. Genesis 2017; 55. [PMID: 28132422 DOI: 10.1002/dvg.23013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 11/11/2022]
Abstract
Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery.
Collapse
Affiliation(s)
- Jessica G Bermudez
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Hui Chen
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Lily C Einstein
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| | - Matthew C Good
- Department of Bioengineering, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104.,Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Blvd, 1151 BRB II/III, Philadelphia, Pennsylvania, 19104
| |
Collapse
|
92
|
Abstract
In this issue of Developmental Cell, Kyogoku and Kitajima (2017) investigate the effect of cytoplasmic volume on the fidelity of chromosome segregation during meiosis in mouse oocytes. The authors find that large cytoplasmic volume affects spindle pole morphology, chromosome alignment, and stringency of checkpoint signaling, resulting in error-prone chromosome segregation.
Collapse
Affiliation(s)
- Predrag Jevtić
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
93
|
Kyogoku H, Kitajima TS. Large Cytoplasm Is Linked to the Error-Prone Nature of Oocytes. Dev Cell 2017; 41:287-298.e4. [DOI: 10.1016/j.devcel.2017.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 01/27/2023]
|
94
|
Geometric Asymmetry Induces Upper Limit of Mitotic Spindle Size. Biophys J 2017; 112:1503-1516. [PMID: 28402892 DOI: 10.1016/j.bpj.2017.02.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 01/10/2023] Open
Abstract
Proper organelle size is critical for many cell functions. However, how cells sense and control their organelle size remains elusive. Here, we develop a general model to study the size control of mitotic spindles by considering both extrinsic and intrinsic factors, such as the limited number of building blocks of the spindle, the interaction between the spindle and cell boundary, the DNA content, the forces generated by various molecular motors, and the dynamics of microtubules. We show that multiple pairs of chromatids, two centrosomes, and microtubules can self-assemble to form a mitotic spindle robustly. We also show that the boundary-sensing and volume-sensing mechanisms coexist in small cells, but both break down in large cells. Strikingly, we find that the upper limit of spindle length naturally arises from the geometric asymmetry of the spindle structure. Thus, our findings reveal, to our knowledge, a novel intrinsic mechanism that limits the organelle size.
Collapse
|
95
|
Jones C, Stankowich T, Pernet B. Allocation of cytoplasm to macromeres in embryos of annelids and molluscs is positively correlated with egg size. Evol Dev 2017; 18:156-70. [PMID: 27161947 DOI: 10.1111/ede.12189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Evolutionary transitions between feeding and nonfeeding larval development have occurred many times in marine invertebrates, but the developmental changes underlying these frequent and ecologically important transitions are poorly known, especially in spiralians. We use phylogenetic comparative methods to test the hypothesis that evolutionary changes in egg size and larval nutritional mode are associated with parallel changes in allocation of cytoplasm to macromere cell lineages in diverse annelids and molluscs. Our analyses show that embryos of species with large eggs and nonfeeding larvae tend to allocate relatively more embryonic cytoplasm to macromeres at 3rd cleavage than do embryos of species with small eggs and feeding larvae. The association between egg size and allocation to macromeres in these spiralians may be driven by constraints associated with mitotic spindle positioning and size, or may be a result of "adaptation in cleavage" to maintain rapid cell cycles in micromeres, position yolk in cell lineages where it can be most efficiently used, or adjust allocation to ectoderm to accommodate changes in embryonic surface area/volume ratio.
