51
|
Morrow CS, Moore DL. Vimentin's side gig: Regulating cellular proteostasis in mammalian systems. Cytoskeleton (Hoboken) 2020; 77:515-523. [PMID: 33190414 DOI: 10.1002/cm.21645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) perform a diverse set of well-known functions including providing structural support for the cell and resistance to mechanical stress, yet recent evidence has revealed unexpected roles for IFs as stress response proteins. Previously, it was shown that the type III IF protein vimentin forms cage-like structures around centrosome-associated proteins destined for degradation, structures referred to as aggresomes, suggesting a role for vimentin in protein turnover. However, vimentin's function at the aggresome has remained largely understudied. In a recent report, vimentin was shown to be dispensable for aggresome formation, but played a critical role in protein turnover at the aggresome through localizing proteostasis-related machineries, such as proteasomes, to the aggresome. Here, we review evidence for vimentin's function in proteostasis and highlight the organismal implications of these findings.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
52
|
Abstract
Vimentin is one of the first cytoplasmic intermediate filaments to be expressed in mammalian cells during embryogenesis, but its role in cellular fitness has long been a mystery. Vimentin is acknowledged to play a role in cell stiffness, cell motility, and cytoplasmic organization, yet it is widely considered to be dispensable for cellular function and organismal development. Here, we show that Vimentin plays a role in cellular stress response in differentiating cells, by recruiting aggregates, stress granules, and RNA-binding proteins, directing their elimination and asymmetric partitioning. In the absence of Vimentin, pluripotent embryonic stem cells fail to differentiate properly, with a pronounced deficiency in neuronal differentiation. Our results uncover a novel function for Vimentin, with important implications for development, tissue homeostasis, and in particular, stress response.
Collapse
|
53
|
Gerovska D, Irizar H, Otaegi D, Ferrer I, López de Munain A, Araúzo-Bravo MJ. Genealogy of the neurodegenerative diseases based on a meta-analysis of age-stratified incidence data. Sci Rep 2020; 10:18923. [PMID: 33144621 PMCID: PMC7609593 DOI: 10.1038/s41598-020-75014-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
While the central common feature of the neurodegenerative diseases (NDs) is the accumulation of misfolded proteins, they share other pathogenic mechanisms. However, we miss an explanation for the onset of the NDs. The mechanisms through which genetic mutations, present from conception are expressed only after several decades of life are unknown. We aim to find clues on the complexity of the disease onset trigger of the different NDs expressed in the number of steps of factors related to a disease. We collected brain autopsies on diseased patients with NDs, and found a dynamic increase of the ND multimorbidity with the advance of age. Together with the observation that the NDs accumulate multiple misfolded proteins, and the same misfolded proteins are involved in more than one ND, motivated us to propose a model for a genealogical tree of the NDs. To collect the dynamic data needed to build the tree, we used a Big-data approach that searched automatically epidemiological datasets for age-stratified incidence of NDs. Based on meta-analysis of over 400 datasets, we developed an algorithm that checks whether a ND follows a multistep model, finds the number of steps necessary for the onset of each ND, finds the number of common steps with other NDs and the number of specific steps of each ND, and builds with these findings a parsimony tree of the genealogy of the NDs. The tree discloses three types of NDs: the stem NDs with less than 3 steps; the trunk NDs with 5 to 6 steps; and the crown NDs with more than 7 steps. The tree provides a comprehensive understanding of the relationship across the different NDs, as well as a mathematical framework for dynamic adjustment of the genealogical tree of the NDs with the appearance of new epidemiological studies and the addition of new NDs to the model, thus setting the basis for the search for the identity and order of these steps. Understanding the complexity, or number of steps, of factors related to disease onset trigger is important prior deciding to study single factors for a multiple steps disease.
Collapse
Affiliation(s)
- Daniela Gerovska
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain S/N, 20014, San Sebastián, Spain
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain S/N, 20014, San Sebastián, Spain
| | - Haritz Irizar
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain S/N, 20014, San Sebastián, Spain
- Icahn Institute for Genomics & Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Psychiatry, Faculty of Brain Sciences, University College London, London, WC1E 6BT, UK
| | - David Otaegi
- Instituto Biodonostia-Hospital Universitario Donostia, San Sebastián, Gipuzkoa, Spain
| | - Isidre Ferrer
- Departamento de Patología y Terapéutica Experimental, Universidad de Barcelona, CIBERNED, Hospitalet de LLobregat, Barcelona, Spain
| | | | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, Calle Doctor Beguiristain S/N, 20014, San Sebastián, Spain.
- Computational Biomedicine Data Analysis Platform, Biodonostia Health Research Institute, Calle Doctor Beguiristain S/N, 20014, San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013, Bilbao, Spain.
