51
|
Population variation in NAIP functional copy number confers increased cell death upon Legionella pneumophila infection. Hum Immunol 2011; 73:196-200. [PMID: 22067212 DOI: 10.1016/j.humimm.2011.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/30/2011] [Accepted: 10/03/2011] [Indexed: 12/22/2022]
Abstract
The NAIP gene encodes an intracellular innate immunity receptor that senses flagellin. The genomic region containing NAIP presents a complex genomic organization and includes various NAIP paralogs. Here, we assessed the degree of copy number variation of the complete NAIP gene (NAIPFull) in various human populations and studied the functional impact of such variation on host cell fate using Legionella pneumophila as an infection model. We determined that African populations have a NAIPFull duplication at a higher frequency than Europeans and Asians, with an increased transcription of the gene. In addition, we demonstrated that a higher amount of the NAIPFull protein dramatically increases cell death upon infection by L. pneumophila, a mechanism that may account for increased host resistance to infection. We postulate that the NAIPFull gene duplication might have been evolutionary maintained, or even selected for, because it may confer an advantage to the host against flagellated bacteria.
Collapse
|
52
|
Chong JX, Oktay AA, Dai Z, Swoboda KJ, Prior TW, Ober C. A common spinal muscular atrophy deletion mutation is present on a single founder haplotype in the US Hutterites. Eur J Hum Genet 2011; 19:1045-51. [PMID: 21610747 PMCID: PMC3190247 DOI: 10.1038/ejhg.2011.85] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/18/2011] [Accepted: 04/14/2011] [Indexed: 11/08/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive (AR) neuromuscular disease that is one of the most common lethal genetic disorders in children, with carrier frequencies as high as ∼1 in 35 in US Whites. As part of our genetic studies in the Hutterites from South Dakota, we identified a large 22 Mb run of homozygosity, spanning the SMA locus in an affected child, of which 10 Mb was also homozygous in three affected Hutterites from Montana, supporting a single founder origin for the mutation. We developed a haplotype-based method for identifying carriers of the SMN1 deletion that leveraged existing genome-wide SNP genotype data for ∼1400 Hutterites. In combination with two direct PCR-based assays, we identified 176 carriers of the SMN1 deletion, one asymptomatic homozygous adult and three carriers of a de novo deletion. This corresponds to a carrier frequency of one in eight (12.5%) in the South Dakota Hutterites, representing the highest carrier frequency reported to date for SMA and for an AR disease in the Hutterite population. Lastly, we show that 26 SNPs can be used to predict SMA carrier status in the Hutterites, with 99.86% specificity and 99.71% sensitivity.
Collapse
Affiliation(s)
- Jessica X Chong
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | |
Collapse
|
53
|
Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW. Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. LAB ON A CHIP 2011; 11:2167-74. [PMID: 21584334 DOI: 10.1039/c1lc20126c] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Quantitative polymerase chain reactions (qPCR) based on real-time PCR constitute a powerful and sensitive method for the analysis of nucleic acids. However, in qPCR, the ability to multiplex targets using differently colored fluorescent probes is typically limited to 4-fold by the spectral overlap of the fluorophores. Furthermore, multiplexing qPCR assays requires expensive instrumentation and most often lengthy assay development cycles. Digital PCR (dPCR), which is based on the amplification of single target DNA molecules in many separate reactions, is an attractive alternative to qPCR. Here we report a novel and easy method for multiplexing dPCR in picolitre droplets within emulsions-generated and read out in microfluidic devices-that takes advantage of both the very high numbers of reactions possible within emulsions (>10(6)) as well as the high likelihood that the amplification of only a single target DNA molecule will initiate within each droplet. By varying the concentration of different fluorogenic probes of the same color, it is possible to identify the different probes on the basis of fluorescence intensity. Adding multiple colors increases the number of possible reactions geometrically, rather than linearly as with qPCR. Accurate and precise copy numbers of up to sixteen per cell were measured using a model system. A 5-plex assay for spinal muscular atrophy was demonstrated with just two fluorophores to simultaneously measure the copy number of two genes (SMN1 and SMN2) and to genotype a single nucleotide polymorphism (c.815A>G, SMN1). Results of a pilot study with SMA patients are presented.
Collapse
Affiliation(s)
- Qun Zhong
- RainDance Technologies, Inc., 44 Hartwell Ave., Lexington, MA 02150, USA.
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Gogliotti RG, Lutz C, Jorgensen M, Huebsch K, Koh S, DiDonato CJ. Characterization of a commonly used mouse model of SMA reveals increased seizure susceptibility and heightened fear response in FVB/N mice. Neurobiol Dis 2011; 43:142-51. [PMID: 21396450 PMCID: PMC3679180 DOI: 10.1016/j.nbd.2011.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 02/18/2011] [Accepted: 03/02/2011] [Indexed: 11/16/2022] Open
Abstract
The SMN2 transgenic mouse, Tg(SMN2)89Ahmb, has emerged as the most widely used in spinal muscular atrophy (SMA) research. Here we clone the genomic integration site of the transgene and demonstrate it to be in intron 4 of the metabotropic glutamate receptor 7 (mGluR7) gene. We found that the integration of this transgene significantly reduced both mGluR7 mRNA and protein levels (24% and 9%, respectively). To determine if phenotypes associated with mGluR7 knockout mice were present in Tg(SMN2)89Ahmb containing mice, we subjected mice homozygous for the transgene to open field and seizure susceptibility tests. When compared to wild type FVB/N mice, Tg(SMN2)89Ahmb(tg/tg) mice exhibited significantly longer times in finding a safe wall-adjacent square (+54s if Smn(+/+), +90s if Smn(+/-)), as well as a significantly higher frequency of generalized seizure in response to a subthreshold dose of pentylenetrazol (0.11 vs 0.45). These findings aid in explaining the sudden unexpected death that occurs within SMA mouse colonies that contain a homozygous Tg(SMN2)89Ahmb transgene. This should be taken into account in pre-clinical studies that utilize this transgene, especially in therapy-treated SMA mice that have extended survival.
Collapse
Affiliation(s)
- Rocky G. Gogliotti
- Human Molecular Genetics Program, Children’s Memorial Hospital Chicago, IL 60614
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60614
| | | | - Michael Jorgensen
- Human Molecular Genetics Program, Children’s Memorial Hospital Chicago, IL 60614
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60614
| | | | - Sookyong Koh
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60614
- Department of Neurobiology, Children’s Memorial Hospital, Chicago, IL 60614
- Epilepsy Department, Children’s Memorial Hospital, Chicago, IL 60614
| | - Christine J. DiDonato
- Human Molecular Genetics Program, Children’s Memorial Hospital Chicago, IL 60614
- Northwestern University, Feinberg School of Medicine, Chicago, IL 60614
| |
Collapse
|
55
|
Alías L, Bernal S, Barceló MJ, Also-Rallo E, Martínez-Hernández R, Rodríguez-Alvarez FJ, Hernández-Chico C, Baiget M, Tizzano EF. Accuracy of marker analysis, quantitative real-time polymerase chain reaction, and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy. Genet Test Mol Biomarkers 2011; 15:587-94. [PMID: 21548796 DOI: 10.1089/gtmb.2010.0253] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by absence of or mutations in the survival motor neuron1 gene (SMN1). All SMA patients have a highly homologous copy of SMN1, the SMN2 gene. Severe (type I) SMA patients present one or two SMN2 copies, whereas milder chronic forms (type II-III) usually have three or four SMN2 copies. SMN2 dosage is important to stratify patients for motor function tests and clinical trials. Our aim was to compare three methods, marker analysis, real-time quantitative polymerase chain reaction using the LightCycler instrument, and multiple ligation-dependent probe amplification (MLPA), to characterize their accuracy in quantifying SMN2 genes. We studied a group of 62 genetically confirmed SMA patients, 54 with homozygous absence of exons 7 and 8 of SMN1 and 8 with SMN2-SMN1 hybrid genes. A complete correlation using the three methods was observed in 32 patients (51.6%). In the remaining 30 patients, discordances between the three methods were found, including under or overestimation of SMN2 copies by marker analysis with respect to the quantitative methods (LightCycler and MLPA) because of lack of informativeness of markers, 3' deletions of SMN genes, and breakpoints in SMN2-SMN1 hybrid genes. The technical limitations and advantages and disadvantages of these methods are discussed. We conclude that the three methods complement each other in estimating the SMN2 copy number in most cases. However, MLPA offers additional information to characterize SMA cases with particular rearrangements such as partial deletions and hybrid genes.
