51
|
Zhang LL, Wu Z, Zhou JQ. Tel1 and Rif2 oppositely regulate telomere protection at uncapped telomeres in Saccharomyces cerevisiae. J Genet Genomics 2018; 45:467-476. [PMID: 30279093 DOI: 10.1016/j.jgg.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
Abstract
It has been well documented that Tel1 positively regulates telomere-end resection by promoting Mre11-Rad50-Xrs2 (MRX) activity, while Rif2 negatively regulates telomere-end resection by inhibiting MRX activity. At uncapped telomeres, whether Tel1 or Rif2 plays any role remains largely unknown. In this work, we examined the roles of Tel1 and Rif2 at uncapped telomeres in yku70Δ and/or cdc13-1 mutant cells cultured at non-permissive temperature. We found that deletion of TEL1 exacerbates the temperature sensitivity of both yku70Δ and cdc13-1 cells. Further epistasis analysis indicated that MRX and Tel1 function in the same pathway in telomere protection. Consistently, TEL1 deletion increases accumulation of Exo1-dependent telomeric single-stranded DNA (ssDNA) at uncapped telomeres, which stimulates checkpoint-dependent cell cycle arrest. Moreover, TEL1 deletion in yku70Δ cells facilitates Rad51-dependent Y' recombination. In contrast, RIF2 deletion in yku70Δ cells decreases the accumulation of telomeric ssDNA after 8 h of incubation at the non-permissive temperature of 37 °C and suppresses the temperature sensitivity of yku70Δ cells, likely due to the increase of Mre11 association at telomeres. Collectively, our findings indicate that Tel1 and Rif2 regulate telomere protection at uncapped telomeres via their roles in balancing MRX activity in telomere resection.
Collapse
Affiliation(s)
- Ling-Li Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenfang Wu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jin-Qiu Zhou
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
52
|
Rad6-Bre1 mediated histone H2Bub1 protects uncapped telomeres from exonuclease Exo1 in Saccharomyces cerevisiae. DNA Repair (Amst) 2018; 72:64-76. [PMID: 30254011 DOI: 10.1016/j.dnarep.2018.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/22/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022]
Abstract
Histone H2B lysine 123 mono-ubiquitination (H2Bub1), catalyzed by Rad6 and Bre1 in Saccharomyces cerevisiae, modulates chromatin structure and affects diverse cellular functions. H2Bub1 plays roles in telomeric silencing and telomere replication. Here, we have explored a novel role of H2Bub1 in telomere protection at uncapped telomeres in yku70Δ and cdc13-1 cells. Deletion of RAD6 or BRE1, or mutation of H2BK123R enhances the temperature sensitivity of both yku70Δ and cdc13-1 telomere capping mutants. Consistently, BRE1 deletion increases accumulation of telomeric single-stranded DNA (ssDNA) in yku70Δ and cdc13-1 cells, and EXO1 deletion improves the growth of yku70Δ bre1Δ and cdc13-1 bre1Δ cells and decreases ssDNA accumulation. Additionally, deletion of BRE1 exacerbates the rate of entry into senescence of yku70Δ mre11Δ cells with telomere defects, and increases the recombination of subtelomeric Y' element that is required for telomere maintenance and survivor generation. Furthermore, Exo1 contributes to the abrupt senescence of yku70Δ mre11Δ bre1Δ cells, and Rad51 is essential for Y' recombination to generate survivors. Finally, deletion of BRE1 or mutation of H2BK123R results in nucleosome instability at subtelomeric regions. Collectively, this study provides a mechanistic link between H2Bub1-mediated chromatin structure and telomere protection after telomere uncapping.
Collapse
|
53
|
Overlapping open reading frames strongly reduce human and yeast STN1 gene expression and affect telomere function. PLoS Genet 2018; 14:e1007523. [PMID: 30067734 PMCID: PMC6089452 DOI: 10.1371/journal.pgen.1007523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/13/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022] Open
Abstract
The levels of telomeric proteins, such as telomerase, can have profound effects on telomere function, cell division and human disease. Here we demonstrate how levels of Stn1, a component of the conserved telomere capping CST (Cdc13, Stn1, Ten1) complex, are tightly regulated by an upstream overlapping open reading frame (oORF). In budding yeast inactivation of the STN1 oORF leads to a 10-fold increase in Stn1 levels, reduced telomere length, suppression of cdc13-1 and enhancement of yku70Δ growth defects. The STN1 oORF impedes translation of the main ORF and reduces STN1 mRNA via the nonsense mediated mRNA decay (NMD) pathway. Interestingly, the homologs of the translation re-initiation factors, MCT-1Tma20/DENRTma22 also reduce Stn1 levels via the oORF. Human STN1 also contains oORFs, which reduce expression, demonstrating that oORFs are a conserved mechanism for reducing Stn1 levels. Bioinformatic analyses of the yeast and human transcriptomes show that oORFs are more underrepresented than upstream ORFs (uORFs) and associated with lower protein abundance. We propose that oORFs are an important mechanism to control expression of a subset of the proteome. Telomeres are special structures at the ends of linear chromosomes that help protect the genetic information that chromosomes carry. The levels of telomere proteins are important and can affect diseases such as cancer and ageing. The CST complex is comprised of three proteins and binds human and yeast telomeres. Levels of Stn1, a very low abundance protein, are of particular importance to telomere function in yeast cells. There are many ways to affect protein levels but little was understood about how Stn1 levels are controlled. We show that levels of Stn1 in yeast and human cells are reduced by the presence of an upstream overlapping open reading frame (oORF). Cells lacking the oORF have short telomeres and increased fitness when combined with a defect in the Stn1-partner protein, Cdc13. Interestingly, in another telomere defective context, yku70Δ cells missing the STN1-oORF are less fit. We show that the oORF reduces Stn1 levels by stimulating nonsense mediated mRNA decay and by reducing translation. More generally, genome-wide computational analysis shows that oORFs were strongly selected against during evolution and when present are associated with low protein abundance. We propose that oORFs are a powerful mechanism to regulate protein expression and function.
Collapse
|
54
|
Mersaoui SY, Wellinger RJ. Fine tuning the level of the Cdc13 telomere-capping protein for maximal chromosome stability performance. Curr Genet 2018; 65:109-118. [PMID: 30066139 DOI: 10.1007/s00294-018-0871-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Chromosome stability relies on an adequate length and complete replication of telomeres, the physical ends of chromosomes. Telomeres are composed of short direct repeat DNA and the associated nucleoprotein complex is essential for providing end-stability. In addition, the so-called end-replication problem of the conventional replication requires that telomeres be elongated by a special mechanism which, in virtually all organisms, is based by a reverse transcriptase, called telomerase. Although, at the conceptual level, telomere functions are highly similar in most organisms, the telomeric nucleoprotein composition appears to diverge significantly, in particular if it is compared between mammalian and budding yeast cells. However, over the last years, the CST complex has emerged as a central hub for telomere replication in most systems. Composed of three proteins, it is related to the highly conserved replication protein A complex, and in all systems studied, it coordinates telomerase-based telomere elongation with lagging-strand DNA synthesis. In budding yeast, the Cdc13 protein of this complex also is essential for telomerase recruitment and this specialisation is accompanied by additional regulatory adaptations. Based on recent results obtained in yeast, here, we review these issues and present an updated telomere replication hypothesis. We speculate that the similarities between systems far outweigh the differences, once we detach ourselves from the historic descriptions of the mechanisms in the various organisms.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Rue Jean Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
55
|
Armstrong CA, Tomita K. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells. Open Biol 2018; 7:rsob.160338. [PMID: 28330934 PMCID: PMC5376709 DOI: 10.1098/rsob.160338] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of telomerase occurs in 85–90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments.
Collapse
Affiliation(s)
- Christine A Armstrong
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Kazunori Tomita
- Chromosome Maintenance Group, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
56
|
Wang J, Zhang H, Al Shibar M, Willard B, Ray A, Runge KW. Rif1 phosphorylation site analysis in telomere length regulation and the response to damaged telomeres. DNA Repair (Amst) 2018; 65:26-33. [PMID: 29544213 PMCID: PMC5911405 DOI: 10.1016/j.dnarep.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Telomeres, the ends of eukaryotic chromosomes, consist of repetitive DNA sequences and their bound proteins that protect the end from the DNA damage response. Short telomeres with fewer repeats are preferentially elongated by telomerase. Tel1, the yeast homolog of human ATM kinase, is preferentially recruited to short telomeres and Tel1 kinase activity is required for telomere elongation. Rif1, a telomere-binding protein, negatively regulates telomere length by forming a complex with two other telomere binding proteins, Rap1 and Rif2, to block telomerase recruitment. Rif1 has 14 SQ/TQ consensus phosphorylation sites for ATM kinases, including 6 in a SQ/TQ Cluster Domain (SCD) similar to other DNA damage response proteins. These 14 sites were analyzed as N-terminal, SCD and C-terminal domains. Mutating some sites to non-phosphorylatable residues increased telomere length in cells lacking Tel1 while a different set of phosphomimetic mutants increased telomere length in cells lacking Rif2, suggesting that Rif1 phosphorylation has both positive and negative effects on length regulation. While these mutations did not alter the sensitivity to DNA damaging agents, inducing telomere-specific damage by growing cells lacking YKU70 at high temperature revealed a role for the SCD. Mass spectrometry of Rif1 from wild type cells or those induced for telomere-specific DNA damage revealed increased phosphorylation in cells with telomere damage at an ATM consensus site in the SCD, S1351, and non-ATM sites S181 and S1637. A phosphomimetic rif1-S1351E mutation caused an increase in telomere length at synthetic telomeres but not natural telomeres. These results indicate that the Rif1 SCD can modulate Rif1 function. As all Rif1 orthologs have one or more SCD domains, these results for yeast Rif1 have implications for the regulation of Rif1 function in humans and other organisms.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, United States; Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States; Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - Haitao Zhang
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - Mohammed Al Shibar
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Alo Ray
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States
| | - Kurt W Runge
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, United States; Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States; Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, United States.