- CIBER of Frailty and Healthy Aging (CIBERfes), Madrid, Spain.
- Computational Biology and Bioinformatics Group, Max Planck Institute for Molecular Biomedicine, Röntgenstr. 20, 48149, Münster, Germany.
| |
Collapse
|
54
|
Goodman JS, King GA, Ünal E. Cellular quality control during gametogenesis. Exp Cell Res 2020; 396:112247. [PMID: 32882217 PMCID: PMC7572901 DOI: 10.1016/j.yexcr.2020.112247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
A hallmark of aging is the progressive accumulation of cellular damage. Age-induced damage arises due to a decrease in organelle function along with a decline in protein quality control. Although somatic tissues deteriorate with age, the germline must maintain cellular homeostasis in order to ensure the production of healthy progeny. While germline quality control has been primarily studied in multicellular organisms, recent evidence suggests the existence of gametogenesis-specific quality control mechanisms in unicellular eukaryotes, highlighting the evolutionary conservation of meiotic events beyond chromosome morphogenesis. Notably, budding yeast eliminates age-induced damage during meiotic differentiation, employing novel organelle and protein quality control mechanisms to produce young and healthy gametes. Similarly, organelle and protein quality control is present in metazoan gametogenesis; however, whether and how these mechanisms contribute to cellular rejuvenation requires further investigation. Here, we summarize recent findings that describe organelle and protein quality control in budding yeast gametogenesis, examine similar quality control mechanisms in metazoan development, and identify research directions that will improve our understanding of meiotic cellular rejuvenation.
Collapse
Affiliation(s)
- Jay S Goodman
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Grant A King
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California Berkeley, 94720, USA.
| |
Collapse
|
55
|
Prasad R, Sliwa-Gonzalez A, Barral Y. Mapping bilayer thickness in the ER membrane. SCIENCE ADVANCES 2020; 6:6/46/eaba5130. [PMID: 33177076 PMCID: PMC7673731 DOI: 10.1126/sciadv.aba5130] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/23/2020] [Indexed: 05/20/2023]
Abstract
In the plasma membrane and in synthetic membranes, resident lipids may laterally unmix to form domains of distinct biophysical properties. Whether lipids also drive the lateral organization of intracellular membranes is largely unknown. Here, we describe genetically encoded fluorescent reporters visualizing local variations in bilayer thickness. Using them, we demonstrate that long-chained ceramides promote the formation of discrete domains of increased bilayer thickness in the yeast ER, particularly in the future plane of cleavage and at ER-trans-Golgi contact sites. Thickening of the ER membrane in the cleavage plane contributed to the formation of lateral diffusion barriers, which restricted the passage of short, but not long, protein transmembrane domains between the mother and bud ER compartments. Together, our data establish that the ER membrane is laterally organized and that ceramides drive this process, and provide insights into the physical nature and biophysical mechanisms of the lateral diffusion barriers that compartmentalize the ER.
Collapse
Affiliation(s)
- Rupali Prasad
- Institute of Biochemistry, Department of Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Andrzej Sliwa-Gonzalez
- Institute of Biochemistry, Department of Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
56
|
Kobayashi T, Kageyama R. Lysosomes and signaling pathways for maintenance of quiescence in adult neural stem cells. FEBS J 2020; 288:3082-3093. [PMID: 32902139 PMCID: PMC8246936 DOI: 10.1111/febs.15555] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
Abstract
Quiescence is a cellular strategy for maintaining somatic stem cells in a specific niche in a low metabolic state without senescence for a long period of time. During development, neural stem cells (NSCs) actively proliferate and self-renew, and their progeny differentiate into both neurons and glial cells to form mature brain tissues. On the other hand, most NSCs in the adult brain are quiescent and arrested in G0/G1 phase of the cell cycle. Quiescence is essential in order to avoid the precocious exhaustion of NSCs, ensuring a sustainable source of available stem cells in the brain throughout the lifespan. After receiving activation signals, quiescent NSCs reenter the cell cycle and generate new neurons. This switching between quiescence and proliferation is tightly regulated by diverse signaling pathways. Recent studies suggest significant involvement of cellular proteostasis (homeostasis of the proteome) in the quiescent state of NSCs. Proteostasis is the result of integrated regulation of protein synthesis, folding, and degradation. In this review, we discuss regulation of quiescence by multiple signaling pathways, especially bone morphogenetic protein and Notch signaling, and focus on the functional involvement of the lysosome, an organelle governing cellular degradation, in quiescence of adult NSCs.
