51
|
Lang M, Li H. Sustainable Routes for the Synthesis of Renewable Adipic Acid from Biomass Derivatives. CHEMSUSCHEM 2022; 15:e202101531. [PMID: 34716751 DOI: 10.1002/cssc.202101531] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Adipic acid (AA) is a key industrial dicarboxylic acid intermediate used in nylon manufacturing. Unfortunately, the traditional process technology is accompanied by serious environmental pollution. Given the growing demand for adipic acid and the desire to reduce its negative impact on the environment, considerable efforts have been devoted to developing more green and friendly routes. This Review is focused on the latest advances in the sustainable preparation of AA from biomass-based platform molecules, including 5-hydroxymethylfufural, glucose, γ-valerolactone, and phenolic compounds, through biocatalysis, chemocatalysis, and the combination of both. Additionally, the development of state-of-the-art catalysts for different catalytic systems systematically is discussed and summarized, as well as their reaction mechanisms. Finally, the prospects for all preparation routes are critically evaluated and key technical challenges in the development of green and sustainable processes for the manufacture of AA are highlighted. It is hoped that the green adipic acid synthesis pathways presented can provide insights and guidance for further research into other industrial processes for the production of nylon precursors in the future.
Collapse
Affiliation(s)
- Man Lang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| |
Collapse
|
52
|
Büker J, Alkan B, Chabbra S, Kochetov N, Falk T, Schnegg A, Schulz C, Wiggers H, Muhler M, Peng B. Liquid-Phase Cyclohexene Oxidation with O 2 over Spray-Flame-Synthesized La 1-x Sr x CoO 3 Perovskite Nanoparticles. Chemistry 2021; 27:16912-16923. [PMID: 34590747 PMCID: PMC9293428 DOI: 10.1002/chem.202103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/24/2022]
Abstract
La1−xSrxCoO3 (x=0, 0.1, 0.2, 0.3, 0.4) nanoparticles were prepared by spray‐flame synthesis and applied in the liquid‐phase oxidation of cyclohexene with molecular O2 as oxidant under mild conditions. The catalysts were systematically characterized by state‐of‐the‐art techniques. With increasing Sr content, the concentration of surface oxygen vacancy defects increases, which is beneficial for cyclohexene oxidation, but the surface concentration of less active Co2+ was also increased. However, Co2+ cations have a superior activity towards peroxide decomposition, which also plays an important role in cyclohexene oxidation. A Sr doping of 20 at. % was found to be the optimum in terms of activity and product selectivity. The catalyst also showed excellent reusability over three catalytic runs; this can be attributed to its highly stable particle size and morphology. Kinetic investigations revealed first‐order reaction kinetics for temperatures between 60 and 100 °C and an apparent activation energy of 68 kJ mol−1 for cyclohexene oxidation. Moreover, the reaction was not affected by the applied O2 pressure in the range from 10 to 20 bar. In situ attenuated total reflection infrared spectroscopy was used to monitor the conversion of cyclohexene and the formation of reaction products including the key intermediate cyclohex‐2‐ene‐1‐hydroperoxide; spin trap electron paramagnetic resonance spectroscopy provided strong evidence for a radical reaction pathway by identifying the cyclohexenyl alkoxyl radical.
Collapse
Affiliation(s)
- Julia Büker
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Baris Alkan
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Sonia Chabbra
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Nikolai Kochetov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Falk
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Hartmut Wiggers
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
53
|
Tian Q, Jing L, Ye S, Liu J, Chen R, Price CAH, Fan F, Liu J. Nanospatial Charge Modulation of Monodispersed Polymeric Microsphere Photocatalysts for Exceptional Hydrogen Peroxide Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103224. [PMID: 34611983 DOI: 10.1002/smll.202103224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Photocatalysis offers a sustainable strategy for hydrogen peroxide (H2 O2 ) production, which is an essential oxidant and emerging energy carrier in modern chemical industry. The development of polymer-based photocatalysts to produce H2 O2 has great potential but is limited by lower efficiency due to the limitation of light utilization and the low charge separation efficiency. Herein, a series of monodispersed mesoporous resorcinol-formaldehyde resin spheres (MRFS) are reported with a rational designed spatial charge distribution, exhibiting wide light absorption with a solar-to-chemical conversion (SCC) efficiency of 1.1%. Surface photovoltage microscopy (SPVM) measurements unraveled the charge separation in nanospace with uneven distribution of donor (D) and acceptor (A) sites. A density functional theory (DFT) calculation elucidated the origin of photogenerated electrons and holes. Moreover, MRFS demonstrates photocatalytic water oxidation ability. The findings in this work open a new avenue for the development of porous polymeric photocatalysts toward highly efficient solar energy conversion.