| |
Collapse
|
57
|
Abstract
Dna2 is a nuclease and helicase that functions redundantly with other proteins in Okazaki fragment processing, double-strand break resection, and checkpoint kinase activation. Dna2 is an essential enzyme, required for yeast and mammalian cell viability. Here, we report that numerous mutations affecting the DNA damage checkpoint suppress dna2∆ lethality in Saccharomyces cerevisiaedna2∆ cells are also suppressed by deletion of helicases PIF1 and MPH1, and by deletion of POL32, a subunit of DNA polymerase δ. All dna2∆ cells are temperature sensitive, have telomere length defects, and low levels of telomeric 3' single-stranded DNA (ssDNA). Interestingly, Rfa1, a subunit of the major ssDNA binding protein RPA, and the telomere-specific ssDNA binding protein Cdc13, often colocalize in dna2∆ cells. This suggests that telomeric defects often occur in dna2∆ cells. There are several plausible explanations for why the most critical function of Dna2 is at telomeres. Telomeres modulate the DNA damage response at chromosome ends, inhibiting resection, ligation, and cell-cycle arrest. We suggest that Dna2 nuclease activity contributes to modulating the DNA damage response at telomeres by removing telomeric C-rich ssDNA and thus preventing checkpoint activation.
Collapse
|
58
|
Stewart JA, Wang Y, Ackerson SM, Schuck PL. Emerging roles of CST in maintaining genome stability and human disease. Front Biosci (Landmark Ed) 2018; 23:1564-1586. [PMID: 29293451 DOI: 10.2741/4661] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The human CTC1-STN1-TEN1 (CST) complex is a single-stranded DNA binding protein that shares homology with RPA and interacts with DNA polymerase alpha/primase. CST complexes are conserved from yeasts to humans and function in telomere maintenance. A common role of CST across species is in the regulation of telomere extension by telomerase and C-strand fill-in synthesis. However, recent studies also indicate that CST promotes telomere duplex replication as well the rescue of stalled DNA replication at non-telomeric sites. Furthermore, CST dysfunction and mutation is associated with several genetic diseases and cancers. In this review, we will summarize what is known about CST with a particular focus on the emerging roles of CST in DNA replication and human disease.
Collapse
Affiliation(s)
- Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA,
| | - Yilin Wang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Percy Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
59
|
Chen H, Xue J, Churikov D, Hass EP, Shi S, Lemon LD, Luciano P, Bertuch AA, Zappulla DC, Géli V, Wu J, Lei M. Structural Insights into Yeast Telomerase Recruitment to Telomeres. Cell 2017; 172:331-343.e13. [PMID: 29290466 DOI: 10.1016/j.cell.2017.12.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/27/2017] [Accepted: 12/04/2017] [Indexed: 10/18/2022]
Abstract
Telomerase maintains chromosome ends from humans to yeasts. Recruitment of yeast telomerase to telomeres occurs through its Ku and Est1 subunits via independent interactions with telomerase RNA (TLC1) and telomeric proteins Sir4 and Cdc13, respectively. However, the structures of the molecules comprising these telomerase-recruiting pathways remain unknown. Here, we report crystal structures of the Ku heterodimer and Est1 complexed with their key binding partners. Two major findings are as follows: (1) Ku specifically binds to telomerase RNA in a distinct, yet related, manner to how it binds DNA; and (2) Est1 employs two separate pockets to bind distinct motifs of Cdc13. The N-terminal Cdc13-binding site of Est1 cooperates with the TLC1-Ku-Sir4 pathway for telomerase recruitment, whereas the C-terminal interface is dispensable for binding Est1 in vitro yet is nevertheless essential for telomere maintenance in vivo. Overall, our results integrate previous models and provide fundamentally valuable structural information regarding telomere biology.
Collapse
Affiliation(s)
- Hongwen Chen
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Jing Xue
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Dmitri Churikov
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Evan P Hass
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Shaohua Shi
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China
| | - Laramie D Lemon
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM225, Houston, TX 77030, USA
| | - Pierre Luciano
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Alison A Bertuch
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, BCM225, Houston, TX 77030, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 INSERM, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes (Equipe labellisée Ligue), 13009 Marseille, France
| | - Jian Wu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 201210 Shanghai, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| |
Collapse
|
60
|
Hsu M, Lue NF. The mechanisms of K. lactis Cdc13 in telomere DNA-binding and telomerase regulation. DNA Repair (Amst) 2017; 61:37-45. [PMID: 29197718 DOI: 10.1016/j.dnarep.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/04/2017] [Accepted: 11/24/2017] [Indexed: 11/28/2022]
Abstract
Eukaryotic chromosome ends, or telomeres, are essential for genome stability and are protected by an intricate nucleoprotein assembly. Cdc13, the major single-strand telomere-binding protein in budding yeasts, mediates critical functions in both telomere protection and telomere elongation by telomerase. In particular, the interaction between S. cerevisiae Cdc13 and telomerase subunit Est1 has long served as a paradigm for telomerase regulation. However, despite extensive investigations, the role of this interaction in regulating telomerase recruitment or activation remains controversial. In addition, budding yeast telomere repeat sequences are extraordinarily variable and how Cdc13 orthologs recognize diverse repeats is not well understood. In this report, we examined these issues using an alternative model, K. lactis. We reconstituted a direct physical interaction between purified K. lactis Cdc13 and Est1, and by analyzing point mutations, we demonstrated a close correspondence between telomere maintenance defects in vivo and Cdc13-Est1 binding defects in vitro, thus supporting a purely recruitment function for this interaction in K. lactis. Because mutations in well aligned residues of Cdc13 and Est1 in S. cerevisiae and K. lactis do not cause identical defects, our results also point to significant evolutionary divergence in the Cdc13-Est1 interface. In addition, we found that K. lactic Cdc13, unlike previously characterized orthologs, recognizes an unusually long and non-G-rich target sequence, underscoring the flexibility of the Cdc13 DNA-binding domain. Analysis of K. lactis Cdc13 and Est1 thus broadens understanding of telomere and telomerase regulation in budding yeast.
Collapse
Affiliation(s)
- Min Hsu
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Neal F Lue
- Department of Microbiology & Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College of Cornell University, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
61
|
Chastain M, Zhou Q, Shiva O, Fadri-Moskwik M, Whitmore L, Jia P, Dai X, Huang C, Ye P, Chai W. Human CST Facilitates Genome-wide RAD51 Recruitment to GC-Rich Repetitive Sequences in Response to Replication Stress. Cell Rep 2017; 16:1300-1314. [PMID: 27487043 DOI: 10.1016/j.celrep.2016.06.077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 05/23/2016] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
The telomeric CTC1/STN1/TEN1 (CST) complex has been implicated in promoting replication recovery under replication stress at genomic regions, yet its precise role is unclear. Here, we report that STN1 is enriched at GC-rich repetitive sequences genome-wide in response to hydroxyurea (HU)-induced replication stress. STN1 deficiency exacerbates the fragility of these sequences under replication stress, resulting in chromosome fragmentation. We find that upon fork stalling, CST proteins form distinct nuclear foci that colocalize with RAD51. Furthermore, replication stress induces physical association of CST with RAD51 in an ATR-dependent manner. Strikingly, CST deficiency diminishes HU-induced RAD51 foci formation and reduces RAD51 recruitment to telomeres and non-telomeric GC-rich fragile sequences. Collectively, our findings establish that CST promotes RAD51 recruitment to GC-rich repetitive sequences in response to replication stress to facilitate replication restart, thereby providing insights into the mechanism underlying genome stability maintenance.