Collapse
Affiliation(s)
- Laura Alías
- Servicio de Genética, Hospital de la Santa Creu i Sant Pau, CIBERER (U705), Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Kaufmann P, McDermott MP, Darras BT, Finkel R, Kang P, Oskoui M, Constantinescu A, Sproule DM, Foley AR, Yang M, Tawil R, Chung W, Martens B, Montes J, O'Hagen J, Dunaway S, Flickinger JM, Quigley J, Riley S, Glanzman AM, Benton M, Ryan PA, Irvine C, Annis CL, Butler H, Caracciolo J, Montgomery M, Marra J, Koo B, De Vivo DC. Observational study of spinal muscular atrophy type 2 and 3: functional outcomes over 1 year. ACTA ACUST UNITED AC 2011; 68:779-86. [PMID: 21320981 DOI: 10.1001/archneurol.2010.373] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To characterize the short-term course of spinal muscular atrophy (SMA) in a genetically and clinically well-defined cohort of patients with SMA. DESIGN A comprehensive multicenter, longitudinal, observational study. SETTING The Pediatric Neuromuscular Clinical Research Network for SMA, a consortium of clinical investigators at 3 clinical sites. PARTICIPANTS Sixty-five participants with SMA types 2 and 3, aged 20 months to 45 years, were prospectively evaluated. INTERVENTION We collected demographic and medical history information and determined the SMN 2 copy number. MAIN OUTCOME MEASURES Clinical outcomes included measures of motor function (Gross Motor Function Measure and expanded Hammersmith Functional Motor Scale), pulmonary function (forced vital capacity), and muscle strength (myometry). Participants were evaluated every 2 months for the initial 6 months and every 3 months for the subsequent 6 months. We evaluated change over 12 months for all clinical outcomes and examined potential correlates of change over time including age, sex, SMA type, ambulatory status, SMN2 copy number, medication use, and baseline function. RESULTS There were no significant changes over 12 months in motor function, pulmonary function, and muscle strength measures. There was evidence of motor function gain in ambulatory patients, especially in those children younger than 5 years. Scoliosis surgery during the observation period led to a subsequent decline in motor function. CONCLUSIONS Our results confirm previous clinical reports suggesting that SMA types 2 and 3 represent chronic phenotypes that have relatively stable clinical courses. We did not detect any measurable clinical disease progression in SMA types 2 and 3 over 12 months, suggesting that clinical trials will have to be designed to measure improvement rather than stabilization of disease progression.
Collapse
Affiliation(s)
- Petra Kaufmann
- Department of Neurology, Columbia University, 710 W 168th St, 2nd Floor, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Wang CC, Chang JG, Chen YL, Jong YJ, Wu SM. Multi-exon genotyping of SMN gene in spinal muscular atrophy by universal fluorescent PCR and capillary electrophoresis. Electrophoresis 2010; 31:2396-404. [PMID: 20564270 DOI: 10.1002/elps.201000124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In this study, we established the first method for simultaneous evaluation of nine exons in the survival motor neuron (SMN) genes for full-scale genotyping. This method was used not only to quantify the copy numbers of highly homogenous telomeric SMN (SMN1)/centromeric SMN genes in exons 7 and 8 but also to determine intragenic mutations in all nine exons for complete diagnosis of spinal muscular atrophy (SMA). Additionally, we utilized the "universal fluorescent PCR" for simultaneously fluorescent labeling of eleven gene fragments (nine exons in SMN and two internal standards). Such technique is very beneficial for multi-exon analysis due to only requirement of one universal fluorescent primer which could fluorescently amplify all gene fragments. Of all 262 detected individuals, three subjects possessing different ratios of SMN1/centromeric SMN in the two exons were determined as gene conversion, and we also detected three interesting intragenic mutations (c.1 -39A>G, c.22_23insA in exon 1, c.84C>T in exon 2a) which were associated with the SMA patients owning one copy of SMN1 including two mutations never reported previously. This high-resolved method provided better potential technique for genotyping and identifying SMA, carrier and normal controls in large population.
Collapse
Affiliation(s)
- Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
58
|
Drug discovery and development for spinal muscular atrophy: lessons from screening approaches and future challenges for clinical development. Future Med Chem 2010; 2:1429-40. [DOI: 10.4155/fmc.10.228] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a progressive pediatric neuromuscular disease. Because disease severity is related to survival motor neuron (SMN) protein levels, increasing SMN production from the SMN2 gene has been a major SMA drug-discovery strategy. Cell-based assays using neuronal cell lines and cells from SMA patients have identified compounds that can increase SMN protein expression. Our experience of using such an assay signaled potential risks to be avoided through the use of appropriate secondary assays. In addition to the ‘SMN2’ approach, compensating for decreased SMN protein or neuroprotection are also potential SMA drug-discovery strategies. SMA clinical trials are now a reality; however, trial design in a slowly progressing rare disease such as SMA will present an interesting future challenge.
Collapse
|
59
|
Wang CC, Jong YJ, Chang JG, Chen YL, Wu SM. Universal fluorescent multiplex PCR and capillary electrophoresis for evaluation of gene conversion between SMN1 and SMN2 in spinal muscular atrophy. Anal Bioanal Chem 2010; 397:2375-83. [PMID: 20563565 DOI: 10.1007/s00216-010-3761-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 12/24/2022]
Abstract
We have developed a capillary electrophoresis (CE) method with universal fluorescent multiplex PCR to simultaneously detect the SMN1 and SMN2 genes in exons 7 and 8. Spinal muscular atrophy (SMA) is a very frequent inherited disease caused by the absence of the SMN1 gene in approximately 94% of patients. Those patients have deletion of the SMN1 gene or gene conversion between SMN1 and SMN2. However, most methods only focus on the analysis of whole gene deletion, and ignore gene conversion. Simultaneous quantification of SMN1 and SMN2 in exons 7 and 8 is a good strategy for estimating SMN1 deletion or SMN1 to SMN2 gene conversion. This study established a CE separation allowing differentiation of all copy ratios of SMN1 to SMN2 in exons 7 and 8. Among 212 detected individuals, there were 23 SMA patients, 45 carriers, and 144 normal subjects. Three individuals had different ratios of SMN1 to SMN2 in two exons, including an SMA patient having two SMN2 copies in exon 7 but one SMN1 copy in exon 8. This method could provide more information about SMN1 deletion or SMN1 to SMN2 gene conversion for SMA genotyping and diagnosis.
Collapse
Affiliation(s)
- Chun-Chi Wang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | | | | | | | | |
Collapse
|
60
|
Shafey D, Boyer JG, Bhanot K, Kothary R. Identification of novel interacting protein partners of SMN using tandem affinity purification. J Proteome Res 2010; 9:1659-69. [PMID: 20201562 DOI: 10.1021/pr9006987] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the survival motor neuron (SMN) gene cause spinal muscular atrophy (SMA), a neuromuscular disease associated with muscle weakness that progresses to paralysis, respiratory distress, and ultimately death. Both neurons and muscle are severely affected in this disease. Tandem affinity purification (TAP) has emerged as a useful tool for studying protein complexes in vitro. We have used this purification system to discover novel SMN interacting partners in C2C12 muscle and PC12 neuronal cells. To do so, we fused a TAP-tag, consisting of a HIS hexamer and FLAG epitope separated by the tobacco etch virus (TEV) protease cleavage site, to either the N- or C-terminal region of SMN. Interestingly, the profile of SMN interacting proteins varies depending on the cell type and stage. We have identified a number of novel SMN interacting proteins in both C2C12 and PC12 cells, and from among these we have validated Annexin II and myosin regulatory light chain (MRLC). The discovery of these proteins will lead to a better understanding of the mechanisms underlying the pathophysiology of SMA.