Collapse
Affiliation(s)
- Qiang Tian
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Lingyan Jing
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Sheng Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Junxue Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ruotian Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Cameron-Alexander Hurd Price
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU27XH, UK
| | - Fengtao Fan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU27XH, UK
| |
Collapse
|
54
|
Soares JCS, Gonçalves AHA, Zotin FM, de Araújo LRR, Gaspar AB. Influence of reactional parameters in the adipic acid synthesis from cyclohexene using heterogeneous polyoxometalates. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
55
|
Synthesis of Porous Confined Ionic Liquid Phosphotungstate Based on MIL-101 and its Solvent-Free Catalytic Oxidation of Cyclohexene to Adipic Acid. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02094-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
56
|
Talukdar H, Gogoi SR, Saikia G, Sultana SY, Ahmed K, Islam NS. A sustainable approach towards solventless organic oxidations catalyzed by polymer immobilized Nb(V)-peroxido compounds with H2O2 as oxidant. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
57
|
Zhang Y, Yue X, Liang C, Zhao J, Yu W, Zhang P. Photo-induced oxidative cleavage of C-C double bonds of olefins in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
58
|
Vernekar D, Dayyan M, Ratha S, Rode CV, Haider M, Khan TS, Jagadeesan D. Direct Oxidation of Cyclohexane to Adipic Acid by a WFeCoO(OH) Catalyst: Role of Brønsted Acidity and Oxygen Vacancies. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dnyanesh Vernekar
- Chemical Engineering and Process Development Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mohammad Dayyan
- Chemical Engineering and Process Development Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Satyajit Ratha
- School of Basic Sciences, Indian Institute of Technology Bhubaneshwar, Bhubaneswar 752050, Odisha, India
| | - Chandrashekhar V. Rode
- Chemical Engineering and Process Development Division, CSIR National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - M.Ali Haider
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, Delhi, India
| | - Tuhin Suvra Khan
- Light Stock Processing Division, CSIR Indian Institute of Petroleum, Dehradun 248005, Uttarakhand, India
| | - Dinesh Jagadeesan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad 678 557, Kerala, India
- Environmental Sciences and Sustainable Engineering Center (ESSENCE), Indian Institute of Technology, Palakkad 678 557, Kerala, India
| |
Collapse
|
59
|
Kunimoto T, Naya SI, Tada H. Hydrogen Peroxide Production from Oxygen and Water by Two-electrode Electrolytic Cell Using a Gold Nanoparticle-loaded Fluorine-doped Tin Oxide Cathode. CHEM LETT 2021. [DOI: 10.1246/cl.210269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takeshi Kunimoto
- Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shin-ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Hiroaki Tada
- Graduate School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
60
|
Enhanced photocatalytic production of hydrogen peroxide via two-channel pathway using modified graphitic carbon nitride photocatalyst: Doping K+ and combining WO3. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Novel WO3/SO42--ZrO2–TiO2 double bridge coordination catalyst hfor oxidation of cyclohexene. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
62
|
Chen W, Tan CH, Wang H, Ye X. Molybdenum/Tungsten-Based Heteropoly Salts in Oxidations. Chem Asian J 2021; 16:2753-2772. [PMID: 34286908 DOI: 10.1002/asia.202100686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Indexed: 11/12/2022]
Abstract
Oxidation represents one of the most important and practical chemical transformations for both organic synthesis, material science and pharmaceutical area. Among the existing strategies, molybdenum/tungsten-based heteropoly salts involved oxidations with low-cost and environmentally benign terminal oxidant and thus have attracted considerable attention in recent years. In this review, we have summarized the recent development of heteropoly salts utilized in oxidations, mainly the peroxomolybdates and peroxotungstates. We wish to highlight the progress made in the past 20 years of this field. Three categories are classified according to the aggregation state of metal oxides. Special attention is paid to the catalytically active peroxometalate species generated during the oxidation process. It is helpful to shed light on the common features that enable highly efficient and selective oxidations. We aim to inspire fellow chemists to explore more functional metalates for catalytic oxidations, especially asymmetric versions. Meanwhile, we attempt to understand the design principles for the discovery of more efficient, selective and economical catalytic systems.
Collapse
Affiliation(s)
- Wenchao Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, P. R. China
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| |
Collapse
|
63
|
Kuznetsov ML, Pombeiro AJ. Metal-free and iron(II)-assisted oxidation of cyclohexane to adipic acid with ozone: A theoretical mechanistic study. J Catal 2021. [DOI: 10.1016/j.jcat.2021.04.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
64
|
Au Modified F-TiO 2 for Efficient Photocatalytic Synthesis of Hydrogen Peroxide. Molecules 2021; 26:molecules26133844. [PMID: 34202599 PMCID: PMC8270298 DOI: 10.3390/molecules26133844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 11/28/2022] Open
Abstract
In this work, Au-modified F-TiO2 is developed as a simple and efficient photocatalyst for H2O2 production under ultraviolet light. The Au/F-TiO2 photocatalyst avoids the necessity of adding fluoride into the reaction medium for enhancing H2O2 synthesis, as in a pure TiO2 reaction system. The F− modification inhibits the H2O2 decomposition through the formation of the ≡Ti–F complex. Au is an active cocatalyst for photocatalytic H2O2 production. We compared the activity of TiO2 with F− modification and without F− modification in the presence of Au, and found that the H2O2 production rate over Au/F-TiO2 reaches four times that of Au/TiO2. In situ electron spin resonance studies have shown that H2O2 is produced by stepwise single-electron oxygen reduction on the Au/F-TiO2 photocatalyst.