Collapse
Affiliation(s)
- Megan Chastain
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Qing Zhou
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Olga Shiva
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Maria Fadri-Moskwik
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Leanne Whitmore
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Pingping Jia
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Xueyu Dai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Chenhui Huang
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA
| | - Ping Ye
- Department of Molecular and Experimental Medicine, Avera Cancer Institute, 1000 E 23rd Street, Suite 370, Sioux Falls, SD 57105, USA; Department of Pharmacy Practice, South Dakota State University, Brookings, SD 57007, USA
| | - Weihang Chai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99210, USA.
| |
Collapse
|
62
|
Yang CW, Tseng SF, Yu CJ, Chung CY, Chang CY, Pobiega S, Teng SC. Telomere shortening triggers a feedback loop to enhance end protection. Nucleic Acids Res 2017; 45:8314-8328. [PMID: 28575419 PMCID: PMC5737367 DOI: 10.1093/nar/gkx503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/26/2017] [Indexed: 01/20/2023] Open
Abstract
Telomere homeostasis is controlled by both telomerase machinery and end protection. Telomere shortening induces DNA damage sensing kinases ATM/ATR for telomerase recruitment. Yet, whether telomere shortening also governs end protection is poorly understood. Here we discover that yeast ATM/ATR controls end protection. Rap1 is phosphorylated by Tel1 and Mec1 kinases at serine 731, and this regulation is stimulated by DNA damage and telomere shortening. Compromised Rap1 phosphorylation hampers the interaction between Rap1 and its interacting partner Rif1, which thereby disturbs the end protection. As expected, reduction of Rap1–Rif1 association impairs telomere length regulation and increases telomere–telomere recombination. These results indicate that ATM/ATR DNA damage checkpoint signal contributes to telomere protection by strengthening the Rap1–Rif1 interaction at short telomeres, and the checkpoint signal oversees both telomerase recruitment and end capping pathways to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Chia-Wei Yang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Shun-Fu Tseng
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 100, Taiwan
| | - Chia-Jung Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Tao-Yuan 333, Taiwan
| | - Chia-Yu Chung
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Cheng-Yen Chang
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Sabrina Pobiega
- INSERM UMR 967, Institut de Biologie François Jacob, CEA Paris-Saclay, 92265 Fontenay-aux-roses, France
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
63
|
Telomerase regulation by the Pif1 helicase: a length-dependent effect? Curr Genet 2017; 64:509-513. [PMID: 29052759 PMCID: PMC5851688 DOI: 10.1007/s00294-017-0768-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/13/2017] [Accepted: 10/15/2017] [Indexed: 01/04/2023]
Abstract
Dysfunctional telomere length regulation is detrimental to human health, and both activation and inhibition of telomerase have been proposed in potential therapies to treat human diseases. The Saccharomyces cerevisiae Pif1 protein is an evolutionarily conserved helicase that inhibits telomerase activity at DNA ends. Recent studies have indicated that Pif1 is specifically important for inhibiting telomerase at DNA ends with very little or no telomeric sequence and at long telomeres. At the former, Pif1 prevents the inappropriate addition of a telomere at DNA double-strand breaks. For the latter, Pif1 has been shown to bind long telomeres to presumably promote the extension of the short ones. These observations leave the impression that Pif1 does not act at DNA ends with telomeric sequence of intermediate length. Here, we provide in vivo evidence that Pif1 inhibits telomerase activity at DNA ends regardless of telomere sequence length.
Collapse
|
64
|
Morea EGO, Viviescas MA, Fernandes CAH, Matioli FF, Lira CBB, Fernandez MF, Moraes BS, da Silva MS, Storti CB, Fontes MRM, Cano MIN. A calmodulin-like protein (LCALA) is a new Leishmania amazonensis candidate for telomere end-binding protein. Biochim Biophys Acta Gen Subj 2017; 1861:2583-2597. [PMID: 28844976 DOI: 10.1016/j.bbagen.2017.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/06/2017] [Accepted: 08/14/2017] [Indexed: 11/26/2022]
Abstract
BACKGROUND Leishmania spp. telomeres are composed of 5'-TTAGGG-3' repeats associated with proteins. We have previously identified LaRbp38 and LaRPA-1 as proteins that bind the G-rich telomeric strand. At that time, we had also partially characterized a protein: DNA complex, named LaGT1, but we could not identify its protein component. METHODS AND RESULTS Using protein-DNA interaction and competition assays, we confirmed that LaGT1 is highly specific to the G-rich telomeric single-stranded DNA. Three protein bands, with LaGT1 activity, were isolated from affinity-purified protein extracts in-gel digested, and sequenced de novo using mass spectrometry analysis. In silico analysis of the digested peptide identified them as a putative calmodulin with sequences identical to the T. cruzi calmodulin. In the Leishmania genome, the calmodulin ortholog is present in three identical copies. We cloned and sequenced one of the gene copies, named it LCalA, and obtained the recombinant protein. Multiple sequence alignment and molecular modeling showed that LCalA shares homology to most eukaryotes calmodulin. In addition, we demonstrated that LCalA is nuclear, partially co-localizes with telomeres and binds in vivo the G-rich telomeric strand. Recombinant LCalA can bind specifically and with relative affinity to the G-rich telomeric single-strand and to a 3'G-overhang, and DNA binding is calcium dependent. CONCLUSIONS We have described a novel candidate component of Leishmania telomeres, LCalA, a nuclear calmodulin that binds the G-rich telomeric strand with high specificity and relative affinity, in a calcium-dependent manner. GENERAL SIGNIFICANCE LCalA is the first reported calmodulin that binds in vivo telomeric DNA.
Collapse
Affiliation(s)
- Edna G O Morea
- Genetics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Carlos A H Fernandes
- Biophysics and Physics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Fabio F Matioli
- Biophysics and Physics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cristina B B Lira
- Genetics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maribel F Fernandez
- Instituto Tocantinense Presidente Antonio Carlos LTDA., ITPAC-Porto Nacional S.A., TO, Brazil
| | - Barbara S Moraes
- PROAHSA - Programa de Estudos Avançados em Administração Hospitalar e Sistemas de Saúde, São Paulo, Brazil
| | - Marcelo S da Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, SP, Brazil
| | - Camila B Storti
- Genetics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marcos R M Fontes
- Biophysics and Physics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Maria Isabel N Cano
- Genetics Dept., Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
65
|
Wu Z, Liu J, Zhang QD, Lv DK, Wu NF, Zhou JQ. Rad6-Bre1-mediated H2B ubiquitination regulates telomere replication by promoting telomere-end resection. Nucleic Acids Res 2017; 45:3308-3322. [PMID: 28180293 PMCID: PMC5389628 DOI: 10.1093/nar/gkx101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/08/2017] [Indexed: 12/20/2022] Open
Abstract
Rad6 and Bre1, ubiquitin-conjugating E2 and E3 enzymes respectively, are responsible for histone H2B lysine 123 mono-ubiquitination (H2Bub1) in Saccharomyces cerevisiae. Previous studies have shown that Rad6 and Bre1 regulate telomere length and recombination. However, the underlying molecular mechanism remains largely unknown. Here we report that H2BK123 mutation results in telomere shortening, while inactivation of Ubp8 and/or Ubp10, deubiquitinases of H2Bub1, leads to telomere lengthening in Rad6–Bre1-dependent manner. In telomerase-deficient cells, inactivation of Rad6–Bre1 pathway retards telomere shortening rate and the onset of senescence, while deletion of UBP8 and/or UBP10 accelerates senescence. Thus, Rad6–Bre1 pathway regulates both telomere length and recombination through its role in H2Bub1. Additionally, inactivation of both Rad6–Bre1–H2Bub1 and Mre11–Rad50–Xrs2 (MRX) pathways causes synthetic growth defects and telomere shortening in telomerase-proficient cells, and significantly accelerates senescence and eliminates type II telomere recombination in telomerase-deficient cells. Furthermore, RAD6 or BRE1 deletion, or H2BK123R mutation decreases the accumulation of ssDNA at telomere ends. These results support the model that Rad6–Bre1–H2Bub1 cooperates with MRX to promote telomere-end resection and thus positively regulates both telomerase- and recombination-dependent telomere replication. This study provides a mechanistic link between histone H2B ubiquitination and telomere replication.
Collapse
Affiliation(s)
- Zhenfang Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jun Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qiong-Di Zhang
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - De-Kang Lv
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Nian-Feng Wu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
66
|
Rap1 and Cdc13 have complementary roles in preventing exonucleolytic degradation of telomere 5' ends. Sci Rep 2017; 7:8729. [PMID: 28821750 PMCID: PMC5562816 DOI: 10.1038/s41598-017-08663-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/11/2017] [Indexed: 11/23/2022] Open
Abstract
Telomere DNA ends with a single-stranded 3′ overhang. Long 3′ overhangs may cause aberrant DNA damage responses and accelerate telomere attrition, which is associated with cancer and aging, respectively. Genetic studies have indicated several important players in preventing 5′ end hyper-resection, yet detailed knowledge about the molecular mechanism in which they act is still lacking. Here, we use an in vitro DNA 5′ end protection assay, to study how N. castellii Cdc13 and Rap1 protect against 5′ exonucleolytic degradation by λ-exonuclease. The homogeneous telomeric repeat sequence of N. castellii allows us to study their protection ability at exact binding sites relative to the 5′ end. We find efficient protection by both Cdc13 and Rap1 when bound close to the 5′ end. Notably, Rap1 provides protection when binding dsDNA at a distance from the 5′ end. The DNA binding domain of Rap1 is sufficient for 5′ end protection, and its wrapping loop region is essential. Intriguingly, Rap1 facilitates protection also when its binding site contains 2 nt of ssDNA, thus spanning across the ds-ss junction. These results highlight a role of Rap1 in 5′ end protection and indicate that Cdc13 and Rap1 have complementary roles in maintaining proper 3′ overhang length.