Collapse
Affiliation(s)
- Dina Shafey
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
61
|
Burlet P, Gigarel N, Magen M, Drunat S, Benachi A, Hesters L, Munnich A, Bonnefont JP, Steffann J. Single-sperm analysis for recurrence risk assessment of spinal muscular atrophy. Eur J Hum Genet 2010; 18:505-8. [PMID: 19904299 PMCID: PMC2987255 DOI: 10.1038/ejhg.2009.198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 11/09/2022] Open
Abstract
With the detection of a homozygous deletion of the survival motor neuron 1 gene (SMN1), prenatal and preimplantation genetic diagnosis (PGD) for spinal muscular atrophy has become feasible and widely applied. The finding of a de novo rearrangement, resulting in the loss of the SMN1 gene, reduces the recurrence risk from 25% to a lower percentage, the residual risk arising from recurrent de novo mutation or germline mosaicism. In a couple referred to our PGD center because their first child was affected with SMA, the male partner was shown to carry two SMN1 copies. An analysis of the SMN1 gene and two flanking markers was performed on 12 single spermatozoa, to determine whether the father carried a CIS duplication of the SMN1 gene on one chromosome and was a carrier, or if the deletion has occurred de novo. We showed that all spermatozoa that were carriers of the 'at-risk haplotype' were deleted for the SMN1 gene, confirming the carrier status of the father. We provide an original application of single germ cell studies to recessive disorders using coamplification of the gene and its linked markers. This efficient and easy procedure might be useful to elucidate complex genetic situations when samples from other family members are not available.
Collapse
Affiliation(s)
- Philippe Burlet
- Unité INSERM U781 Institut de Recherche Necker-Enfants Malades, service de génétique médicale, Hôpital Necker-Enfants Malades (Assistance Publique-Hôpitaux de Paris), Université Paris-Descartes, 75743 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Rivière J, Lécuyer R, Hickmann M. Early locomotion and the development of spatial language: Evidence from young children with motor impairments. EUROPEAN JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2009. [DOI: 10.1080/17405620701345712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
63
|
Mefford HC, Eichler EE. Duplication hotspots, rare genomic disorders, and common disease. Curr Opin Genet Dev 2009; 19:196-204. [PMID: 19477115 PMCID: PMC2746670 DOI: 10.1016/j.gde.2009.04.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 04/10/2009] [Accepted: 04/14/2009] [Indexed: 01/24/2023]
Abstract
The human genome is enriched in interspersed segmental duplications that sensitize approximately 10% of our genome to recurrent microdeletions and microduplications as a result of unequal crossing over. We review the recent discovery of recurrent rearrangements within these genomic hotspots and their association with both syndromic and nonsyndromic diseases. Studies of common complex genetic disease show that a subset of these recurrent events plays an important role in autism, schizophrenia, and epilepsy. The genomic hotspot model may provide a powerful approach for understanding the role of rare variants in common disease.
Collapse
Affiliation(s)
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| |
Collapse
|
64
|
Wang CC, Chang JG, Jong YJ, Wu SM. Universal multiplex PCR and CE for quantification ofSMN1/SMN2genes in spinal muscular atrophy. Electrophoresis 2009; 30:1102-10. [DOI: 10.1002/elps.200800375] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
65
|
Bosboom WMJ, Vrancken AFJE, van den Berg LH, Wokke JHJ, Iannaccone ST. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2009:CD006282. [PMID: 19160275 DOI: 10.1002/14651858.cd006282.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. There are no known efficacious drug treatments that influence the disease course of SMA. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA type II and III, and to assess if such therapy can be given safely. Drug treatment for SMA type I will be the topic of a separate Cochrane review. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Register (September 30 2008), The Cochrane Library (Issue 3, 2008), MEDLINE (January 1966 to June 2008), EMBASE (January 1980 to June 2008), ISI (January 1988 to June 2008), and ACP Journal Club (January 1991 to June 2008). SELECTION CRITERIA We sought all randomized or quasi-randomized trials that examined the efficacy of drug treatment for SMA type II and III. Participants had to fulfil the clinical criteria and, in studies including genetic analysis to confirm the diagnosis, have a deletion or mutation of the SMN1 gene (5q11.2-13.2)The primary outcome measure was to be change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were to be change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full time ventilation, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors independently reviewed and extracted data from all potentially relevant trials. Pooled relative risks and pooled weighted standardized mean differences were to be calculated to assess treatment efficacy MAIN RESULTS Four randomized placebo-controlled trials on treatment for SMA type II and III were found and included in the review. The treatments were creatine, phenylbutyrate, gabapentin and thyrotropin releasing hormone. None of these trials showed any effect on the outcome measures in patients with SMA type II and III. None of the patients in any of the four trials died or reached the state of full time ventilation and serious side effects were infrequent. AUTHORS' CONCLUSIONS There is no proven efficacious drug treatment for SMA type II and III.
Collapse
Affiliation(s)
- Wendy M J Bosboom
- Department of Neurology, Sint Lucas Andreas Hospital, Jan Tooropstraat 164, Amsterdam, Netherlands, 1061 AE.
| | | | | | | | | |
Collapse
|
66
|
Bosboom WMJ, Vrancken AFJE, van den Berg LH, Wokke JHJ, Iannaccone ST. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2009:CD006281. [PMID: 19160274 DOI: 10.1002/14651858.cd006281.pub2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type I will never be able to sit without support and usually die by the age of two years. There are no known efficacious drug treatments that influence the disease course. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA type I, and to assess if such therapy can be given safely. Drug treatment for SMA type II and III will be will be the topic of a separate Cochrane review. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Trials Register (September 30 2008, The Cochrane Library (Issue 3, 2008), MEDLINE (January 1966 to June 2008), EMBASE (January 1980 to June 2008), ISI (January 1988 to June 2008), and ACP Journal Club (January 1991 to June 2008). SELECTION CRITERIA All randomized or quasi-randomized trials that examined the efficacy of drug treatment for SMA type 1 were sought. Participants had to fulfil clinical criteria and, in studies including genetic analysis to confirm the diagnosis, have a deletion or mutation of the SMN1 gene (5q11.2-13.2)The primary outcome measure was to be time from birth until death or full time ventilation. Secondary outcome measures were to be development of rolling, sitting or standing within one year after the onset of treatment, and adverse events attributable to treatment during the trial period. DATA COLLECTION AND ANALYSIS Two authors (WB and AV) independently reviewed and extracted data from all potentially relevant trials. For included studies pooled relative risks and pooled weighted standardized mean differences were to be calculated to assess treatment efficacy MAIN RESULTS One small randomized-controlled study comparing riluzole treatment to placebo for SMA type 1 was identified and included in the review. Regarding the primary outcome measure three of seven children treated with riluzole were still alive at the age of 30, 48 and 64 months, whereas all three children in the placebo group died, but the difference was not statistically significant. Regarding the secondary outcome measures none of the patients in the riluzole or placebo group developed the ability to roll, sit or stand, and no adverse effects were observed. AUTHORS' CONCLUSIONS No drug treatment for SMA type I has been proven to have significant efficacy.
Collapse
Affiliation(s)
- Wendy M J Bosboom
- Department of Neurology, Sint Lucas Andreas Hospital, Jan Tooropstraat 164, Amsterdam, Netherlands, 1061 AE.
| | | | | | | | | |
Collapse
|
67
|
Rossoll W, Bassell GJ. Spinal muscular atrophy and a model for survival of motor neuron protein function in axonal ribonucleoprotein complexes. Results Probl Cell Differ 2009; 48:289-326. [PMID: 19343312 PMCID: PMC3718852 DOI: 10.1007/400_2009_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease that results from loss of function of the SMN1 gene, encoding the ubiquitously expressed survival of motor neuron (SMN) protein, a protein best known for its housekeeping role in the SMN-Gemin multiprotein complex involved in spliceosomal small nuclear ribonucleoprotein (snRNP) assembly. However, numerous studies reveal that SMN has many interaction partners, including mRNA binding proteins and actin regulators, suggesting its diverse role as a molecular chaperone involved in mRNA metabolism. This review focuses on studies suggesting an important role of SMN in regulating the assembly, localization, or stability of axonal messenger ribonucleoprotein (mRNP) complexes. Various animal models for SMA are discussed, and phenotypes described that indicate a predominant function for SMN in neuronal development and synapse formation. These models have begun to be used to test different therapeutic strategies that have the potential to restore SMN function. Further work to elucidate SMN mechanisms within motor neurons and other cell types involved in neuromuscular circuitry hold promise for the potential treatment of SMA.