Collapse
|
65
|
Ai JJ, Liu BB, Li J, Wang F, Huang CM, Rao W, Wang SY. Fe-S Catalyst Generated In Situ from Fe(III)- and S 3•--Promoted Aerobic Oxidation of Terminal Alkenes. Org Lett 2021; 23:4705-4709. [PMID: 34060853 DOI: 10.1021/acs.orglett.1c01408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iron-sulfur complex formed by the simple mixture of FeCl3 with S3•- generated in situ from K2S is developed and applied to selective aerobic oxidation of terminal alkenes. The reaction was carried out under an atmosphere of O2 (balloon) and could proceed on a gram scale, expanding the application of S3•- in organic synthesis. This study also encourages us to explore the application of an Fe-S catalyst in organic reactions.
Collapse
Affiliation(s)
- Jing-Jing Ai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bei-Bei Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Jian Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Cheng-Mi Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
66
|
Jin P, Wei H, Zhou L, Wei D, Wen Y, Zhao B, Wang X, Li B. Anderson-type polyoxometalate as excellent catalyst for green synthesis of adipic acid with hydrogen peroxide. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
67
|
Ackermann YS, Li WJ, Op de Hipt L, Niehoff PJ, Casey W, Polen T, Köbbing S, Ballerstedt H, Wynands B, O'Connor K, Blank LM, Wierckx N. Engineering adipic acid metabolism in Pseudomonas putida. Metab Eng 2021; 67:29-40. [PMID: 33965615 DOI: 10.1016/j.ymben.2021.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022]
Abstract
Bio-upcycling of plastics is an upcoming alternative approach for the valorization of diverse polymer waste streams that are too contaminated for traditional recycling technologies. Adipic acid and other medium-chain-length dicarboxylates are key components of many plastics including polyamides, polyesters, and polyurethanes. This study endows Pseudomonas putida KT2440 with efficient metabolism of these dicarboxylates. The dcaAKIJP genes from Acinetobacter baylyi, encoding initial uptake and activation steps for dicarboxylates, were heterologously expressed. Genomic integration of these dca genes proved to be a key factor in efficient and reliable expression. In spite of this, adaptive laboratory evolution was needed to connect these initial steps to the native metabolism of P. putida, thereby enabling growth on adipate as sole carbon source. Genome sequencing of evolved strains revealed a central role of a paa gene cluster, which encodes parts of the phenylacetate metabolic degradation pathway with parallels to adipate metabolism. Fast growth required the additional disruption of the regulator-encoding psrA, which upregulates redundant β-oxidation genes. This knowledge enabled the rational reverse engineering of a strain that can not only use adipate, but also other medium-chain-length dicarboxylates like suberate and sebacate. The reverse engineered strain grows on adipate with a rate of 0.35 ± 0.01 h-1, reaching a final biomass yield of 0.27 ± 0.00 gCDW gadipate-1. In a nitrogen-limited medium this strain produced polyhydroxyalkanoates from adipate up to 25% of its CDW. This proves its applicability for the upcycling of mixtures of polymers made from fossile resources into biodegradable counterparts.
Collapse
Affiliation(s)
- Yannic S Ackermann
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Wing-Jin Li
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Leonie Op de Hipt
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Paul-Joachim Niehoff
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - William Casey
- Bioplastech Ltd., NovaUCD, Belfield Innovation Park, University College Dublin, Dublin, Ireland
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Sebastian Köbbing
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Kevin O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; BiOrbic Bioeconomy SFI Research Centre, University College Dublin, Dublin, Ireland
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, RWTH Aachen University, Aachen, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
68
|
Selective hydrogenation of benzene over Ru supported on surface modified TiO2. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0689-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
69
|
Xing Y, Yao Z, Li W, Wu W, Lu X, Tian J, Li Z, Hu H, Wu M. Fe/Fe
3
C Boosts H
2
O
2
Utilization for Methane Conversion Overwhelming O
2
Generation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yicheng Xing
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Zheng Yao
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenyuan Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Xiaoqing Lu
- College of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Jun Tian
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 P. R. China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| |
Collapse
|
70
|
Xing Y, Yao Z, Li W, Wu W, Lu X, Tian J, Li Z, Hu H, Wu M. Fe/Fe
3
C Boosts H
2
O
2
Utilization for Methane Conversion Overwhelming O
2
Generation. Angew Chem Int Ed Engl 2021; 60:8889-8895. [DOI: 10.1002/anie.202016888] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/21/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Yicheng Xing
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Zheng Yao
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenyuan Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenting Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Xiaoqing Lu
- College of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Jun Tian
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science Fudan University Shanghai 200433 P. R. China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Han Hu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, Institute of New Energy College of Chemical Engineering China University of Petroleum (East China) Qingdao 266580 P. R. China
| |
Collapse
|
71
|
Niu Q, Liu G, Lv Z, Si C, Han H, Jin M. Mono-substituted polyoxometalate clusters@Zr-MOFs: Reactivity, kinetics, and catalysis for cycloolefins-H2O2 biphase reactions. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
72
|
MOF Embedded and Cu Doped CeO2 Nanostructures as Efficient Catalyst for Adipic Acid Production: Green Catalysis. Catalysts 2021. [DOI: 10.3390/catal11030304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Greatly efficient chemical processes are customarily based upon a catalyst activating the process pathway to achieve higher yields of a product with desired specifications. Catalysts capable of achieving good performance without compromising green credentials are a pre-requisite for the development of a sustainable process. In this study, CeO2 nanoparticles were tested for their catalytic activity with two different configurations, one as a hybrid of CeO2 nanoparticles with Zeolitic Immidazole Framework (ZIF-67) and second being doped Cu cations into CeO2 nanoparticles. Physicochemical and catalytic activity was investigated and compared for both systems. Each hybrid was synthesized by embedding the CeO2 nanoparticles into the microporous structure of ZIF-67, and Cu doped CeO2 nanoparticles were prepared by a facile hydrothermal route. As a catalytic test, it was employed for the oxidation of cyclohexene to adipic acid (AA) as an alternative to expensive noble metal-based catalysts. Heterogeneous ZIF-67/CeO2 found catalytical activity towards the oxidation of cyclohexene with nearly complete conversion of cyclohexene into AA under moderate and co-catalyst free reaction conditions, whereas Cu doped CeO2 nanoparticles have shown no catalytic activity towards cyclohexene conversion, depicting the advantages of the porous ZIF-67 structure and its synergistic effect with CeO2 nanoparticles. The large surface area catalyst could be a viable option for the green synthesis of many other chemicals.