Collapse
Affiliation(s)
- Taeko Kobayashi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
57
|
Intercellular trafficking via plasmodesmata: molecular layers of complexity. Cell Mol Life Sci 2020; 78:799-816. [PMID: 32920696 PMCID: PMC7897608 DOI: 10.1007/s00018-020-03622-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/28/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Plasmodesmata are intercellular pores connecting together most plant cells. These structures consist of a central constricted form of the endoplasmic reticulum, encircled by some cytoplasmic space, in turn delimited by the plasma membrane, itself ultimately surrounded by the cell wall. The presence and structure of plasmodesmata create multiple routes for intercellular trafficking of a large spectrum of molecules (encompassing RNAs, proteins, hormones and metabolites) and also enable local signalling events. Movement across plasmodesmata is finely controlled in order to balance processes requiring communication with those necessitating symplastic isolation. Here, we describe the identities and roles of the molecular components (specific sets of lipids, proteins and wall polysaccharides) that shape and define plasmodesmata structural and functional domains. We highlight the extensive and dynamic interactions that exist between the plasma/endoplasmic reticulum membranes, cytoplasm and cell wall domains, binding them together to effectively define plasmodesmata shapes and purposes.
Collapse
|
58
|
Audesse AJ, Webb AE. Mechanisms of enhanced quiescence in neural stem cell aging. Mech Ageing Dev 2020; 191:111323. [PMID: 32781077 DOI: 10.1016/j.mad.2020.111323] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022]
Abstract
The maintenance of neural stem cell function is vital to ensure neurogenesis throughout adulthood. During aging, there is a significant reduction in adult neurogenesis that correlates with a decline in cognitive function. Although recent studies have revealed novel extrinsic and intrinsic mechanisms that regulate the adult neural stem cell (NSC) pool and lineage progression, the precise molecular mechanisms that drive dysregulation of adult neurogenesis in the context of aging are only beginning to emerge. Recent studies have shed light on mechanisms that regulate the earliest step of adult neurogenesis, the activation of quiescent NSCs. Interestingly, the ability of NSCs to enter the cell cycle in the aged brain significantly declines suggesting a deepend state of quiescence. Given the likely contribution of adult neurogenesis to supporting cognitive function in humans, enhancing neurogenesis may be a strategy to combat age-related cognitive decline. This review highlights the mechanisms that regulate the NSC pool throughout adulthood and discusses how dysregulation of these processes may contribute to the decline in neurogenesis and cognitive function throughout aging.
Collapse
Affiliation(s)
- Amanda J Audesse
- Graduate Program in Neuroscience, Brown University, USA; Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center on the Biology of Aging, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
59
|
Nicaise AM, Willis CM, Crocker SJ, Pluchino S. Stem Cells of the Aging Brain. Front Aging Neurosci 2020; 12:247. [PMID: 32848716 PMCID: PMC7426063 DOI: 10.3389/fnagi.2020.00247] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The adult central nervous system (CNS) contains resident stem cells within specific niches that maintain a self-renewal and proliferative capacity to generate new neurons, astrocytes, and oligodendrocytes throughout adulthood. Physiological aging is associated with a progressive loss of function and a decline in the self-renewal and regenerative capacities of CNS stem cells. Also, the biggest risk factor for neurodegenerative diseases is age, and current in vivo and in vitro models of neurodegenerative diseases rarely consider this. Therefore, combining both aging research and appropriate interrogation of animal disease models towards the understanding of the disease and age-related stem cell failure is imperative to the discovery of new therapies. This review article will highlight the main intrinsic and extrinsic regulators of neural stem cell (NSC) aging and discuss how these factors impact normal homeostatic functions within the adult brain. We will consider established in vivo animal and in vitro human disease model systems, and then discuss the current and future trajectories of novel senotherapeutics that target aging NSCs to ameliorate brain disease.
Collapse
Affiliation(s)
- Alexandra M Nicaise
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Cory M Willis
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
60
|
Navarro Negredo P, Yeo RW, Brunet A. Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell 2020; 27:202-223. [PMID: 32726579 DOI: 10.1016/j.stem.2020.07.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging has a profound and devastating effect on the brain. Old age is accompanied by declining cognitive function and enhanced risk of brain diseases, including cancer and neurodegenerative disorders. A key question is whether cells with regenerative potential contribute to brain health and even brain "rejuvenation." This review discusses mechanisms that regulate neural stem cells (NSCs) during aging, focusing on the effect of metabolism, genetic regulation, and the surrounding niche. We also explore emerging rejuvenating strategies for old NSCs. Finally, we consider how new technologies may help harness NSCs' potential to restore healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
61
|
Abstract
Asymmetric cell division (ACD) is an evolutionarily conserved mechanism used by prokaryotes and eukaryotes alike to control cell fate and generate cell diversity. A detailed mechanistic understanding of ACD is therefore necessary to understand cell fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of cell organelles, or differences in sibling cell size or shape. These events are usually preceded by and influenced by symmetry breaking events and cell polarization. In this Review, we focus predominantly on cell intrinsic mechanisms and their contribution to cell polarization, ACD and binary cell fate decisions. We discuss examples of polarized systems and detail how polarization is established and, whenever possible, how it contributes to ACD. Established and emerging model organisms will be considered alike, illuminating both well-documented and underexplored forms of polarization and ACD.