Collapse
Affiliation(s)
- Caleb Jones
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| | - Theodore Stankowich
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| | - Bruno Pernet
- Department of Biological Sciences, California State University, Long Beach, Long Beach CA, 90840, USA
| |
Collapse
|
96
|
Spencer AK, Schaumberg AJ, Zallen JA. Scaling of cytoskeletal organization with cell size in Drosophila. Mol Biol Cell 2017; 28:1519-1529. [PMID: 28404752 PMCID: PMC5449150 DOI: 10.1091/mbc.e16-10-0691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 11/11/2022] Open
Abstract
Actin-rich denticle precursors are regularly distributed in the Drosophila embryo. Cytoskeletal scaling occurs through changes in denticle number and spacing. Denticle spacing scales with cell length over a 10-fold range. Accurate denticle positioning requires the microtubule cytoskeleton. Spatially organized macromolecular complexes are essential for cell and tissue function, but the mechanisms that organize micron-scale structures within cells are not well understood. Microtubule-based structures such as mitotic spindles scale with cell size, but less is known about the scaling of actin structures within cells. Actin-rich denticle precursors cover the ventral surface of the Drosophila embryo and larva and provide templates for cuticular structures involved in larval locomotion. Using quantitative imaging and statistical modeling, we demonstrate that denticle number and spacing scale with cell length over a wide range of cell sizes in embryos and larvae. Denticle number and spacing are reduced under space-limited conditions, and both features robustly scale over a 10-fold increase in cell length during larval growth. We show that the relationship between cell length and denticle spacing can be recapitulated by specific mathematical equations in embryos and larvae and that accurate denticle spacing requires an intact microtubule network and the microtubule minus end–binding protein, Patronin. These results identify a novel mechanism of microtubule-dependent actin scaling that maintains precise patterns of actin organization during tissue growth.
Collapse
Affiliation(s)
- Alison K Spencer
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences.,Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Andrew J Schaumberg
- Weill Cornell Graduate School of Medical Sciences and the Tri-Institutional PhD Program in Computational Biology and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
97
|
Brugués J. Cytoskeleton Dynamics: Mind the Gap! Curr Biol 2017; 27:R279-R281. [PMID: 28376338 DOI: 10.1016/j.cub.2017.02.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new study presents a quantitative biophysical model of microtubule aster growth with autocatalytic microtubule nucleation. The model accounts for asters that grow indefinitely, even when their microtubules are unstable.
Collapse
Affiliation(s)
- Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
98
|
Mitochondrial Function and Cell Size: An Allometric Relationship. Trends Cell Biol 2017; 27:393-402. [PMID: 28284466 DOI: 10.1016/j.tcb.2017.02.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 01/09/2023]
Abstract
Allometric scaling of metabolic rate results in lower total mitochondrial oxygen consumption with increasing organismal size. This is considered a universal law in biology. Here, we discuss how allometric laws impose size-dependent limits to mitochondrial activity at the cellular level. This cell-size-dependent mitochondrial metabolic activity results in nonlinear scaling of metabolism in proliferating cells, which can explain size homeostasis. The allometry in mitochondrial activity can be controlled through mitochondrial fusion and fission machinery, suggesting that mitochondrial connectivity can bypass transport limitations, the presumed biophysical basis for allometry. As physical size affects cellular functionality, cell-size-dependent metabolism becomes directly relevant for development, metabolic diseases, and aging.
Collapse
|
99
|
Abstract
The mitotic spindle has a crucial role in ensuring the accurate segregation of chromosomes into the two daughter cells during cell division, which is paramount for maintaining genome integrity. It is a self-organized and dynamic macromolecular structure that is constructed from microtubules, microtubule-associated proteins and motor proteins. Thirty years of research have led to the identification of centrosome-, chromatin- and microtubule-mediated microtubule nucleation pathways that each contribute to mitotic spindle assembly. Far from being redundant pathways, data are now emerging regarding how they function together to ensure the timely completion of mitosis. We are also beginning to comprehend the multiple mechanisms by which cells regulate spindle scaling. Together, this research has increased our understanding of how cells coordinate hundreds of proteins to assemble the dynamic, precise and robust structure that is the mitotic spindle.
Collapse
|
100
|
Kapoor TM. Metaphase Spindle Assembly. BIOLOGY 2017; 6:biology6010008. [PMID: 28165376 PMCID: PMC5372001 DOI: 10.3390/biology6010008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/31/2023]
Abstract
A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells.
Collapse
Affiliation(s)
- Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, the Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|