Collapse
|
73
|
Deng W, Yan L, Wang B, Zhang Q, Song H, Wang S, Zhang Q, Wang Y. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. Angew Chem Int Ed Engl 2021; 60:4712-4719. [PMID: 33230943 DOI: 10.1002/anie.202013843] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/05/2022]
Abstract
Green synthesis of adipic acid from renewable biomass is a very attractive goal of sustainable chemistry. Herein, we report efficient catalysts for a two-step transformation of cellulose-derived glucose into adipic acid via glucaric acid. Carbon nanotube-supported platinum nanoparticles are found to work efficiently for the oxidation of glucose to glucaric acid. An activated carbon-supported bifunctional catalyst composed of rhenium oxide and palladium is discovered to be powerful for the removal of four hydroxyl groups in glucaric acid, affording adipic acid with a 99 % yield. Rhenium oxide functions for the deoxygenation but is less efficient for four hydroxyl group removal. The co-presence of palladium not only catalyzes the hydrogenation of olefin intermediates but also synergistically facilitates the deoxygenation. This work presents a green route for adipic acid synthesis and offers a bifunctional-catalysis strategy for efficient deoxygenation.
Collapse
Affiliation(s)
- Weiping Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Longfei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qihui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haiyan Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shanshan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
74
|
Deng W, Yan L, Wang B, Zhang Q, Song H, Wang S, Zhang Q, Wang Y. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Weiping Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Longfei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qihui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Haiyan Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shanshan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
75
|
Zhang L, Zheng J, Zou W, Shu Y, Yang W. Microwave-Assisted Nickel-Catalyzed Rapid Reductive Coupling of Ethyl 3-iodopropionate to Adipic Acid. Catal Letters 2021. [DOI: 10.1007/s10562-020-03496-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
76
|
Sang R, Hu Y, Razzaq R, Jackstell R, Franke R, Beller M. State-of-the-art palladium-catalyzed alkoxycarbonylations. Org Chem Front 2021. [DOI: 10.1039/d0qo01203c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
State-of-the-art Pd-catalyzed alkoxycarbonylation: catalyst development and applications.
Collapse
Affiliation(s)
- Rui Sang
- Leibniz Institute for Catalysis e.V
- Rostock 18059
- Germany
| | - Yuya Hu
- Leibniz Institute for Catalysis e.V
- Rostock 18059
- Germany
| | - Rauf Razzaq
- Leibniz Institute for Catalysis e.V
- Rostock 18059
- Germany
| | | | - Robert Franke
- Evonik Operations GmbH
- 45772 Marl
- Germany
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
| | | |
Collapse
|
77
|
Martinetto Y, Pégot B, Roch-Marchal C, Haouas M, Cottyn-Boitte B, Camerel F, Jeftic J, Morineau D, Magnier E, Floquet S. A decatungstate-based ionic liquid exhibiting a very low dielectric constant suitable for acting as a solvent and a catalyst for the oxidation of organic substrates. NEW J CHEM 2021. [DOI: 10.1039/d1nj01214b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of a POM-based ionic liquid both as an efficient solvent and as a catalyst for the oxidation of organic substrates.
Collapse
|
78
|
Cousin T, Chatel G, Andrioletti B, Draye M. Oxidative cleavage of cycloalkenes using hydrogen peroxide and a tungsten-based catalyst: towards a complete mechanistic investigation. NEW J CHEM 2021. [DOI: 10.1039/d0nj03592k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The identification of intermediates and by-products issuing from the oxidative cleavage of cycloolefins allows proposing of a reaction mechanism.