Collapse
Affiliation(s)
- Wilfried Rossoll
- Departments of Cell Biology and Neurology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
68
|
Mutation update of spinal muscular atrophy in Spain: molecular characterization of 745 unrelated patients and identification of four novel mutations in the SMN1 gene. Hum Genet 2008; 125:29-39. [DOI: 10.1007/s00439-008-0598-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022]
|
69
|
Luo W, Ouyang Z, Guo Y, Chen Y, Ding M. Spinal muscular atrophy combined with sporadic olivopontocerebellar atrophy. Clin Neurol Neurosurg 2008; 110:855-8. [DOI: 10.1016/j.clineuro.2008.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Revised: 05/24/2008] [Accepted: 05/27/2008] [Indexed: 01/27/2023]
|
70
|
Abstract
Spinal muscular atrophy is an autosomal recessive neurodegenerative disease characterised by degeneration of spinal cord motor neurons, atrophy of skeletal muscles, and generalised weakness. It is caused by homozygous disruption of the survival motor neuron 1 (SMN1) gene by deletion, conversion, or mutation. Although no medical treatment is available, investigations have elucidated possible mechanisms underlying the molecular pathogenesis of the disease. Treatment strategies have been developed to use the unique genomic structure of the SMN1 gene region. Several candidate treatment agents have been identified and are in various stages of development. These and other advances in medical technology have changed the standard of care for patients with spinal muscular atrophy. In this Seminar, we provide a comprehensive review that integrates clinical manifestations, molecular pathogenesis, diagnostic strategy, therapeutic development, and evidence from clinical trials.
Collapse
Affiliation(s)
- Mitchell R Lunn
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
71
|
Woulfe J. Nuclear bodies in neurodegenerative disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2195-206. [PMID: 18539152 DOI: 10.1016/j.bbamcr.2008.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/31/2008] [Accepted: 05/08/2008] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are characterized by a relentlessly progressive loss of the functional and structural integrity of the central nervous system. In many cases, these diseases arise sporadically and the causes are unknown. The abnormal aggregation of protein within the cytoplasm or the nucleus of brain cells represents a unifying pathological feature of these diseases. There is increasing evidence for nuclear dysfunction in neurodegenerative diseases. How this relates to protein aggregation in the context of "cause and effect" remains to be determined in most cases. Co-ordinated nuclear function is predicated on the activity of distinct nuclear subdomains, or nuclear bodies, each responsible for a specific function. If nuclear dysfunction represents an important etiopathological feature in neurodegenerative disease, then this should be reflected by functional and/or morphological alterations in this nuclear compartmentalization. For most neurodegenerative diseases, evidence for nuclear dysfunction, with attendant consequences for nuclear architecture, is only beginning to emerge. In this review, I will discuss neurodegenerative diseases in the context of nuclear dysfunction and, more specifically, alterations in nuclear bodies. Although research in this field is in its infancy, identifying alterations in the nucleus in neurodegenerative disease has potentially profound implications for elucidating the pathogenesis of these disorders.
Collapse
Affiliation(s)
- John Woulfe
- Department of Pathology, The Ottawa Hospital, Civic Campus, 1053 Carling Avenue, Ottawa, Ontario, Canada K1Y 4E9.
| |
Collapse
|
72
|
Génétique des maladies du motoneurone. Rev Neurol (Paris) 2008; 164:115-30. [DOI: 10.1016/j.neurol.2007.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 09/25/2007] [Accepted: 10/21/2007] [Indexed: 02/08/2023]
|
73
|
Abstract
PURPOSE OF REVIEW Spinal muscular atrophy is a neuromuscular disorder manifesting as weakness and hypotonia across a broad spectrum of severity. Mutations in the telomeric copy of the survival motor neuron gene (SMN1) cause the autosomal recessive form. Disease severity is modified by the number of centromeric copies of the gene (SMN2) and the quantity of survival motor neuron protein. This has given rise to a number of treatment strategies. RECENT FINDINGS Histone deacetylase inhibitors appear to increase the expression of SMN2, with an increase in survival motor neuron protein in various cell types. Clinical trials have been performed with three histone deacetylase inhibitors which are already licensed in the USA. Phenylbutyrate showed promise in a mouse model and an open-label pilot study, but was not effective in a phase 2 trial. Valproate may enhance transcription and reverse SMN2 splicing pattern, and has induced promising motor-function improvement in patients. Hydroxyurea may enhance splice function and increase the number of nuclear 'gems', small nuclear organelles in which survival motor neuron protein concentrates. SUMMARY Discoveries regarding the genetics and pathogenesis of spinal muscular atrophy have identified potential targets for pharmacotherapy, raising hope that better treatments will eventually be developed.
Collapse
|
74
|
Girardet A, Fernandez C, Claustres M. Efficient strategies for preimplantation genetic diagnosis of spinal muscular atrophy. Fertil Steril 2007; 90:443.e7-12. [PMID: 17953949 DOI: 10.1016/j.fertnstert.2007.07.1305] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 07/05/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To develop and apply efficient multiplex preimplantation genetic diagnosis (PGD) protocols for spinal muscular atrophy (SMA). DESIGN Two multiplex PGD protocols were developed allowing the detection of the common homozygous deletion of the telomeric spinal muscular atrophy gene (SMN1), together with two microsatellites located on each side of SMN1. SETTING The molecular genetics laboratory of the university hospital in Montpellier. PATIENT(S) A couple who had already given birth to a child affected with SMA. INTERVENTION(S) In vitro fertilization using intracytoplasmic sperm injection (ICSI) and blastomere biopsy. MAIN OUTCOME MEASURE(S) Improvement of PGD for SMA. RESULT(S) Two different multiplex protocols were set up on 81 (multiplex A) and 64 single cells (multiplex B) from normal controls, affected patients, and individuals with homozygous SMN2 deletion. In one PGD cycle that used one of these protocols, two embryos were transferred, which resulted in the birth of a healthy baby. CONCLUSION(S) Analysis of microsatellite markers in addition to the SMN1 deletion allows the detection of contamination, the study of ploidy of the biopsied blastomeres, and the performance of an indirect genetic diagnosis, thereby increasing the reliability of the results. This PGD assay may be applied to all families with the common deletion of SMN1 and also to couples in whom one of the partners carries a small intragenic mutation in SMN1, identified in about 6% of affected individuals who do not lack both copies of SMN1.
Collapse
Affiliation(s)
- Anne Girardet
- Laboratoire de Génétique Moléculaire, Université Montpellier 1, UFR de Médecine, Inserm, U827, CHU Montpellier, Institut Universitaire de Recherche Clinique (IURC), Montpellier, France.
| | | | | |
Collapse
|
75
|
Koul R, Al Futaisi A, Chacko A, Rao V, Simsek M, Muralitharan S, Ganguly SS, Bayoumi R. Clinical and genetic study of spinal muscular atrophies in Oman. J Child Neurol 2007; 22:1227-30. [PMID: 17940251 DOI: 10.1177/0883073807306268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This article presents a retrospective study and a prospective study on spinal muscular atrophy in Oman. For the retrospective study, data were collected from neurophysiology records, from both inpatient and outpatient files. The prospective study was conducted on children as they presented to the hospital and was funded by Sultan Qaboos University. The patients of spinal muscular atrophy were classified into types I, II, and III based on their clinical features as per the International Spinal Muscular Atrophy Consortium classification. The incidence of spinal muscular atrophy was about 1 per 6000 live births. Spinal muscular atrophy type I formed 65% of the cases. Survival motor neuron deletion was seen in 70% of cases of all types of spinal muscular atrophy. The deletion was 83% in spinal muscular atrophy type I. A further study to look into the nondeletional cases is in progress.
Collapse
Affiliation(s)
- Roshan Koul
- Department of Child Health, College of Medicine and Health Sciences, Sultan Qaboos University Hospital, Alkhoud, Muscat, Oman.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
O'Hagen JM, Glanzman AM, McDermott MP, Ryan PA, Flickinger J, Quigley J, Riley S, Sanborn E, Irvine C, Martens WB, Annis C, Tawil R, Oskoui M, Darras BT, Finkel RS, De Vivo DC. An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients. Neuromuscul Disord 2007; 17:693-7. [PMID: 17658255 DOI: 10.1016/j.nmd.2007.05.009] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/20/2007] [Accepted: 05/25/2007] [Indexed: 01/23/2023]
Abstract
PURPOSE To develop and evaluate an expanded version of the Hammersmith Functional Motor Scale allowing for evaluation of ambulatory SMA patients. PROCEDURES Thirty-eight patients with SMA type II or III were evaluated using the Gross Motor Function Measure and the Hammersmith Functional Motor Scale. Based on statistical and clinical criteria, we selected 13 Gross Motor Function Measure items to develop an expanded HFMS. The expanded Hammersmith Functional Motor Scale was validated by comparison with the Gross Motor Function Measure minus the 13 items (GMFM-75) and an assessment of clinical function. The reliability of the expanded Hammersmith Functional Motor Scale in 36 patients was established. FINDINGS The expanded Hammersmith Functional Motor Scale was highly correlated with the GMFM-75 and the clinical function assessment (p=0.97, and p=0.90). The expanded Hammersmith Functional Motor Scale showed excellent test-retest reliability (International Coordinating Committee = 0.99). CONCLUSIONS The expanded Hammersmith Functional Motor Scale allows assessment of high functioning SMA type II and III patients. Ease of administration and correlation with established motor function measures justify use in future SMA clinical trials.