Collapse
|
67
|
Strecker J, Stinus S, Caballero MP, Szilard RK, Chang M, Durocher D. A sharp Pif1-dependent threshold separates DNA double-strand breaks from critically short telomeres. eLife 2017; 6:23783. [PMID: 28826474 PMCID: PMC5595431 DOI: 10.7554/elife.23783] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In Saccharomyces cerevisiae, the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG1-3)n repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG34+ ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
Collapse
Affiliation(s)
- Jonathan Strecker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sonia Stinus
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariana Pliego Caballero
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Rachel K Szilard
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
68
|
Beletsky AV, Malyavko AN, Sukhanova MV, Mardanova ES, Zvereva MI, Petrova OA, Parfenova YY, Rubtsova MP, Mardanov AV, Lavrik OI, Dontsova OA, Ravin NV. The genome-wide transcription response to telomerase deficiency in the thermotolerant yeast Hansenula polymorpha DL-1. BMC Genomics 2017; 18:492. [PMID: 28659185 PMCID: PMC5490237 DOI: 10.1186/s12864-017-3889-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 06/21/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND In the course of replication of eukaryotic chromosomes, the telomere length is maintained due to activity of telomerase, the ribonucleoprotein reverse transcriptase. Abolishing telomerase function causes progressive shortening of telomeres and, ultimately, cell cycle arrest and replicative senescence. To better understand the cellular response to telomerase deficiency, we performed a transcriptomic study for the thermotolerant methylotrophic yeast Hansenula polymorpha DL-1 lacking telomerase activity. RESULTS Mutant strain of H. polymorpha carrying a disrupted telomerase RNA gene was produced, grown to senescence and analyzed by RNA-seq along with wild type strain. Telomere shortening induced a transcriptional response involving genes relevant to telomere structure and maintenance, DNA damage response, information processing, and some metabolic pathways. Genes involved in DNA replication and repair, response to environmental stresses and intracellular traffic were up-regulated in senescent H. polymorpha cells, while strong down-regulation was observed for genes involved in transcription and translation, as well as core histones. CONCLUSIONS Comparison of the telomerase deletion transcription responses by Saccharomyces cerevisiae and H. polymorpha demonstrates that senescence makes different impact on the main metabolic pathways of these yeast species but induces similar changes in processes related to nucleic acids metabolism and protein synthesis. Up-regulation of a subunit of the TORC1 complex is clearly relevant for both types of yeast.
Collapse
Affiliation(s)
- Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld 2, Moscow, 119071, Russia
| | - Alexander N Malyavko
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, bld. 3, Moscow, 119991, Russia.,Center of Functional Genomics, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk, 630090, Russia
| | - Eugenia S Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld 2, Moscow, 119071, Russia
| | - Maria I Zvereva
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, bld. 3, Moscow, 119991, Russia
| | - Olga A Petrova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory 1, bld. 40, Moscow, 119992, Russia
| | - Yulia Yu Parfenova
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, bld. 3, Moscow, 119991, Russia
| | - Maria P Rubtsova
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, bld. 3, Moscow, 119991, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld 2, Moscow, 119071, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave. 8, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Olga A Dontsova
- Faculty of Chemistry, Moscow State University, Leninskie Gory 1, bld. 3, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory 1, bld. 40, Moscow, 119992, Russia.,Center of Functional Genomics, Skolkovo Institute of Science and Technology, Moscow, 143026, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, bld 2, Moscow, 119071, Russia.
| |
Collapse
|
69
|
Gopalakrishnan V, Tan CR, Li S. Sequential phosphorylation of CST subunits by different cyclin-Cdk1 complexes orchestrate telomere replication. Cell Cycle 2017. [PMID: 28650257 DOI: 10.1080/15384101.2017.1312235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomere homeostasis is central to maintaining genomic integrity. In budding yeast, Cdk1 phosphorylates the telomere-specific binding protein, Cdc13, promoting the recruitment of telomerase to telomere and thereby telomere elongation. Cdc13 is also an integral part of the CST (Cdc13-Stn1-Ten1) complex that is essential for telomere capping and counteracting telomerase-dependent telomere elongation. Therefore, telomere length homeostasis is a balance between telomerase-extendable and CST-unextendable states. In our earlier work, we showed that Cdk1 also phosphorylates Stn1 which occurs sequentially following Cdc13 phosphorylation during cell cycle progression. This stabilizes the CST complex at the telomere and results in telomerase inhibition. Hence Cdk1-dependent phosphorylations of Stn1 acts like a molecular switch that drives Cdc13 to complex with Stn1-Ten1 rather than with telomerase. However, the underlying mechanism of how a single cyclin-dependent kinase phosphorylates Cdc13 and Stn1 in temporally distinct windows is largely unclear. Here, we show that S phase cyclins are necessary for telomere maintenance. The S phase and mitotic cyclins facilitate Cdc13 and Stn1 phosphorylation respectively, to exert opposing outcomes at the telomere. Thus, our results highlight a previously unappreciated role for cyclins in telomere replication.
Collapse
Affiliation(s)
| | - Cherylin Ruiling Tan
- b Department of Biological Sciences , National University of Singapore , Singapore
| | - Shang Li
- a Program in Cancer and Stem Cell Biology , Duke-NUS Medical School , Singapore.,c Department of Physiology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
70
|
Ouenzar F, Lalonde M, Laprade H, Morin G, Gallardo F, Tremblay-Belzile S, Chartrand P. Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage. J Cell Biol 2017. [PMID: 28637749 PMCID: PMC5551704 DOI: 10.1083/jcb.201610071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Telomerase can generate a novel telomere at a DNA break, with potentially lethal consequences for the cell. Ouenzar et al. reveal novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair during the cell cycle. Telomerase can generate a novel telomere at DNA double-strand breaks (DSBs), an event called de novo telomere addition. How this activity is suppressed remains unclear. Combining single-molecule imaging and deep sequencing, we show that the budding yeast telomerase RNA (TLC1 RNA) is spatially segregated to the nucleolus and excluded from sites of DNA repair in a cell cycle–dependent manner. Although TLC1 RNA accumulates in the nucleoplasm in G1/S, Pif1 activity promotes TLC1 RNA localization in the nucleolus in G2/M. In the presence of DSBs, TLC1 RNA remains nucleolar in most G2/M cells but accumulates in the nucleoplasm and colocalizes with DSBs in rad52Δ cells, leading to de novo telomere additions. Nucleoplasmic accumulation of TLC1 RNA depends on Cdc13 localization at DSBs and on the SUMO ligase Siz1, which is required for de novo telomere addition in rad52Δ cells. This study reveals novel roles for Pif1, Rad52, and Siz1-dependent sumoylation in the spatial exclusion of telomerase from sites of DNA repair.
Collapse
Affiliation(s)
- Faissal Ouenzar
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Maxime Lalonde
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Hadrien Laprade
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Geneviève Morin
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Franck Gallardo
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Samuel Tremblay-Belzile
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
71
|
Abstract
Telomerase is an RNA-protein complex that extends the 3' ends of linear chromosomes, using a unique telomerase reverse transcriptase (TERT) and template in the telomerase RNA (TR), thereby helping to maintain genome integrity. TR assembles with TERT and species-specific proteins, and telomerase function in vivo requires interaction with telomere-associated proteins. Over the past two decades, structures of domains of TR and TERT as well as other telomerase- and telomere-interacting proteins have provided insights into telomerase function. A recently reported 9-Å cryo-electron microscopy map of the Tetrahymena telomerase holoenzyme has provided a framework for understanding how TR, TERT, and other proteins from ciliate as well as vertebrate telomerase fit and function together as well as unexpected insight into telomerase interaction at telomeres. Here we review progress in understanding the structural basis of human and Tetrahymena telomerase activity, assembly, and interactions.
Collapse
Affiliation(s)
- Henry Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Yaqiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569; , ,
| |
Collapse
|
72
|
Multiple DNA Interactions Contribute to the Initiation of Telomerase Elongation. J Mol Biol 2017; 429:2109-2123. [PMID: 28506636 DOI: 10.1016/j.jmb.2017.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023]
Abstract
Telomerase maintains telomere length and chromosome integrity by adding short tandem repeats of single-stranded DNA to the 3' ends, via reverse transcription of a defined template region of its RNA subunit. To further understand the telomerase elongation mechanism, we studied the primer utilization and extension activity of the telomerase from the budding yeast Naumovozyma castellii (Saccharomyces castellii), which displays a processive nucleotide and repeat addition polymerization. For the efficient initiation of canonical elongation, telomerase required 4-nt primer 3' end complementarity to the template RNA. This DNA-RNA hybrid formation was highly important for the stabilization of an initiation-competent telomerase-DNA complex. Anchor site interactions with the DNA provided additional stabilization to the complex. Our studies indicate three additional separate interactions along the length of the DNA primer, each providing different and distinct contributions to the initiation event. A sequence-independent anchor site interaction acts immediately adjacent to the base-pairing 3' end, indicating a protein anchor site positioned very close to the catalytic site. Two additional anchor regions further 5' on the DNA provide sequence-specific contributions to the initiation of elongation. Remarkably, a non-telomeric sequence in the distal 25- to 32-nt region negatively influences the initiation of telomerase elongation, suggesting an anchor site with a regulatory role in the telomerase elongation decision.