Collapse
Affiliation(s)
- Tony Cousin
- LCME
- Univ. Savoie Mont Blanc
- 73000 Chambéry
- France
- Univ. Lyon
| | | | - Bruno Andrioletti
- Univ. Lyon
- Université Claude Bernard Lyon 1
- INSA-Lyon
- CPE-Lyon
- ICBMS UMR CNRS 5246
| | | |
Collapse
|
79
|
Pan D, Li G, Su Y, Wei H, Luo Z. Kinetic study for the oxidation of cyclohexanol and cyclohexanone with nitric acid to adipic acid. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
80
|
Li H, Xu S, Li J, Tu Y, Li X, Tu Y, Li J, Wang Y, Li Z. Biodegradable all polyester-based multiblock copolymer elastomers with controlled properties. Polym Chem 2021. [DOI: 10.1039/d1py00076d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A cascade polymerization method is developed here for the synthesis of environmentally-friendly biodegradable all polyester-based thermoplastic elastomers with tunable properties.
Collapse
Affiliation(s)
- Hongjuan Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
- Coal Chemical R&D Center
| | - Siyuan Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jing Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yanyan Tu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Xiaohong Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Yingfeng Tu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jianhua Li
- Coal Chemical R&D Center
- Kailuan Group
- Tangshan
- China
| | - Yatao Wang
- Coal Chemical R&D Center
- Kailuan Group
- Tangshan
- China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
81
|
Moriai T, Tsukamoto T, Tanabe M, Kambe T, Yamamoto K. Selective Hydroperoxygenation of Olefins Realized by a Coinage Multimetallic 1‐Nanometer Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tatsuya Moriai
- Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Takamasa Tsukamoto
- Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- JST-ERATO Yamamoto Atom Hybrid Project Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Makoto Tanabe
- JST-ERATO Yamamoto Atom Hybrid Project Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Tetsuya Kambe
- Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- JST-ERATO Yamamoto Atom Hybrid Project Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Kimihisa Yamamoto
- Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- JST-ERATO Yamamoto Atom Hybrid Project Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
82
|
Moriai T, Tsukamoto T, Tanabe M, Kambe T, Yamamoto K. Selective Hydroperoxygenation of Olefins Realized by a Coinage Multimetallic 1-Nanometer Catalyst. Angew Chem Int Ed Engl 2020; 59:23051-23055. [PMID: 32844511 DOI: 10.1002/anie.202010190] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 11/07/2022]
Abstract
The science of particles on a sub-nanometer (ca. 1 nm) scale has attracted worldwide attention. However, it has remained unexplored because of the technical difficulty in the precise synthesis of sub-nanoparticles (SNPs). We recently developed the "atom-hybridization method (AHM)" for the precise synthesis of SNPs by using a suitably designed macromolecule as a template. We have now investigated the chemical reactivity of alloy SNPs obtained by the AHM. Focusing on the coinage metal elements, we systematically evaluated the oxidation reaction of an olefin catalyzed by these SNPs. The SNPs showed high catalytic performance even under milder conditions than those used with conventional catalysts. Additionally, the hybridization of multiple elements enhanced the turnover frequency and the selectivity for the formation of the hydroperoxide derivative. We discuss the unique quantum-sized catalysts providing generally unstable hydroperoxides from the viewpoint of the miniaturization and hybridization of materials.
Collapse
Affiliation(s)
- Tatsuya Moriai
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Takamasa Tsukamoto
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Makoto Tanabe
- JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Tetsuya Kambe
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kimihisa Yamamoto
- Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| |
Collapse
|
83
|
Abstract
A cleaner alternative to the current inefficient oxidation of cyclohexane to adipic acid is presented. Direct oxidation of neat cyclohexene by aq. hydrogen peroxide to adipic acid is selectively achieved in good yield (46%), in the presence of the recyclable C-homoscorpionate iron(II) complex [FeCl2{κ3-HC(pz)3}] (pz = pyrazol-1-yl) and microwave irradiation, by a nitrous oxide-free protocol.
Collapse
|
84
|
Porphyrin–Nanodiamond Hybrid Materials—Active, Stable and Reusable Cyclohexene Oxidation Catalysts. Catalysts 2020. [DOI: 10.3390/catal10121402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The quest for active, yet “green” non-toxic catalysts is a continuous challenge. In this work, covalently linked hybrid porphyrin–nanodiamonds were prepared via ipso nitro substitution reaction and characterized by X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, infrared spectroscopy (IR) and thermogravimetry-differential scanning calorimetry (TG-DSC). The amine-functionalized nanodiamonds (ND@NH2) and 2-nitro-5,10,15,20-tetra(4-trifluoromethylphenyl)porphyrin covalently linked to nanodiamonds (ND@βNH-TPPpCF3) were tested using Allium cepa as a plant model, and showed neither phytotoxicity nor cytotoxicity. The hybrid nanodiamond–copper(II)–porphyrin material ND@βNH-TPPpCF3-Cu(II) was also evaluated as a reusable catalyst in cyclohexene allylic oxidation, and displayed a remarkable turnover number (TON) value of ≈265,000, using O2 as green oxidant, in the total absence of sacrificial additives, which is the highest activity ever reported for said allylic oxidation. Additionally, ND@βNH-TPPpCF3-Cu(II) could be easily separated from the reaction mixture by centrifugation, and reused in three consecutive catalytic cycles without major loss of activity.