Collapse
|
77
|
Labrum R, Rodda J, Krause A. The molecular basis of spinal muscular atrophy (SMA) in South African black patients. Neuromuscul Disord 2007; 17:684-92. [PMID: 17627822 DOI: 10.1016/j.nmd.2007.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 05/08/2007] [Accepted: 05/16/2007] [Indexed: 11/21/2022]
Abstract
SMA is an autosomal recessive disorder that results in symmetrical muscle weakness and wasting due to degeneration of the anterior horns of the spinal cord. The gene for SMA, the survival motor neuron (SMN) gene is found on chromosome 5q13, in a region harbouring a 500kb duplication, resulting in two copies (a telomeric and a centromeric) of each of the genes found within the duplication. SMN1 is homozygously deleted in approximately 95% of patients worldwide. Results of the current study show that only 51% (42/92) of South African black SMA patients have homozygous deletions of the SMN1 gene. This frequency is significantly lower than observed in the South African white patient group and in other international populations. The pattern of deletions in the South African black patients is also significantly different. In order to elucidate the molecular basis of SMA in the black population, a dosage assay enabling the detection of SMN1 deletion heterozygotes was independently developed. This assay confirmed SMN1 heterozygosity in at least 70% of black non-deletion SMA patients. However, no second disease-causing mutation or a common chromosomal background for this mutation could be identified in these patients. The frequency of SMA in both the black and white population was also determined using the SMN1 gene dosage assay. Results showed that SMA is more common than previously thought with carrier rates of 1 in 50 and 1 in 23 and a predicted birth incidence of 1 in 3574 and 1 in 1945 in the black population and the white population, respectively. Development and incorporation of the SMN1 dosage assay into the molecular diagnostic service will increase the percentage of cases in which the diagnosis of SMA can be confirmed and allow preclinical and prenatal diagnosis. Further gene characterisation and functional studies would need to be performed in order to further define the molecular basis of SMA in the South African black population.
Collapse
Affiliation(s)
- R Labrum
- Division of Human Genetics, School of Pathology, National Health Laboratory Service and University of the Witwatersrand, P.O. Box 1038, Johannesburg 2000, South Africa
| | | | | |
Collapse
|
78
|
Zapletalová E, Hedvicáková P, Kozák L, Vondrácek P, Gaillyová R, Maríková T, Kalina Z, Jüttnerová V, Fajkus J, Fajkusová L. Analysis of point mutations in the SMN1 gene in SMA patients bearing a single SMN1 copy. Neuromuscul Disord 2007; 17:476-81. [PMID: 17475491 DOI: 10.1016/j.nmd.2007.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/19/2007] [Accepted: 03/04/2007] [Indexed: 10/23/2022]
Abstract
Spinal muscular atrophy (SMA) is caused by homozygous deletion of the SMN1 gene in approximately 96% of cases. Four percent of SMA patients have a combination of the deletion or conversion on one allele and an intragenic mutation on the second one. We performed analysis of point mutations in a set of our patients with suspicion of SMA and without homozygous deletion of the SMN1 gene. A quantitative test determining SMN1 copy number (using real-time PCR and/or MLPA analysis) was performed in 301 patients and only 1 SMN1 copy was detected in 14 of them. When these 14 patients were screened for the presence of point mutations we identified 6 mutations, p.Y272C (in three patients) and p.T274I, p.I33IfsX6, and p.A188S (each in one case). The mutations p.I33IfsX6 and p.A188S were found in two SMAI patients and were not detected previously. Further, evaluation of the relationship between mutation type, copy number of the SMN2 gene and clinical findings was performed. Among our SMA patients with a SMN1 homozygous deletion, we found a family with two patients: the son with SMAII possesses 3 SMN2 copies and the nearly asymptomatic father has a homozygous deletion of SMN1 exon 7 and carries 4 SMN2 copies. Generally, our results illustrate that an increased SMN2 gene copy number is associated with a milder SMA phenotype.
Collapse
Affiliation(s)
- Eva Zapletalová
- University Hospital Brno, Centre of Molecular Biology and Gene Therapy, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Kotani T, Sutomo R, Sasongko TH, Sadewa AH, Minato T, Fujii E, Endo S, Lee MJ, Ayaki H, Harada Y, Matsuo M, Nishio H. A novel mutation at the N-terminal of SMN Tudor domain inhibits its interaction with target proteins. J Neurol 2007; 254:624-30. [PMID: 17415510 DOI: 10.1007/s00415-006-0410-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 08/25/2006] [Accepted: 09/07/2006] [Indexed: 10/23/2022]
Abstract
Although most patients with spinal muscular atrophy (SMA) are homozygous for deletion of the SMN1 gene, some patients bear one SMN1 copy with a subtle mutation. Detection of such an intragenic mutation may be helpful not only in confirming diagnosis but also in elucidating functional domains of the SMN protein. In this study, we identified a novel mutation in SMN1 of two Japanese patients with type I SMA. DHPLC and sequencing analysis revealed that they harbored a point mutation in SMN1 exon 3, 275G > C, leading to tryptophan-to-serine substitution at amino acid 92 (W92S) at the Nterminal of SMN Tudor domain. In-vitro protein binding assays showed that the mutation severely reduced interaction of the domain with SmB protein and fibrillarin, suggesting that it impairs the critical function of SMN. In conclusion, we reported here that a novel mutation, W92S, in the Tudor domain affects the interaction of SMN with the target proteins.
Collapse
Affiliation(s)
- Tomohiro Kotani
- Dept. of Public Health, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Smith M, Calabro V, Chong B, Gardiner N, Cowie S, du Sart D. Population screening and cascade testing for carriers of SMA. Eur J Hum Genet 2007; 15:759-66. [PMID: 17392705 DOI: 10.1038/sj.ejhg.5201821] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most common autosomal-recessive diseases, caused by absence of both copies of the survival motor neuron 1 (SMN1) gene. Identification of SMA carriers has important implications for individuals with a family history and the general population. SMA carriers are completely healthy and most are unaware of their carrier status until they have an affected child. A total of 422 individuals have been studied to identify SMA carriers. This cohort included 117 parents of children homozygously deleted for SMN1 (94% were carriers and 6% had two copies of SMN1; of these individuals, two in seven had the '2+0' genotype, two in seven were normal but had children carrying a de novo deletion and three in seven were unresolved), 158 individuals with a significant family history of SMA (47% had one copy, 49% had two copies and 4% had three copies of SMN1) and 146 individuals with no family history of SMA (90% had two copies, 2% had one copy and 8% had three copies of SMN1). The SMA carrier frequency in the Australian population appears to be 1/49 and the frequency of two-copy SMN1 alleles and de novo deletion mutations are both at least 1.7%. A multimodal approach involving quantitative analysis, linkage analysis and genetic risk assessment (GRA), facilitates the resolution of SMA carrier status in individuals with a family history as well as individuals of the general population, providing couples with better choices in their family planning.
Collapse
Affiliation(s)
- Melanie Smith
- Molecular Genetics Laboratory, Victorian Clinical Genetics Services, Murdoch Childrens Research Institute, Parkville, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
81
|
Rivière J. Locomotion autonome et cognition spatiale: le paradoxe de l'amyotrophie spinale infantile. Arch Pediatr 2007; 14:279-84. [PMID: 17137770 DOI: 10.1016/j.arcped.2006.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Various studies have shown that occurrence of locomotion in infancy is correlated with the development of visuospatial cognitive competencies, suggesting that locomotor experience might play a central role in spatial development, especially in the realm of manual search for hidden objects. However, recent studies indicate that young children with spinal muscular atrophy (SMA), a hereditary neuromuscular disease which results in severe motor impairments, excel in some spatial cognitive skills. Indeed, striking cognitive performances are exhibited by young SMA children in some areas such as the ability to search successfully for hidden objects and the acquisition of the spatial vocabulary. The performances of SMA children suggest that, despite their total deprivation of locomotor experience, they have the capacity to acquire and use rich spatial representations. As a result, locomotor impairment does not appear to be a key risk factor for dramatic slowing down or deviation in the development of spatial search skills.