Collapse
|
73
|
Abstract
In this Hypothesis, Greider describes a new model for telomere length regulation, which links DNA replication and telomere elongation. Telomere length is regulated around an equilibrium set point. Telomeres shorten during replication and are lengthened by telomerase. Disruption of the length equilibrium leads to disease; thus, it is important to understand the mechanisms that regulate length at the molecular level. The prevailing protein-counting model for regulating telomerase access to elongate the telomere does not explain accumulating evidence of a role of DNA replication in telomere length regulation. Here I present an alternative model: the replication fork model that can explain how passage of a replication fork and regulation of origin firing affect telomere length.
Collapse
Affiliation(s)
- Carol W Greider
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
74
|
Cesena D, Cassani C, Rizzo E, Lisby M, Bonetti D, Longhese MP. Regulation of telomere metabolism by the RNA processing protein Xrn1. Nucleic Acids Res 2017; 45:3860-3874. [PMID: 28160602 PMCID: PMC5397203 DOI: 10.1093/nar/gkx072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 11/19/2022] Open
Abstract
Telomeric DNA consists of repetitive G-rich sequences that terminate with a 3΄-ended single stranded overhang (G-tail), which is important for telomere extension by telomerase. Several proteins, including the CST complex, are necessary to maintain telomere structure and length in both yeast and mammals. Emerging evidence indicates that RNA processing factors play critical, yet poorly understood, roles in telomere metabolism. Here, we show that the lack of the RNA processing proteins Xrn1 or Rrp6 partially bypasses the requirement for the CST component Cdc13 in telomere protection by attenuating the activation of the DNA damage checkpoint. Xrn1 is necessary for checkpoint activation upon telomere uncapping because it promotes the generation of single-stranded DNA. Moreover, Xrn1 maintains telomere length by promoting the association of Cdc13 to telomeres independently of ssDNA generation and exerts this function by downregulating the transcript encoding the telomerase inhibitor Rif1. These findings reveal novel roles for RNA processing proteins in the regulation of telomere metabolism with implications for genome stability in eukaryotes.
Collapse
Affiliation(s)
- Daniele Cesena
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Corinne Cassani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Emanuela Rizzo
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
75
|
Lloyd NR, Dickey TH, Hom RA, Wuttke DS. Tying up the Ends: Plasticity in the Recognition of Single-Stranded DNA at Telomeres. Biochemistry 2016; 55:5326-40. [PMID: 27575340 PMCID: PMC5656232 DOI: 10.1021/acs.biochem.6b00496] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Telomeres terminate nearly exclusively in single-stranded DNA (ssDNA) overhangs comprised of the G-rich 3' end. This overhang varies widely in length from species to species, ranging from just a few bases to several hundred nucleotides. These overhangs are not merely a remnant of DNA replication but rather are the result of complex further processing. Proper management of the telomeric overhang is required both to deter the action of the DNA damage machinery and to present the ends properly to the replicative enzyme telomerase. This Current Topic addresses the biochemical and structural features used by the proteins that manage these variable telomeric overhangs. The Pot1 protein tightly binds the single-stranded overhang, preventing DNA damage sensors from binding. Pot1 also orchestrates the access of telomerase to that same substrate. The remarkable plasticity of the binding interface exhibited by the Schizosaccharomyces pombe Pot1 provides mechanistic insight into how these roles may be accomplished, and disease-associated mutations clustered around the DNA-binding interface in the hPOT1 highlight the importance of this function. The budding yeast Cdc13-Stn1-Ten1, a telomeric RPA complex closely associated with telomere function, also interacts with ssDNA in a fashion that allows degenerate sequences to be recognized. A related human complex composed of hCTC1, hSTN1, and hTEN1 has recently emerged with links to both telomere maintenance and general DNA replication and also exhibits mutations associated with telomere pathologies. Overall, these sequence-specific ssDNA binders exhibit a range of recognition properties that allow them to perform their unique biological functions.
Collapse
Affiliation(s)
- Neil R. Lloyd
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Robert A. Hom
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Deborah S. Wuttke
- Department of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309-0596, USADepartment of Chemistry and Biochemistry, 596 UCB, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
76
|
Chen YF, Lu CY, Lin YC, Yu TY, Chang CP, Li JR, Li HW, Lin JJ. Modulation of yeast telomerase activity by Cdc13 and Est1 in vitro. Sci Rep 2016; 6:34104. [PMID: 27659693 PMCID: PMC5034320 DOI: 10.1038/srep34104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Telomerase is the enzyme involved in extending telomeric DNA. Control of telomerase activity by modulating its access to chromosome ends is one of the most important fundamental mechanisms. This study established an in vitro yeast telomerase reconstitution system that resembles telomere replication in vivo. In this system, a tailed-duplex DNA formed by telomeric DNA was employed to mimic the structure of telomeres. The core catalytic components of telomerase Est2/Tlc1 RNA were used as the telomeric DNA extension machinery. Using the reconstituted systems, this study found that binding of Cdc13 to telomeric DNA inhibited the access of telomerase to its substrate. The result was further confirmed by a single-molecule approach using the tethered-particle motion (TPM)-based telomerase assay. The findings also showed that the inhibitory effect can be relieved by telomerase-associated protein Est1, consistent with the role of Cdc13 and Est1 in regulating telomere extension in vivo. Significantly, this study found that the DNA binding property of Cdc13 was altered by Est1, providing the first mechanistic evidence of Est1 regulating the access of telomerase to its substrate. Thus, the roles of Cdc13 and Est1 in modulating telomerase activity were clearly defined using the in vitro reconstituted system.
Collapse
Affiliation(s)
- Yu-Fan Chen
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chia-Ying Lu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yi-Chien Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Tai-Yuan Yu
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan
| | - Chun-Ping Chang
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Jing-Ru Li
- Department of Chemistry, National Taiwan University, Taipei 100, Taiwan
| | - Hung-Wen Li
- Department of Chemistry, National Taiwan University, Taipei 100, Taiwan
| | - Jing-Jer Lin
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.,Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| |
Collapse
|
77
|
Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13. Mol Cell Biol 2016; 36:1750-63. [PMID: 27044869 DOI: 10.1128/mcb.00095-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
DNA double-strand breaks (DSBs) pose a threat to genome stability and are repaired through multiple mechanisms. Rarely, telomerase, the enzyme that maintains telomeres, acts upon a DSB in a mutagenic process termed telomere healing. The probability of telomere addition is increased at specific genomic sequences termed sites of repair-associated telomere addition (SiRTAs). By monitoring repair of an induced DSB, we show that SiRTAs on chromosomes V and IX share a bipartite structure in which a core sequence (Core) is directly targeted by telomerase, while a proximal sequence (Stim) enhances the probability of de novo telomere formation. The Stim and Core sequences are sufficient to confer a high frequency of telomere addition to an ectopic site. Cdc13, a single-stranded DNA binding protein that recruits telomerase to endogenous telomeres, is known to stimulate de novo telomere addition when artificially recruited to an induced DSB. Here we show that the ability of the Stim sequence to enhance de novo telomere addition correlates with its ability to bind Cdc13, indicating that natural sites at which telomere addition occurs at high frequency require binding by Cdc13 to a sequence 20 to 100 bp internal from the site at which telomerase acts to initiate de novo telomere addition.
Collapse
|
78
|
Abstract
Telomeres are nucleoprotein complexes that maintain the ends of our chromosomes thus providing genomic stability. Telomerase is a ribonucleoprotein reverse transcriptase that replicates the short tandem repeats of DNA known as telomeres. The telomeric DNA is specifically associated with two major complexes, the shelterin and CST complexes both of which are involved in telomere length regulation and maintenance along with telomerase. Obtaining structural information on these nucleoprotein complexes has been a major bottleneck in fully understanding the mechanism of action of telomeric nucleoproteins for over two decades. The recent advances in molecular and structural biology have enabled us to obtain atomic resolution structures of telomeric proteins alone and in complex with their nucleic acid substrates transforming the field and our understanding and interpretation of this unique biological pathway. Here we report our approach to obtain the structure of the Triobolium castaneum catalytic subunit of telomerase TERT (tcTERT) in its apo- and substrate-bound states.
Collapse
Affiliation(s)
- H Hoffman
- The Wistar Institute, Philadelphia, PA, United States
| | - E Skordalakes
- The Wistar Institute, Philadelphia, PA, United States.
| |
Collapse
|
79
|
Rice C, Skordalakes E. Structure and function of the telomeric CST complex. Comput Struct Biotechnol J 2016; 14:161-7. [PMID: 27239262 PMCID: PMC4872678 DOI: 10.1016/j.csbj.2016.04.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
Telomeres comprise the ends of eukaryotic chromosomes and are essential for cell proliferation and genome maintenance. Telomeres are replicated by telomerase, a ribonucleoprotein (RNP) reverse transcriptase, and are maintained primarily by nucleoprotein complexes such as shelterin (TRF1, TRF2, TIN2, RAP1, POT1, TPP1) and CST (Cdc13/Ctc1, Stn1, Ten1). The focus of this review is on the CST complex and its role in telomere maintenance. Although initially thought to be unique to yeast, it is now evident that the CST complex is present in a diverse range of organisms where it contributes to genome maintenance. The CST accomplishes these tasks via telomere capping and by regulating telomerase and DNA polymerase alpha-primase (polα-primase) access to telomeres, a process closely coordinated with the shelterin complex in most organisms. The goal of this review is to provide a brief but comprehensive account of the diverse, and in some cases organism-dependent, functions of the CST complex and how it contributes to telomere maintenance and cell proliferation.