Collapse
|
85
|
Nasibipour M, Safaei E, Wojtczak A, Jagličić Z, Galindo A, Masoumpour MS. A biradical oxo-molybdenum complex containing semiquinone and o-aminophenol benzoxazole-based ligands. RSC Adv 2020; 10:40853-40866. [PMID: 35519205 PMCID: PMC9059147 DOI: 10.1039/d0ra06351g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
We report a new mononuclear molybdenum(iv) complex, MoOLBISLSQ, in which LSQ (2,4-di-tert-butyl o-semibenzoquinone ligand) has been prepared from the reaction of the o-iminosemibenzoquinone form of a tridentate non-innocent benzoxazole ligand, LBIS, and MoO2(acac)2. The complex was characterized by X-ray crystallography, elemental analysis, IR and UV-vis spectroscopy and magnetic susceptibility measurements. The crystal structure of MoOLBISLSQ revealed a distorted octahedral geometry around the metal centre, surrounded by one O and two N atoms of LBIS and two O atoms of LSQ. The effective magnetic moment (μ eff) of MoOLBISLSQ decreased from 2.36 to 0.2 μB in the temperature range of 290 to 2 K, indicating a singlet ground state caused by antiferromagnetic coupling between the metal and ligand centred unpaired electrons. Also, the latter led to the EPR silence of the complex. Cyclic voltammetry (CV) studies indicate both ligand and metal-centered redox processes. MoOLBISLSQ was applied as a catalyst for the oxidative cleavage of cyclohexene to adipic acid and selective oxidation of sulfides to sulfones with aqueous hydrogen peroxide.
Collapse
Affiliation(s)
- Mina Nasibipour
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Elham Safaei
- Department of Chemistry, College of Sciences, Shiraz University 71454 Shiraz Iran
| | - Andrzej Wojtczak
- Nicolaus Copernicus University, Faculty of Chemistry 87-100 Torun Poland
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana Jadranska 19 Ljubljana Slovenia
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla Aptdo. 1203 41071 Sevilla Spain
| | | |
Collapse
|
86
|
|
87
|
Wang S, Xie K, Tang D. Benign oxidation of PVA for configuration of reversible polyketal networks. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
88
|
Jiang W, Ni L, Jiang J, Chen Q, Chen Z, Ye S. Thermal hazard and reaction mechanism of the preparation of adipic acid through the oxidation with hydrogen peroxide. AIChE J 2020. [DOI: 10.1002/aic.17089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Jiang
- College of Safety Science and Engineering, Nanjing Tech University Nanjing China
| | - Lei Ni
- College of Safety Science and Engineering, Nanjing Tech University Nanjing China
| | - Juncheng Jiang
- College of Safety Science and Engineering, Nanjing Tech University Nanjing China
- School of Environment and Safety Engineering, Changzhou University Changzhou China
| | - Qiang Chen
- College of Safety Science and Engineering, Nanjing Tech University Nanjing China
| | - Zhiquan Chen
- College of Safety Science and Engineering, Nanjing Tech University Nanjing China
| | - Shuliang Ye
- Institute of Industry and Trade Measurement Technology, College of Metrology and Measurement Engineering, China Jiliang University Hangzhou China
- Zhejiang Engineering Laboratory of Chemicals Safety Testing Technology and Instruments Hangzhou China
| |
Collapse
|
89
|
Peckh K, Lisicki D, Talik G, Orlińska B. Oxidation of Long-Chain α-Olefins Using Environmentally-Friendly Oxidants. MATERIALS 2020; 13:ma13204545. [PMID: 33066275 PMCID: PMC7602050 DOI: 10.3390/ma13204545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
Abstract
Studies on the oxidation of α-olefins via the two-stage method are presented. The new method consisted of oxidizing C30+ α-olefins with hydrogen peroxide (2 equiv.) and subsequent oxidation with oxygen. Products with high acid numbers (29–82 mgKOH/g) and saponification numbers (64–140 mgKOH/g) were obtained and compared with products obtained using only hydrogen peroxide or oxygen. It was demonstrated that H2O2 can be partially replaced by oxygen in the oxidative cleavage reaction of α-olefins. N-hydroxyphthalimide in combination with Co(acac)2 demonstrated high activity in the oxidation stage using oxygen.