Collapse
Affiliation(s)
- J Rivière
- Laboratoire psychologie et neurosciences de la cognition, université de Rouen, 76821 Mont-Saint-Aignan, France.
| |
Collapse
|
82
|
Moutou C, Machev N, Gardes N, Viville S. Case report: birth after preimplantation genetic diagnosis of a subtle mutation in SMN1 gene. Prenat Diagn 2007; 26:1037-41. [PMID: 16941715 DOI: 10.1002/pd.1551] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Spinal muscular atrophy (SMA) preimplantation genetic diagnosis (PGD) has been available since 1998. Protocols are based on the detection of the homozygous deletion of exon 7, which are present in 90-98% of SMA patients. A couple where the woman was a heterozygous carrier of the usual SMN1 Del7 mutation and the man was a heterozygous carrier of pMet263Arg substitution in exon 6 of SMN1 gene was referred for PGD. The usual PGD test being unsuitable for this couple, we developed a novel duplex polymerase chain reaction (PCR)-based PGD test for the detection of the mutation pMet263Arg by allele specific amplification, combined with the amplification of D5S641 extragenic polymorphic marker. PCR conditions were established using single control lymphoblasts and lymphocytes from the pMet263Arg substitution carrier. Amplification was obtained in 100% of the 86 single cells tested, amplification refractory mutation system (ARMS) PCR was specific in 100% of single cells tested and a complete genotype (mutation plus D5S641) was achieved in 88% of them. A PGD cycle was performed successfully and a pregnancy was obtained. An unaffected girl was born and postnatal diagnosis confirmed PGD results. This is the first PGD described for SMA because of another mutation than the major homozygous exon 7 deletion of SMN1. In the future, a similar strategy could be adopted for other subtle mutations of this gene.
Collapse
Affiliation(s)
- Céline Moutou
- Service de Biologie de la Reproduction-SIHCUS-CMCO, CHU de Strasbourg, 19, rue Louis Pasteur, BP120, 67303 Schiltigheim cedex, France
| | | | | | | |
Collapse
|
83
|
Watihayati MS, Zabidi-Hussin AMH, Tang TH, Matsuo M, Nishio H, Zilfalil BA. Deletion analyses of SMN1 and NAIP genes in Malaysian spinal muscular atrophy patients. Pediatr Int 2007; 49:11-4. [PMID: 17250498 DOI: 10.1111/j.1442-200x.2007.02302.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The survival motor neuron 1 (SMN1) gene has been recognized to be responsible for spinal muscular atrophy (SMA) because it is homozygously deleted in more than 90% of SMA patients, irrespective of their clinical severity, whereas the neuronal apoptosis inhibitory protein (NAIP) gene is now considered to be a modifying factor of the severity of SMA. In Malaysia, it remains to be elucidated whether deletion of the SMN1 gene is also a main cause of SMA or whether deletion of the NAIP gene is found in the SMA patients. METHODS To clarify the pathogenesis of SMA in Malaysia, a deletion analysis of the SMN1 and NAIP genes was performed in 24 Malaysian SMA patients. Deletion analysis of exons 7 and 8 of the SMN1 gene was performed according to the method described by van der Steege et al., while deletion analysis of exon 5 of the NAIP gene was performed according to a method described by Roy et al. RESULTS Homozygous deletion of SMN1 exon 7 and exon 8 were identified in 19 out of 24 patients (79%). As to the NAIP gene, deletion of exon 5 was detected in six out of 24 patients (25%). NAIP gene deletion was correlated with severity of the disease. CONCLUSIONS Deletion of the SMN1 exon 7 is a major cause of SMA in Malaysia, and NAIP gene deletions are not rare in type I SMA in Malaysia. The lower percentage of the SMN1 gene deletion may be due to the possibility that the present study included some patients without SMN1 gene abnormality and/or some patients with non-deletion type mutations in the SMN1 gene.
Collapse
Affiliation(s)
- Mohd S Watihayati
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kota Braru, Malaysia
| | | | | | | | | | | |
Collapse
|
84
|
Wirth B, Brichta L, Hahnen E. Spinal muscular atrophy and therapeutic prospects. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2007; 44:109-32. [PMID: 17076267 DOI: 10.1007/978-3-540-34449-0_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The molecular genetic basis of spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disorder, is the loss of function of the survival motor neuron gene (SMN1). The SMN2 gene, a nearly identical copy of SMN1, has been detected as a promising target for SMA therapy. Both genes are ubiquitously expressed and encode identical proteins, but markedly differ in their splicing patterns: While SMN1 produces full-length (FL)-SMN transcripts only, the majority of SMN2 transcripts lacks exon 7. Transcriptional SMN2 activation or modulation of its splicing pattern to increase FL-SMN levels is believed to be clinically beneficial and therefore a crucial challenge in SMA research. Drugs such as valproic acid, phenylbutyrate, sodium butyrate, M344 and SAHA that mainly act as histone deacetylase inhibitors can mediate both: they stimulate the SMN2 gene transcription and/or restore the splicing pattern, thereby elevating the levels of FL-SMN2 protein. Preliminary phase II clinical trials and individual experimental curative approaches SMA patients show promising results. However, phase III double-blind placebo controlled clinical trials have to finally prove the efficacy of these drugs.
Collapse
Affiliation(s)
- Brunhilde Wirth
- Institute of Human Genetics, Institute of Genetics, and Center for Molecular Medicine Cologne, University of Cologne, Kerpener Str. 34, 50931 Cologne, Germany
| | | | | |
Collapse
|
85
|
|
86
|
Molecular Analysis of Survival Motor Neuron and Neuronal Apoptosis Inhibitory Protein Genes in Macedonian Spinal Muscular Atrophy Patients. Balkan J Med Genet 2007. [DOI: 10.2478/v10034-008-0007-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular Analysis of Survival Motor Neuron and Neuronal Apoptosis Inhibitory Protein Genes in Macedonian Spinal Muscular Atrophy PatientsSpinal muscular atrophy (SMA) is classified according to the age of onset and severity of the clinical manifestations into: acute (Werding-Hoffman disease or type I), intermediate (type II) and juvenile (Kugelberg-Wilander disease or type III) forms. All three SMAs have been linked to markers at 5q11.2-q13.3. Two candidate genes deleted in SMA patients are the survival motor neuron (SMN) gene and the neuronal apoptosis inhibitory protein (NAIP) gene. We have performed molecular analyses of these genes in 30 unrelated Macedonian families (17 with type I, eight with type II and five with type III forms of the disease). Deletions of exons 7 and 8 of the SMN gene were found in 76.6% (23/30) of patients (94.1% in type I, 87.5% in type II). Among these 23 families, 19 had both exons deleted, while four had deletions only of exon 7. Deletions of exon 5 of the NAIP gene were found in 41.2% (7/17) patients with type I SMA and in 12.5% (1/8) of patients with type II SMA. No deletions of the SMN gene were found in 30 parents and 30 normal controls. We found 2/30 (6.7%) parents to be homozygous for the deletion of exon 5. Our data support the hypothesis that the telomeric SMN gene plays a major role in determining the clinical course of the disease, while the defects in the NAIP gene have only a modifying effect on the phenotype.
Collapse
|
87
|
Arkblad EL, Darin N, Berg K, Kimber E, Brandberg G, Lindberg C, Holmberg E, Tulinius M, Nordling M. Multiplex ligation-dependent probe amplification improves diagnostics in spinal muscular atrophy. Neuromuscul Disord 2006; 16:830-8. [PMID: 17049859 DOI: 10.1016/j.nmd.2006.08.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 08/21/2006] [Accepted: 08/31/2006] [Indexed: 11/20/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by decreased levels of survival motor neuron protein (SMN). In the majority of cases, this decrease is due to absence of the SMN1 gene. Multiplex ligation-dependent probe amplification (MLPA) is a modern quantitative molecular method. Applied in SMA cases, it improves diagnostics by simultaneously identifying the number of copies of several target sequences in the SMN1 gene and in nearby genes. Using MLPA in clinical diagnostics, we have identified a previously unreported, partial deletion of SMN1 (exons 1-6) in two apparently unrelated Swedish families. This mutation would not have been detected by conventional diagnostic methods. This paper illustrates the broad clinical and genetic spectrum of SMA and includes reports of MLPA results and clinical descriptions of a patient with homozygous absence of SMN1 and only one SMN2 (prenatal onset SMA type 1), an asymptomatic woman with five SMN2 (lacking SMN1) and representative patients with SMA types 1, 2 and 3.