Collapse
|
80
|
Silva S, Altmannova V, Luke-Glaser S, Henriksen P, Gallina I, Yang X, Choudhary C, Luke B, Krejci L, Lisby M. Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance. Genes Dev 2016; 30:700-17. [PMID: 26966248 PMCID: PMC4803055 DOI: 10.1101/gad.276204.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022]
Abstract
Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize at DNA damage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.
Collapse
Affiliation(s)
- Sonia Silva
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | | | - Peter Henriksen
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Irene Gallina
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Xuejiao Yang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Brian Luke
- Institute of Molecular Biology gGmbH (IMB), 55128 Mainz, Germany
| | - Lumir Krejci
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic; National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic; Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic
| | - Michael Lisby
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
81
|
Heydari J, Lawless C, Lydall DA, Wilkinson DJ. Bayesian hierarchical modelling for inferring genetic interactions in yeast. J R Stat Soc Ser C Appl Stat 2015; 65:367-393. [PMID: 27134314 PMCID: PMC4843957 DOI: 10.1111/rssc.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantitative fitness analysis (QFA) is a high throughput experimental and computational methodology for measuring the growth of microbial populations. QFA screens can be used to compare the health of cell populations with and without a mutation in a query gene to infer genetic interaction strengths genomewide, examining thousands of separate genotypes. We introduce Bayesian hierarchical models of population growth rates and genetic interactions that better reflect QFA experimental design than current approaches. Our new approach models population dynamics and genetic interaction simultaneously, thereby avoiding passing information between models via a univariate fitness summary. Matching experimental structure more closely, Bayesian hierarchical approaches use data more efficiently and find new evidence for genes which interact with yeast telomeres within a published data set.
Collapse
|
82
|
Mersaoui SY, Gravel S, Karpov V, Wellinger RJ. DNA damage checkpoint adaptation genes are required for division of cells harbouring eroded telomeres. MICROBIAL CELL 2015; 2:394-405. [PMID: 28357265 PMCID: PMC5354583 DOI: 10.15698/mic2015.10.229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In budding yeast, telomerase and the Cdc13p protein are two key players acting to ensure telomere stability. In the absence of telomerase, cells eventually enter a growth arrest which only few can overcome via a conserved process; such cells are called survivors. Survivors rely on homologous recombination-dependent mechanisms for telomeric repeat addition. Previously, we showed that such survivor cells also manage to bypass the loss of the essential Cdc13p protein to give rise to Cdc13-independent (or cap-independent) strains. Here we show that Cdc13-independent cells grow with persistently recognized DNA damage, which does not however result in a checkpoint activation; thus no defect in cell cycle progression is detectable. The absence of checkpoint signalling rather is due to the accumulation of mutations in checkpoint genes such as RAD24 or MEC1. Importantly, our results also show that cells that have lost the ability to adapt to persistent DNA damage, also are very much impaired in generating cap-independent cells. Altogether, these results show that while the capping process can be flexible, it takes a very specific genetic setup to allow a change from canonical capping to alternative capping. We hypothesize that in the alternative capping mode, genome integrity mechanisms are abrogated, which could cause increased mutation frequencies. These results from yeast have clear parallels in transformed human cancer cells and offer deeper insights into processes operating in pre-cancerous human cells that harbour eroded telomeres.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Dept of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, J1E 4K8, Canada
| | - Serge Gravel
- Dept of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, J1E 4K8, Canada
| | - Victor Karpov
- Dept of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, J1E 4K8, Canada
| | - Raymund J Wellinger
- Dept of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, J1E 4K8, Canada
| |
Collapse
|
83
|
Mukherjee K, Pandey DM, Vidyarthi AS. In Silico Characterization and Analysis of RTBP1 and NgTRF1 Protein Through MD Simulation and Molecular Docking: A Comparative Study. Interdiscip Sci 2015; 7:275-86. [PMID: 26289405 DOI: 10.1007/s12539-015-0268-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/25/2014] [Accepted: 11/04/2014] [Indexed: 10/23/2022]
Abstract
Gaining access to sequence and structure information of telomere-binding proteins helps in understanding the essential biological processes involve in conserved sequence-specific interaction between DNA and the proteins. Rice telomere-binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix-turn-helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain, but till now there is very less communication on the in silico studies of these complete proteins. Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK Web server. By digging up all the facts about the proteins, it was revealed that around 120 amino acids in the tail part were showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicate the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA-binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Collapse
Affiliation(s)
- Koel Mukherjee
- Bioinformatics Laboratory, Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Dev Mani Pandey
- Bioinformatics Laboratory, Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| | | |
Collapse
|
84
|
Regulation of Telomere Length Requires a Conserved N-Terminal Domain of Rif2 in Saccharomyces cerevisiae. Genetics 2015; 201:573-86. [PMID: 26294668 PMCID: PMC4596670 DOI: 10.1534/genetics.115.177899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/19/2015] [Indexed: 12/26/2022] Open
Abstract
The regulation of telomere length equilibrium is essential for cell growth and survival since critically short telomeres signal DNA damage and cell cycle arrest. While the broad principles of length regulation are well established, the molecular mechanism of how these steps occur is not fully understood. We mutagenized the RIF2 gene in Saccharomyces cerevisiae to understand how this protein blocks excess telomere elongation. We identified an N-terminal domain in Rif2 that is essential for length regulation, which we have termed BAT domain for Blocks Addition of Telomeres. Tethering this BAT domain to Rap1 blocked telomere elongation not only in rif2Δ mutants but also in rif1Δ and rap1C-terminal deletion mutants. Mutation of a single amino acid in the BAT domain, phenylalanine at position 8 to alanine, recapitulated the rif2Δ mutant phenotype. Substitution of F8 with tryptophan mimicked the wild-type phenylalanine, suggesting the aromatic amino acid represents a protein interaction site that is essential for telomere length regulation.
Collapse
|
85
|
Goto GH, Zencir S, Hirano Y, Ogi H, Ivessa A, Sugimoto K. Binding of Multiple Rap1 Proteins Stimulates Chromosome Breakage Induction during DNA Replication. PLoS Genet 2015; 11:e1005283. [PMID: 26263073 PMCID: PMC4532487 DOI: 10.1371/journal.pgen.1005283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 05/14/2015] [Indexed: 02/07/2023] Open
Abstract
Telomeres, the ends of linear eukaryotic chromosomes, have a specialized chromatin structure that provides a stable chromosomal terminus. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomere length. Here we show that binding of multiple Rap1 proteins stimulates DNA double-stranded break (DSB) induction at both telomeric and non-telomeric regions. Consistent with the role of DSB induction, Rap1 stimulates nearby recombination events in a dosage-dependent manner. Rap1 recruits Rif1 and Rif2 to telomeres, but neither Rif1 nor Rif2 is required for DSB induction. Rap1-mediated DSB induction involves replication fork progression but inactivation of checkpoint kinase Mec1 does not affect DSB induction. Rap1 tethering shortens artificially elongated telomeres in parallel with telomerase inhibition, and this telomere shortening does not require homologous recombination. These results suggest that Rap1 contributes to telomere homeostasis by promoting chromosome breakage. Telomere length is maintained primarily through equilibrium between telomerase-mediated lengthening and the loss of telomeric sequence through the end-replication problem. In budding yeast Rap1 protein binds to telomeric TG repeat and negatively regulates telomerase recruitment in a dosage-dependent manner. In this paper we provide evidence suggesting an alternative Rap1-dependent telomere shortening mechanism in which binding of multiple Rap1 proteins mediates DNA break induction during DNA replication. This process does not involve recombination events; therefore, it is distinct from loop-mediated telomere trimming.
Collapse
Affiliation(s)
- Greicy H. Goto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Sevil Zencir
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Yukinori Hirano
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Hiroo Ogi
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
86
|
Greetham M, Skordalakes E, Lydall D, Connolly BA. The Telomere Binding Protein Cdc13 and the Single-Stranded DNA Binding Protein RPA Protect Telomeric DNA from Resection by Exonucleases. J Mol Biol 2015; 427:3023-30. [PMID: 26264873 PMCID: PMC4580210 DOI: 10.1016/j.jmb.2015.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 11/30/2022]
Abstract
The telomere is present at the ends of all eukaryotic chromosomes and usually consists of repetitive TG-rich DNA that terminates in a single-stranded 3' TG extension and a 5' CA-rich recessed strand. A biochemical assay that allows the in vitro observation of exonuclease-catalyzed degradation (resection) of telomeres has been developed. The approach uses an oligodeoxynucleotide that folds to a stem-loop with a TG-rich double-stranded region and a 3' single-stranded extension, typical of telomeres. Cdc13, the major component of the telomere-specific CST complex, strongly protects the recessed strand from the 5'→3' exonuclease activity of the model exonuclease from bacteriophage λ. The isolated DNA binding domain of Cdc13 is less effective at shielding telomeres. Protection is specific, not being observed in control DNA lacking the specific TG-rich telomere sequence. RPA, the eukaryotic single-stranded DNA binding protein, also inhibits telomere resection. However, this protein is non-specific, equally hindering the degradation of non-telomere controls.