Collapse
|
90
|
Wang F, Zhao J, Li Q, Yang J, Li R, Min J, Yu X, Zheng GW, Yu HL, Zhai C, Acevedo-Rocha CG, Ma L, Li A. One-pot biocatalytic route from cycloalkanes to α,ω-dicarboxylic acids by designed Escherichia coli consortia. Nat Commun 2020; 11:5035. [PMID: 33028823 PMCID: PMC7542165 DOI: 10.1038/s41467-020-18833-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022] Open
Abstract
Aliphatic α,ω‐dicarboxylic acids (DCAs) are a class of useful chemicals that are currently produced by energy-intensive, multistage chemical oxidations that are hazardous to the environment. Therefore, the development of environmentally friendly, safe, neutral routes to DCAs is important. We report an in vivo artificially designed biocatalytic cascade process for biotransformation of cycloalkanes to DCAs. To reduce protein expression burden and redox constraints caused by multi-enzyme expression in a single microbe, the biocatalytic pathway is divided into three basic Escherichia coli cell modules. The modules possess either redox-neutral or redox-regeneration systems and are combined to form E. coli consortia for use in biotransformations. The designed consortia of E. coli containing the modules efficiently convert cycloalkanes or cycloalkanols to DCAs without addition of exogenous coenzymes. Thus, this developed biocatalytic process provides a promising alternative to the current industrial process for manufacturing DCAs. Aliphatic α,ω-dicarboxylic acids (DCAs) are widely used chemicals that are synthesised by multistage chemical oxidations. Here, the authors report an artificially designed biocatalytic cascade for the oxidation of cycloalkanes or cycloalkanols to DCAs in the form of microbial consortia, composed of three Escherichia coli cell modules.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Qian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Renjie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Xiaojuan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering and Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Chao Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | | | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, P. R. China.
| |
Collapse
|
91
|
Churipard SR, Kanakikodi KS, Choudhuri JR, Maradur SP. Polyoxotungstate ([PW 11O 39] 7-) immobilized on mesoporous polymer for selective liquid-phase oxidation of alcohols using H 2O 2. RSC Adv 2020; 10:35988-35997. [PMID: 35517088 PMCID: PMC9056987 DOI: 10.1039/d0ra07178a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
Selective oxidation of alcohols is an attractive organic transformation and has received tremendous attention from the scientific community over the years. Herein, a mesoporous polymer (MP) was synthesized by a template-free solvothermal approach. The surface of the MP was functionalized with quaternary ammonium groups and polyoxotungstate anion (PW11O39 7-) was subsequently supported on the MP as a counter anion to the ammonium cation by a simple ion-exchange procedure. The structure of PW11 and PW4 complexes was confirmed by 31P NMR and FTIR analysis. The surface properties of all the catalysts synthesized were explored by various characterization techniques such as nitrogen sorption, TGA, contact angle measurement, and ICP-OES analysis. The synthesized PW11/MP catalysts were employed for selective oxidation of alcohols. Among the various PW11 supported catalysts, PW11/MP (80 : 20) demonstrated excellent catalytic activity for the oxidation of alcohols using aqueous H2O2. The PW11/MP (80 : 20) catalyst showed good catalytic activity for oxidation of a wide range of alcohols including substituted, heterocyclic and secondary alcohols. The superior catalytic activity of PW11/MP (80 : 20) is attributed to an optimum balance in the hydrophilicity/hydrophobicity in the mesoporous environment, better catalyst wettability, and enrichment of reactants in the catalytic active sites.
Collapse
Affiliation(s)
- Sathyapal R Churipard
- Materials Science and Catalysis Division, Poornaprajna Institute of Scientific, Research (PPISR) Bidalur Post, Devanahalli Bangalore-562164 Karnataka State India +91 23619034 +91 80 27408552
- Graduate Studies, Manipal Academy of Higher Education Manipal - 576104 Karnataka India
| | - Kempanna S Kanakikodi
- Materials Science and Catalysis Division, Poornaprajna Institute of Scientific, Research (PPISR) Bidalur Post, Devanahalli Bangalore-562164 Karnataka State India +91 23619034 +91 80 27408552
- Graduate Studies, Manipal Academy of Higher Education Manipal - 576104 Karnataka India
| | - Jyoti Roy Choudhuri
- BMS Institute of Technology and Management Doddaballapur Main Road, Avalahalli, Yelahanka Bangalore Karnataka - 560064 India
| | - Sanjeev P Maradur
- Materials Science and Catalysis Division, Poornaprajna Institute of Scientific, Research (PPISR) Bidalur Post, Devanahalli Bangalore-562164 Karnataka State India +91 23619034 +91 80 27408552
| |
Collapse
|
92
|
Yang J, Liu J, Ge Y, Huang W, Neumann H, Jackstell R, Beller M. Direct and Selective Synthesis of Adipic and Other Dicarboxylic Acids by Palladium‐Catalyzed Carbonylation of Allylic Alcohols. Angew Chem Int Ed Engl 2020; 59:20394-20398. [DOI: 10.1002/anie.202008916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Jiawang Liu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yao Ge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Weiheng Huang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
93
|
Yang J, Liu J, Ge Y, Huang W, Neumann H, Jackstell R, Beller M. Direct and Selective Synthesis of Adipic and Other Dicarboxylic Acids by Palladium‐Catalyzed Carbonylation of Allylic Alcohols. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ji Yang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Jiawang Liu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Yao Ge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Weiheng Huang
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