Collapse
Affiliation(s)
- Eva L Arkblad
- Department of Clinical Genetics, Sahlgrenska University Hospital/East, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Barceló MJ, Alias L, Caselles L, Robles Y, Baiget M, Tizzano EF. Two independent mutations of the SMN1 gene in the same spinal muscular atrophy family branch: Lessons for carrier diagnosis. Genet Med 2006; 8:259-62. [PMID: 16617248 DOI: 10.1097/01.gim.0000214319.99550.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE We present the results of carrier studies in 33 relatives of the paternal branch of a spinal muscular atrophy patient with homozygous absence of the SMN1 gene. METHODS AND RESULTS Once linkage and quantitative analyses were performed, a number of first-, second- and third-degree relatives were identified as carriers given that they shared the at-risk haplotype and showed one SMN1 copy. In the fourth-degree relatives, linkage analysis demonstrated discordance with the quantitative results because the members with one copy were carriers of the mutation, but in a different haplotype background. We concluded that two independent mutations were present in this branch of the family. Furthermore, the combination of both methods of analysis allowed us to identify carriers with two SMN1 genes in one chromosome and none in the remaining chromosome. CONCLUSIONS Carrier testing in spinal muscular atrophy should be performed by employing both quantitative and linkage analyses in order to guarantee accurate carrier identification.
Collapse
Affiliation(s)
- María Jesús Barceló
- Department of Genetics and Research Institute, Hospital Sant Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
89
|
Kao HY, Su YN, Liao HK, Liu MS, Chen YJ. Determination of SMN1/SMN2 Gene Dosage by a Quantitative Genotyping Platform Combining Capillary Electrophoresis and MALDI-TOF Mass Spectrometry. Clin Chem 2006; 52:361-9. [PMID: 16439605 DOI: 10.1373/clinchem.2005.061192] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Background: Spinal muscular atrophy (SMA) is a common inherited and fatal neuromuscular disease caused by deletions and/or mutations that lead to altered concentrations of proteins encoded by the survival motor neuron genes SMN1 and SMN2. Because of the high incidence (at least 1 in 10 000 live births and a carrier frequency of 1 in 35 to 1 in 50) and severity of the disease, precise quantification of SMN1 and SMN2 gene copy numbers is essential for diagnosis and genetic counseling.
Methods: We developed a genotyping platform combining capillary electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to quantify absolute gene dosage. The absolute gene dosage can be determined by a multiplexed competitive PCR protocol followed by capillary electrophoresis analysis. The relative SMN1/SMN2 ratio can be analyzed by PinPoint assay followed by MALDI-TOF MS analysis.
Results: The complementary assays were evaluated in confirmed cases including 9 affected patients, 33 carriers, and 478 healthy individuals from the general population. We were able to determine all genotypes with different SMN1/SMN2 gene copy number ratios, which unambiguously diagnosed carrier status and the severity of SMA with 100% specificity.
Conclusions: This quantitative genotyping platform is suitable for detection of SMA. The described approach may serve as a general quantitative genotyping method for molecular diagnosis of other inheritable diseases.
Collapse
Affiliation(s)
- Hung-Yi Kao
- Institute of Chemistry, and Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
90
|
BOERKOEL CF, INOUE K, REITER LT, WARNER LE, LUPSKI JR. Molecular Mechanisms for CMT1A Duplication and HNPP Deletion. Ann N Y Acad Sci 2006; 883:22-35. [DOI: 10.1111/j.1749-6632.1999.tb08563.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
91
|
Lunn MR, Stockwell BR. Chemical genetics and orphan genetic diseases. ACTA ACUST UNITED AC 2006; 12:1063-73. [PMID: 16242649 DOI: 10.1016/j.chembiol.2005.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 09/08/2005] [Accepted: 09/08/2005] [Indexed: 10/25/2022]
Abstract
Many orphan diseases have been identified that individually affect small numbers of patients but cumulatively affect approximately 6%-10% of the European and United States populations. Human genetics has become increasingly effective at identifying genetic defects underlying such orphan genetic diseases, but little progress has been made toward understanding the causal molecular pathologies and creating targeted therapies. Chemical genetics, positioned at the interface of chemistry and genetics, can be used for elucidation of molecular mechanisms underlying diseases and for drug discovery. This review discusses recent advances in chemical genetics and how small-molecule tools can be used to study and ultimately treat orphan genetic diseases. We focus here on a case study involving spinal muscular atrophy, a pediatric neurodegenerative disease caused by homozygous deletion of the SMN1 (survival of motor neuron 1) gene.
Collapse
Affiliation(s)
- Mitchell R Lunn
- Department of Biological Sciences, Sherman Fairchild Center for the Life Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
92
|
Ferreira J, Lacson A, Raasch J, Pomerance HH. Clinico-pathologic conference: status epilepticus in a 5-year-old girl. Fetal Pediatr Pathol 2006; 25:21-34. [PMID: 16754486 DOI: 10.1080/15227950600701487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jose Ferreira
- University of South Florida College of Medicine, Tampa, Florida 33606, USA
| | | | | | | |
Collapse
|
93
|
Clermont O, Burlet P, Benit P, Chanterau D, Saugier-Veber P, Munnich A, Cusin V. Molecular analysis of SMA patients without homozygous SMN1 deletions using a new strategy for identification of SMN1 subtle mutations. Hum Mutat 2005; 24:417-27. [PMID: 15459957 DOI: 10.1002/humu.20092] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spinal muscular atrophy (SMA) is a common autosomal recessive disease. SMA is linked to the 5q13 locus in 95% of patients, and in at least 98% of them, the SMN1 homozygous deletion is found. Compound heterozygous patients, who have an SMN1 deletion associated with a subtle mutation, appear undeleted with the common molecular diagnostic test that detects only the homozygous absence of SMN1. In these patients, mutation screening in SMN1 is hampered by the presence of several copies of the highly homologous SMN2 gene. Here, we present a rapid and reliable strategy for detecting SMN mutations using long-range PCR, which avoids cloning and cDNA analysis. Using this method, we found 10 mutations, including five mutations never reported previously and five recurrent mutations; some of them are probably population-specific. Marker analysis of the 5q13 locus in these mutations showed common haplotypes, supporting the hypothesis of a common ancestor rather than a hot spot sequence. We also evaluate the suitability of automated SSCA and DHPLC for mutation scanning.
Collapse
|
94
|
Sangiuolo F, Filareto A, Spitalieri P, Scaldaferri ML, Mango R, Bruscia E, Citro G, Brunetti E, De Felici M, Novelli G. In VitroRestoration of Functional SMN Protein in Human Trophoblast Cells Affected by Spinal Muscular Atrophy by Small Fragment Homologous Replacement. Hum Gene Ther 2005; 16:869-80. [PMID: 16000068 DOI: 10.1089/hum.2005.16.869] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The majority of patients affected by spinal muscular atrophy (SMA) have deletion of the survival of motor neuron 1 (SMN1) gene, but they retain a "nonfunctional" copy of the duplicate gene (SMN2) in their genome. SMN2 produces defective SMN protein because of a C --> T transition in exon 7, which causes the skipping of exon 7 during SMN mRNA maturation. Many attempts have been made to correct altered SMN gene expression and to increase the level of normal SMN protein, but to date an effective treatment for this disease has not been established. Small Fragment Homologous Replacement (SFHR) is a site-specific gene modification approach that has the potential to maintain the genomic organization necessary for expression. The target modification in the genome is mediated by small DNA fragments (SDFs) 400-800 bp in length. In this study we used SFHR to induce a T --> C transition at codon 280 in exon 7 of the SMN2 gene in order to produce an increase in functional SMN protein. SDFs were transfected in vitro into cells obtained from five human fetal chorionic villi of embryos, homozygous for the SMN1 deletion, by either electroporation or microinjection. Transfected SMA cells showed an increase of up to 53% in full-length SMN mRNA compared with untransfected controls, as detected by real-time polymerase chain reaction. Consistent with the RNA data, immunocytochemistry and immunoblotting revealed a significant 2-fold increase in wild-type SMN protein. Furthermore, genotype and phenotype of transfected cells remained stable after several in vitro passages, demonstrating the stability of the correction over time.