Collapse
Affiliation(s)
- Matthew Greetham
- Institute for Cell and Molecular Biology, The University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | - David Lydall
- Institute for Cell and Molecular Biology, The University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Bernard A Connolly
- Institute for Cell and Molecular Biology, The University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
87
|
Abstract
The ends of linear chromosomes are capped by nucleoprotein structures called telomeres. A dysfunctional telomere may resemble a DNA double-strand break (DSB), which is a severe form of DNA damage. The presence of one DSB is sufficient to drive cell cycle arrest and cell death. Therefore cells have evolved mechanisms to repair DSBs such as homologous recombination (HR). HR-mediated repair of telomeres can lead to genome instability, a hallmark of cancer cells, which is why such repair is normally inhibited. However, some HR-mediated processes are required for proper telomere function. The need for some recombination activities at telomeres but not others necessitates careful and complex regulation, defects in which can lead to catastrophic consequences. Furthermore, some cell types can maintain telomeres via telomerase-independent, recombination-mediated mechanisms. In humans, these mechanisms are called alternative lengthening of telomeres (ALT) and are used in a subset of human cancer cells. In this review, we summarize the different recombination activities occurring at telomeres and discuss how they are regulated. Much of the current knowledge is derived from work using yeast models, which is the focus of this review, but relevant studies in mammals are also included.
Collapse
Affiliation(s)
- Clémence Claussin
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
88
|
Steinberg-Neifach O, Lue NF. Telomere DNA recognition in Saccharomycotina yeast: potential lessons for the co-evolution of ssDNA and dsDNA-binding proteins and their target sites. Front Genet 2015; 6:162. [PMID: 25983743 PMCID: PMC4416457 DOI: 10.3389/fgene.2015.00162] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/10/2015] [Indexed: 01/22/2023] Open
Abstract
In principle, alterations in the telomere repeat sequence would be expected to disrupt the protective nucleoprotein complexes that confer stability to chromosome ends, and hence relatively rare events in evolution. Indeed, numerous organisms in diverse phyla share a canonical 6 bp telomere repeat unit (5'-TTAGGG-3'/5'-CCCTAA-3'), suggesting common descent from an ancestor that carries this particular repeat. All the more remarkable, then, are the extraordinarily divergent telomere sequences that populate the Saccharomycotina subphylum of budding yeast. These sequences are distinguished from the canonical telomere repeat in being long, occasionally degenerate, and frequently non-G/C-rich. Despite the divergent telomere repeat sequences, studies to date indicate that the same families of single-strand and double-strand telomere binding proteins (i.e., the Cdc13 and Rap1 families) are responsible for telomere protection in Saccharomycotina yeast. The recognition mechanisms of the protein family members therefore offer an informative paradigm for understanding the co-evolution of DNA-binding proteins and the cognate target sequences. Existing data suggest three potential, inter-related solutions to the DNA recognition problem: (i) duplication of the recognition protein and functional modification; (ii) combinatorial recognition of target site; and (iii) flexibility of the recognition surfaces of the DNA-binding proteins to adopt alternative conformations. Evidence in support of these solutions and the relevance of these solutions to other DNA-protein regulatory systems are discussed.
Collapse
Affiliation(s)
- Olga Steinberg-Neifach
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University , New York, NY, USA ; Hostos Community College, City University of New York , Bronx, NY, USA
| | - Neal F Lue
- Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University , New York, NY, USA
| |
Collapse
|
89
|
Mukherjee K, Pandey DM, Vidyarthi AS. In silico characterization and analysis of RTBP1 and NgTRF1 protein through MD simulation and molecular docking - A comparative study. Interdiscip Sci 2015. [PMID: 25663113 DOI: 10.1007/s12539-014-0237-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/25/2014] [Accepted: 11/04/2014] [Indexed: 11/30/2022]
Abstract
Gaining access to sequence and structure information of telomere binding proteins helps in understanding the essential biological processes involve in conserved sequence specific interaction between DNA and the proteins. Rice telomere binding protein (RTBP1) and Nicotiana glutinosa telomere repeat binding factor (NgTRF1) are helix turn helix motif type of proteins that plays role in telomeric DNA protection and length regulation. Both the proteins share same type of domain but till now there is very less communication on the in silico studies of these complete proteins.Here we intend to do a comparative study between two proteins through modeling of the complete proteins, physiochemical characterization, MD simulation and DNA-protein docking. I-TASSER and CLC protein work bench was performed to find out the protein 3D structure as well as the different parameters to characterize the proteins. MD simulation was completed by GROMOS forcefield of GROMACS for 10 ns of time stretch. The simulated 3D structures were docked with template DNA (3D DNA modeled through 3D-DART) of TTTAGGG conserved sequence motif using HADDOCK web server.Digging up all the facts about the proteins it was reveled that around 120 amino acids in the tail part was showing a good sequence similarity between the proteins. Molecular modeling, sequence characterization and secondary structure prediction also indicates the similarity between the protein's structure and sequence. The result of MD simulation highlights on the RMSD, RMSF, Rg, PCA and Energy plots which also conveys the similar type of motional behavior between them. The best complex formation for both the proteins in docking result also indicates for the first interaction site which is mainly the helix3 region of the DNA binding domain. The overall computational analysis reveals that RTBP1 and NgTRF1 proteins display good amount of similarity in their physicochemical properties, structure, dynamics and binding mode.
Collapse
Affiliation(s)
- Koel Mukherjee
- Bioinformatics Laboratory, Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | | | | |
Collapse
|
90
|
Alternative arrangements of telomeric recognition sites regulate the binding mode of the DNA-binding domain of yeast Rap1. Biophys Chem 2015; 198:1-8. [PMID: 25637888 DOI: 10.1016/j.bpc.2015.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/02/2015] [Accepted: 01/02/2015] [Indexed: 01/17/2023]
Abstract
The function of yeast Rap1 as an activator in transcription, a repressor at silencer elements, and as a major component of the shelterin-like complex at telomeres requires the known high-affinity and specific interaction of the DNA-binding domain (DBD) with its recognition sequences. In addition to a high-affinity one-to-one complex with its DNA recognition site, Rap1(DBD) also forms lower affinity complexes with higher stoichiometries on DNA. We proposed that this originates from the ability of Rap1(DBD) to access at least two DNA-binding modes. In this work, we show that Rap1(DBD) binds in multiple binding modes to recognition sequences that contain different spacer lengths between the hemi-sites. We also provide evidence that in the singly-ligated complex Rap1(DBD) binds quite differently to these sequences. Rap1(DBD) also binds to a single half-site but does so using the alternative DNA-binding mode where only a single Myb-like domain interacts with DNA. We found that all arrangements of Rap1 sites tested are represented within the telomeric sequence and our data suggest that at telomeres Rap1 might form a nucleoprotein complex with a heterogeneous distribution of bound states.
Collapse
|
91
|
PP2A and Aurora differentially modify Cdc13 to promote telomerase release from telomeres at G2/M phase. Nat Commun 2014; 5:5312. [PMID: 25387524 DOI: 10.1038/ncomms6312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
In yeast, the initiation of telomere replication at the late S phase involves in combined actions of kinases on Cdc13, the telomere binding protein. Cdc13 recruits telomerase to telomeres through its interaction with Est1, a component of telomerase. However, how cells terminate the function of telomerase at G2/M is still elusive. Here we show that the protein phosphatase 2A (PP2A) subunit Pph22 and the yeast Aurora kinase homologue Ipl1 coordinately inhibit telomerase at G2/M by dephosphorylating and phosphorylating the telomerase recruitment domain of Cdc13, respectively. While Pph22 removes Tel1/Mec1-mediated Cdc13 phosphorylation to reduce Cdc13-Est1 interaction, Ipl1-dependent Cdc13 phosphorylation elicits dissociation of Est1-TLC1, the template RNA component of telomerase. Failure of these regulations prevents telomerase from departing telomeres, causing perturbed telomere lengthening and prolonged M phase. Together our results demonstrate that differential and additive actions of PP2A and Aurora on Cdc13 limit telomerase action by removing active telomerase from telomeres at G2/M phase.
Collapse
|
92
|
Renfrew KB, Song X, Lee JR, Arora A, Shippen DE. POT1a and components of CST engage telomerase and regulate its activity in Arabidopsis. PLoS Genet 2014; 10:e1004738. [PMID: 25329641 PMCID: PMC4199523 DOI: 10.1371/journal.pgen.1004738] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 09/06/2014] [Indexed: 11/18/2022] Open
Abstract
Protection of Telomeres 1 (POT1) is a conserved nucleic acid binding protein implicated in both telomere replication and chromosome end protection. We previously showed that Arabidopsis thaliana POT1a associates with the TER1 telomerase RNP, and is required for telomere length maintenance in vivo. Here we further dissect the function of POT1a and explore its interplay with the CST (CTC1/STN1/TEN1) telomere complex. Analysis of pot1a null mutants revealed that POT1a is not required for telomerase recruitment to telomeres, but is required for telomerase to maintain telomere tracts. We show that POT1a stimulates the synthesis of long telomere repeat arrays by telomerase, likely by enhancing repeat addition processivity. We demonstrate that POT1a binds STN1 and CTC1 in vitro, and further STN1 and CTC1, like POT1a, associate with enzymatically active telomerase in vivo. Unexpectedly, the in vitro interaction of STN1 with TEN1 and POT1a was mutually exclusive, indicating that POT1a and TEN1 may compete for the same binding site on STN1 in vivo. Finally, unlike CTC1 and STN1, TEN1 was not associated with active telomerase in vivo, consistent with our previous data showing that TEN1 negatively regulates telomerase enzyme activity. Altogether, our data support a two-state model in which POT1a promotes an extendable telomere state via contacts with the telomerase RNP as well as STN1 and CTC1, while TEN1 opposes these functions.