94
|
Goyal R, Singh O, Agrawal A, Samanta C, Sarkar B. Advantages and limitations of catalytic oxidation with hydrogen peroxide: from bulk chemicals to lab scale process. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2020.1796190] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Reena Goyal
- Refinery Technology Division, CSIR-Indian Institute of Petroleum, Dehradun, India
- Department of Chemical Engineering, Indian Institute of Technology-Roorkee, Uttarakhand, India
| | - Omvir Singh
- Upstream & Wax Rheology Division, CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Ankit Agrawal
- Upstream & Wax Rheology Division, CSIR-Indian Institute of Petroleum, Dehradun, India
| | - Chanchal Samanta
- Corporate R&D Center, Bharat Petroleum Corporation Limited, Greater Noida, India
| | - Bipul Sarkar
- Upstream & Wax Rheology Division, CSIR-Indian Institute of Petroleum, Dehradun, India
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Gyeong Gi-Do, South Korea
| |
Collapse
|
95
|
Kawano S, Fujishima M, Tada H. Size effect of zinc oxide-supported gold nanoparticles on the photocatalytic activity for two-electron oxygen reduction reaction. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
96
|
Khan K, Tareen AK, Aslam M, Sagar RUR, Zhang B, Huang W, Mahmood A, Mahmood N, Khan K, Zhang H, Guo Z. Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. NANO-MICRO LETTERS 2020; 12:167. [PMID: 34138161 PMCID: PMC7770787 DOI: 10.1007/s40820-020-00504-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/12/2020] [Indexed: 05/03/2023]
Abstract
The successful photo-catalyst library gives significant information on feature that affects photo-catalytic performance and proposes new materials. Competency is considerably significant to form multi-functional photo-catalysts with flexible characteristics. Since recently, two-dimensional materials (2DMs) gained much attention from researchers, due to their unique thickness-dependent uses, mainly for photo-catalytic, outstanding chemical and physical properties. Photo-catalytic water splitting and hydrogen (H2) evolution by plentiful compounds as electron (e-) donors is estimated to participate in constructing clean method for solar H2-formation. Heterogeneous photo-catalysis received much research attention caused by their applications to tackle numerous energy and environmental issues. This broad review explains progress regarding 2DMs, significance in structure, and catalytic results. We will discuss in detail current progresses of approaches for adjusting 2DMs-based photo-catalysts to assess their photo-activity including doping, hetero-structure scheme, and functional formation assembly. Suggested plans, e.g., doping and sensitization of semiconducting 2DMs, increasing electrical conductance, improving catalytic active sites, strengthening interface coupling in semiconductors (SCs) 2DMs, forming nano-structures, building multi-junction nano-composites, increasing photo-stability of SCs, and using combined results of adapted approaches, are summed up. Hence, to further improve 2DMs photo-catalyst properties, hetero-structure design-based 2DMs' photo-catalyst basic mechanism is also reviewed.
Collapse
Affiliation(s)
- Karim Khan
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, People's Republic of China.
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Muhammad Aslam
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
- Government Degree College Paharpur, Gomel University, Dera Ismail Khan, K.P.K, Islamic Republic of Pakistan
| | - Rizwan Ur Rehman Sagar
- School of Materials Science and Engineering, Jiangxi University of Science and Technology, Jiangxi, 341000, People's Republic of China
| | - Bin Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Weichun Huang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Asif Mahmood
- School of Chemical and Bio-Molecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Nasir Mahmood
- School of Engineering, The Royal Melbourne Institute of Technology (RMIT) University, Melbourne, VIC, Australia
| | - Kishwar Khan
- Research Laboratory of Electronics (RLE), Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Zhongyi Guo
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology (DGUT), Dongguan, 523808, Guangdong, People's Republic of China.
| |
Collapse
|
97
|
Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. Int J Biol Macromol 2020; 156:669-680. [DOI: 10.1016/j.ijbiomac.2020.04.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 02/03/2023]
|
98
|
Yang J, Fan Y, Li ZL, Peng Z, Yang JH, Liu B, Liu Z. Bimetallic Pd-M (M = Pt, Ni, Cu, Co) nanoparticles catalysts with strong electrostatic metal-support interaction for hydrogenation of toluene and benzene. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
99
|
Nagamitsu M, Awa K, Tada H. Hydrogen peroxide synthesis from water and oxygen using a three-component nanohybrid photocatalyst consisting of Au particle-loaded rutile TiO 2 and RuO 2 with a heteroepitaxial junction. Chem Commun (Camb) 2020; 56:8190-8193. [PMID: 32671367 DOI: 10.1039/d0cc03327h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin heteroepitaxial (HEPI) layers of RuO2 were selectively formed on the TiO2 surface of Au nanoparticle-loaded rutile TiO2 particles (RuO2#TiO2-Au) with an orientation of RuO2(110)//TiO2(110) by a hydrothermal method, and the three-component nanohybrid exhibits a high photocatalytic activity far exceeding that of Au/TiO2 for hydrogen peroxide generation from water and oxygen due to the HEPI junction-induced unique morphology of RuO2.
Collapse
Affiliation(s)
- Mio Nagamitsu
- Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | | | | |
Collapse
|
100
|
Song H, Wei L, Chen L, Zhang H, Su J. Photocatalytic Production of Hydrogen Peroxide over Modified Semiconductor Materials: A Minireview. Top Catal 2020. [DOI: 10.1007/s11244-020-01317-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|