Collapse
Affiliation(s)
- Federica Sangiuolo
- Human Genetics Section, Department of Biopathology, Tor Vergata University, 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Vu Nguyen K. RT‐PCR‐Based Cloning of Human SMN, the SMA Determining Gene, and the Construction of Its Expression Plasmids. ANAL LETT 2005. [DOI: 10.1081/al-200062161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
96
|
Swoboda KJ, Prior TW, Scott CB, McNaught TP, Wride MC, Reyna SP, Bromberg MB. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol 2005; 57:704-12. [PMID: 15852397 PMCID: PMC4334582 DOI: 10.1002/ana.20473] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Denervation was assessed in 89 spinal muscular atrophy (SMA) 1, 2, and 3 subjects via motor unit number estimation (MUNE) and maximum compound motor action potential amplitude (CMAP) studies, and results correlated with SMN2 copy, age, and function. MUNE and maximum CMAP values were distinct among SMA subtypes (p < 0.05). Changes in MUNE and maximum CMAP values over time were dependent on age, SMA type, and SMN2 copy number. SMN2 copy number less than 3 correlated with lower MUNE and maximum CMAP values (p < 0.0001) and worse functional outcomes. As SMN2 copy number increases, so does functional status (p < 0.0001). Change in MUNE longitudinally over the time intervals examined in this study was not statistically significant for any SMA cohort. However, a decline in maximum CMAP over time was apparent in SMA2 subjects (p = 0.049). Age-dependent decline in MUNE and maximum CMAP was apparent in both SMA 1 (p < 0.0001) and SMA 2 (p < 0.0001) subjects, with age as an independent factor regardless of type. Maximum CMAP at the time of the initial assessment was most predictive of functional outcome (p < 0.0001). Prospective longitudinal studies in four prenatally diagnosed infants demonstrated significant progressive denervation in association with symptomatic onset or functional decline. These data highlight the potential value of such measures in increasing our understanding of pathophysiological factors involved in denervation in SMA.
Collapse
Affiliation(s)
- Kathryn J Swoboda
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | |
Collapse
|
97
|
Sangiuolo F, Filareto A, Spitalieri P, Scaldaferri ML, Mango R, Bruscia E, Citro G, Brunetti E, De Felici M, Novelli G. In Vitro Restoration of Functional SMN Protein in Human Trophoblast Cells Affected by Spinal Muscular Atrophy by Small Fragment Homologous Replacement. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
98
|
Lunn MR, Root DE, Martino AM, Flaherty SP, Kelley BP, Coovert DD, Burghes AH, Man NT, Morris GE, Zhou J, Androphy EJ, Sumner CJ, Stockwell BR. Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. ACTA ACUST UNITED AC 2005; 11:1489-93. [PMID: 15555999 PMCID: PMC3160629 DOI: 10.1016/j.chembiol.2004.08.024] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2004] [Revised: 08/12/2004] [Accepted: 08/19/2004] [Indexed: 12/11/2022]
Abstract
Most patients with the pediatric neurodegenerative disease spinal muscular atrophy have a homozygous deletion of the survival motor neuron 1 (SMN1) gene, but retain one or more copies of the closely related SMN2 gene. The SMN2 gene encodes the same protein (SMN) but produces it at a low efficiency compared with the SMN1 gene. We performed a high-throughput screen of approximately 47,000 compounds to identify those that increase production of an SMN2-luciferase reporter protein, but not an SMN1-luciferase reporter protein. Indoprofen, a nonsteroidal anti-inflammatory drug (NSAID) and cyclooxygenase (COX) inhibitor, selectively increased SMN2-luciferase reporter protein and endogenous SMN protein and caused a 5-fold increase in the number of nuclear gems in fibroblasts from SMA patients. No other NSAIDs or COX inhibitors tested exhibited this activity.
Collapse
Affiliation(s)
- Mitchell R. Lunn
- Department of Biological Sciences, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
- Department of Chemistry, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
| | | | - Allison M. Martino
- Department of Biological Sciences, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
- Department of Chemistry, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
| | - Stephen P. Flaherty
- Department of Biological Sciences, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
- Department of Chemistry, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
| | - Brian P. Kelley
- Department of Biological Sciences, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
- Department of Chemistry, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
| | - Daniel D. Coovert
- Department of Molecular and Cellular Biochemistry and Department of Neurology, Ohio State University, Columbus, Ohio 43210
| | - Arthur H. Burghes
- Department of Molecular and Cellular Biochemistry and Department of Neurology, Ohio State University, Columbus, Ohio 43210
| | - Nguyen thi Man
- Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG, United Kingdom
| | - Glenn E. Morris
- Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG, United Kingdom
| | - Jianhua Zhou
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Elliot J. Androphy
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Charlotte J. Sumner
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Building 35, Room 2A1010, 35 Convent Drive, Bethesda, Maryland 20892
| | - Brent R. Stockwell
- Department of Biological Sciences, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
- Department of Chemistry, Columbia University, Fairchild Center, MC 2406, 1212 Amsterdam Avenue, New York, New York 10027
- Correspondence:
| |
Collapse
|
99
|
Feng W, Gubitz AK, Wan L, Battle DJ, Dostie J, Golembe TJ, Dreyfuss G. Gemins modulate the expression and activity of the SMN complex. Hum Mol Genet 2005; 14:1605-11. [PMID: 15843395 DOI: 10.1093/hmg/ddi168] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reduction in the expression of the survival of motor neurons (SMN) protein results in spinal muscular atrophy (SMA), a common motor neuron degenerative disease. SMN is part of a large macromolecular complex (the SMN complex) that includes at least six additional proteins called Gemins (Gemin2-7). The SMN complex is expressed in all cells and is present throughout the cytoplasm and in the nucleus where it is concentrated in Gems. The SMN complex plays an essential role in the production of spliceosomal small nuclear ribonucleoproteins (snRNPs) and likely other RNPs. To study the roles of the individual proteins, we systematically reduced the expression of SMN and each of the Gemins (2-6) by RNA interference. We show that the reduction of SMN leads to a decrease in snRNP assembly, the disappearance of Gems, and to a drastic reduction in the amounts of several Gemins. Moreover, reduction of Gemin2 or Gemin6 strongly decreases the activity of the SMN complex. These findings demonstrate that other components of the SMN complex, in addition to SMN, are critical for the activity of the complex and suggest that Gemin2 and Gemin6 are potentially important modifiers of SMA as well as potential disease genes for non-SMN motor neuron diseases.
Collapse
Affiliation(s)
- Wenqin Feng
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Kernochan LE, Russo ML, Woodling NS, Huynh TN, Avila AM, Fischbeck KH, Sumner CJ. The role of histone acetylation in SMN gene expression. Hum Mol Genet 2005; 14:1171-82. [PMID: 15772088 DOI: 10.1093/hmg/ddi130] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Increasing survival motor neuron 2 (SMN2) gene expression may be an effective strategy for the treatment of spinal muscular atrophy (SMA). Histone deacetylase (HDAC) inhibitors have been shown to increase SMN transcript and protein levels, but the specific role of histone acetylation in regulating SMN gene expression has not been explored. Using chromatin immunopreciptation, we investigated the levels of acetylated H3 and H4 histones and HDACs associated with different regions of the human and mouse SMN genes in both cultured cells and tissues. We show that the SMN gene has a reproducible pattern of histone acetylation that is largely conserved among different tissues and species. A limited region of the promoter surrounding the transcriptional start site has relatively high levels of histone acetylation, whereas regions further upstream or downstream have lower levels. After HDAC inhibitor treatment, acetylated histone levels increased, particularly at upstream regions, correlating with a 2-fold increase in promoter activity. During development in mouse tissues, histone acetylation levels decreased and associated HDAC2 levels increased at the region closest to the transcriptional start site, correlating with a 40-60% decrease in SMN transcript and protein levels. These data indicate that histone acetylation modulates SMN gene expression and that pharmacological manipulation of this epigenetic determinant is feasible. HDAC2, in particular, may be a future therapeutic target for SMA.
Collapse
Affiliation(s)
- Lauren E Kernochan
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|