Collapse
Affiliation(s)
- Kyle B. Renfrew
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Xiangyu Song
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jung Ro Lee
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Amit Arora
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
93
|
Sgs1 and Sae2 promote telomere replication by limiting accumulation of ssDNA. Nat Commun 2014; 5:5004. [DOI: 10.1038/ncomms6004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 08/15/2014] [Indexed: 02/02/2023] Open
|
94
|
Abstract
In budding yeast, telomerase consists of the catalytic Est2 protein and two regulatory subunits (Est1 and Est3) in association with the TLC1 RNA, with each of the four subunits essential for in vivo telomerase function. Tucey and Lundblad show that a hierarchy of assembly and disassembly results in limiting amounts of the quaternary complex late in the cell cycle, following completion of DNA replication. Telomerase disassembles due to dissociation of the catalytic subunit from the complex in every cell cycle. The enzyme telomerase, which elongates chromosome termini, is a critical factor in determining long-term cellular proliferation and tissue renewal. Hence, even small differences in telomerase levels can have substantial consequences for human health. In budding yeast, telomerase consists of the catalytic Est2 protein and two regulatory subunits (Est1 and Est3) in association with the TLC1 RNA, with each of the four subunits essential for in vivo telomerase function. We show here that a hierarchy of assembly and disassembly results in limiting amounts of the quaternary complex late in the cell cycle, following completion of DNA replication. The assembly pathway, which is driven by interaction of the Est3 telomerase subunit with a previously formed Est1–TLC1–Est2 preassembly complex, is highly regulated, involving Est3-binding sites on both Est2 and Est1 as well as an interface on Est3 itself that functions as a toggle switch. Telomerase subsequently disassembles by a mechanistically distinct pathway due to dissociation of the catalytic subunit from the complex in every cell cycle. The balance between the assembly and disassembly pathways, which dictate the levels of the active holoenzyme in the cell, reveals a novel mechanism by which telomerase (and hence telomere homeostasis) is regulated.
Collapse
Affiliation(s)
- Timothy M Tucey
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA; Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Victoria Lundblad
- Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
95
|
Williams JM, Ouenzar F, Lemon LD, Chartrand P, Bertuch AA. The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres. Genetics 2014; 197:1123-36. [PMID: 24879463 PMCID: PMC4125388 DOI: 10.1534/genetics.114.164707] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 05/23/2014] [Indexed: 01/02/2023] Open
Abstract
Telomere length is tightly regulated in cells that express telomerase. The Saccharomyces cerevisiae Ku heterodimer, a DNA end-binding complex, positively regulates telomere length in a telomerase-dependent manner. Ku associates with the telomerase RNA subunit TLC1, and this association is required for TLC1 nuclear retention. Ku-TLC1 interaction also impacts the cell-cycle-regulated association of the telomerase catalytic subunit Est2 to telomeres. The promotion of TLC1 nuclear localization and Est2 recruitment have been proposed to be the principal role of Ku in telomere length maintenance, but neither model has been directly tested. Here we study the impact of forced recruitment of Est2 to telomeres on telomere length in the absence of Ku's ability to bind TLC1 or DNA ends. We show that tethering Est2 to telomeres does not promote efficient telomere elongation in the absence of Ku-TLC1 interaction or DNA end binding. Moreover, restoration of TLC1 nuclear localization, even when combined with Est2 recruitment, does not bypass the role of Ku. In contrast, forced recruitment of Est1, which has roles in telomerase recruitment and activation, to telomeres promotes efficient and progressive telomere elongation in the absence of Ku-TLC1 interaction, Ku DNA end binding, or Ku altogether. Ku associates with Est1 and Est2 in a TLC1-dependent manner and enhances Est1 recruitment to telomeres independently of Est2. Together, our results unexpectedly demonstrate that the principal role of Ku in telomere length maintenance is to promote the association of Est1 with telomeres, which may in turn allow for efficient recruitment and activation of the telomerase holoenzyme.
Collapse
Affiliation(s)
- Jaime M Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Faissal Ouenzar
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Laramie D Lemon
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - Alison A Bertuch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
96
|
Normal telomere length maintenance in Saccharomyces cerevisiae requires nuclear import of the ever shorter telomeres 1 (Est1) protein via the importin alpha pathway. EUKARYOTIC CELL 2014; 13:1036-50. [PMID: 24906415 DOI: 10.1128/ec.00115-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Est1 (ever shorter telomeres 1) protein is an essential component of yeast telomerase, a ribonucleoprotein complex that restores the repetitive sequences at chromosome ends (telomeres) that would otherwise be lost during DNA replication. Previous work has shown that the telomerase RNA component (TLC1) transits through the cytoplasm during telomerase biogenesis, but mechanisms of protein import have not been addressed. Here we identify three nuclear localization sequences (NLSs) in Est1p. Mutation of the most N-terminal NLS in the context of full-length Est1p reduces Est1p nuclear localization and causes telomere shortening-phenotypes that are rescued by fusion with the NLS from the simian virus 40 (SV40) large-T antigen. In contrast to that of the TLC1 RNA, Est1p nuclear import is facilitated by Srp1p, the yeast homolog of importin α. The reduction in telomere length observed at the semipermissive temperature in a srp1 mutant strain is rescued by increased Est1p expression, consistent with a defect in Est1p nuclear import. These studies suggest that at least two nuclear import pathways are required to achieve normal telomere length homeostasis in yeast.
Collapse
|
97
|
Holstein EM, Clark KRM, Lydall D. Interplay between nonsense-mediated mRNA decay and DNA damage response pathways reveals that Stn1 and Ten1 are the key CST telomere-cap components. Cell Rep 2014; 7:1259-69. [PMID: 24835988 PMCID: PMC4518466 DOI: 10.1016/j.celrep.2014.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/20/2014] [Accepted: 04/10/2014] [Indexed: 11/30/2022] Open
Abstract
A large and diverse set of proteins, including CST complex, nonsense mediated decay (NMD), and DNA damage response (DDR) proteins, play important roles at the telomere in mammals and yeast. Here, we report that NMD, like the DDR, affects single-stranded DNA (ssDNA) production at uncapped telomeres. Remarkably, we find that the requirement for Cdc13, one of the components of CST, can be efficiently bypassed when aspects of DDR and NMD pathways are inactivated. However, identical genetic interventions do not bypass the need for Stn1 and Ten1, the partners of Cdc13. We show that disabling NMD alters the stoichiometry of CST components at telomeres and permits Stn1 to bind telomeres in the absence of Cdc13. Our data support a model that Stn1 and Ten1 can function in a Cdc13-independent manner and have implications for the function of CST components across eukaryotes.
Collapse
Affiliation(s)
- Eva-Maria Holstein
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - Kate R M Clark
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK
| | - David Lydall
- Institute for Cell and Molecular Biosciences, Newcastle University Medical School, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
98
|
An Y, Raju RK, Lu T, Wheeler SE. Aromatic interactions modulate the 5'-base selectivity of the DNA-binding autoantibody ED-10. J Phys Chem B 2014; 118:5653-9. [PMID: 24802982 DOI: 10.1021/jp502069a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present detailed computational analyses of the binding of four dinucleotides to a highly sequence-selective single-stranded DNA (ssDNA) binding antibody (ED-10) and selected point mutants. Anti-DNA antibodies are central to the pathogenesis of systemic lupus erythematosus (SLE), and a more complete understanding of the mode of binding of DNA and other ligands will be necessary to elucidate the role of anti-DNA antibodies in the kidney inflammation associated with SLE. Classical molecular mechanics based molecular dynamics simulations and density functional theory (DFT) computations were applied to pinpoint the origin of selectivity for the 5'-nucleotide. In particular, the strength of interactions between each nucleotide and the surrounding residues were computed using MMGBSA as well as DFT applied to a cluster model of the binding site. The results agree qualitatively with experimental binding free energies, and indicate that π-stacking, CH/π, NH/π, and hydrogen-bonding interactions all contribute to 5'-base selectivity in ED-10. Most importantly, the selectivity for dTdC over dAdC arises primarily from differences in the strength of π-stacking and XH/π interactions with the surrounding aromatic residues; hydrogen bonds play little role. These data suggest that a key Tyr residue, which is not present in other anti-DNA antibodies, plays a key role in the 5'-base selectivity, while we predict that the mutation of a single Trp residue can tune the selectivity for dTdC over dAdC.
Collapse
Affiliation(s)
- Yi An
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | | | | | | |
Collapse
|
99
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
100
|
|