Collapse
Affiliation(s)
- Bharath Sunchu
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| |
Collapse
|
62
|
Manzano-López J, Monje-Casas F. Asymmetric cell division and replicative aging: a new perspective from the spindle poles. Curr Genet 2020; 66:719-727. [PMID: 32266430 DOI: 10.1007/s00294-020-01074-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/25/2022]
Abstract
Although cell division is usually portrayed as an equitable process by which a progenitor cell originates two identical daughter cells, there are multiple examples of asymmetric divisions that generate two cells that differ in their content, morphology and/or proliferative potential. The capacity of the cells to generate asymmetry during their division is of paramount biological relevance, playing essential roles during embryonic development, cellular regeneration and tissue morphogenesis. Problems with the proper establishment of asymmetry and polarity during cell division can give rise to cancer and neurodevelopmental disorders, as well as to also accelerate cellular aging. Interestingly, the microtubule organizing centers that orchestrate the formation of the mitotic spindle have been described among the cellular structures that can be differentially allocated during asymmetric cell divisions. This mini-review focuses on recent research from our group and others uncovering a role for the non-random distribution of the spindle-associated microtubule organizing centers in the differential distribution of aging factors during asymmetric mitoses and therefore in the maintenance of the replicative lifespan of the cells.
Collapse
Affiliation(s)
- Javier Manzano-López
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Avda. Américo Vespucio, 24, P.C.T. Cartuja 93, 41092, Sevilla, Spain.
| | - Fernando Monje-Casas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Spanish National Research Council (CSIC) - University of Seville - University Pablo de Olavide, Avda. Américo Vespucio, 24, P.C.T. Cartuja 93, 41092, Sevilla, Spain.
| |
Collapse
|
63
|
Maybury-Lewis SY, Webb AE. Taking Prisoners: Vimentin Cages Capture Proteasomes during NSC Activation. Cell Stem Cell 2020; 26:473-475. [PMID: 32243805 DOI: 10.1016/j.stem.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Asymmetric partitioning of damaged proteins is thought to play a key role in preserving stem cell function with age. In this issue of Cell Stem Cell, Morrow et al. (2020) show that vimentin recruits proteasome machinery to aggresomes to control NSC proteostasis during quiescence exit.
Collapse
Affiliation(s)
- Sun Y Maybury-Lewis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ashley E Webb
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
64
|
Abstract
Ageing is a major risk factor for the development of many diseases, prominently including neurodegenerative disorders such as Alzheimer disease and Parkinson disease. A hallmark of many age-related diseases is the dysfunction in protein homeostasis (proteostasis), leading to the accumulation of protein aggregates. In healthy cells, a complex proteostasis network, comprising molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation. However, sustaining proteome balance is a challenging task in the face of various external and endogenous stresses that accumulate during ageing. These stresses lead to the decline of proteostasis network capacity and proteome integrity. The resulting accumulation of misfolded and aggregated proteins affects, in particular, postmitotic cell types such as neurons, manifesting in disease. Recent analyses of proteome-wide changes that occur during ageing inform strategies to improve proteostasis. The possibilities of pharmacological augmentation of the capacity of proteostasis networks hold great promise for delaying the onset of age-related pathologies associated with proteome deterioration and for extending healthspan.
Collapse
|
65
|
Wang Y, Lo WC, Chou CS. Modelling stem cell ageing: a multi-compartment continuum approach. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191848. [PMID: 32269805 PMCID: PMC7137970 DOI: 10.1098/rsos.191848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
Stem cells are important to generate all specialized tissues at an early life stage, and in some systems, they also have repair functions to replenish the adult tissues. Repeated cell divisions lead to the accumulation of molecular damage in stem cells, which are commonly recognized as drivers of ageing. In this paper, a novel model is proposed to integrate stem cell proliferation and differentiation with damage accumulation in the stem cell ageing process. A system of two structured PDEs is used to model the population densities of stem cells (including all multiple progenitors) and terminally differentiated (TD) cells. In this system, cell cycle progression and damage accumulation are modelled by continuous dynamics, and damage segregation between daughter cells is considered at each division. Analysis and numerical simulations are conducted to study the steady-state populations and stem cell damage distributions under different damage segregation strategies. Our simulations suggest that equal distribution of the damaging substance between stem cells in a symmetric renewal and less damage retention in stem cells in the asymmetric division are favourable strategies, which reduce the death rate of the stem cells and increase the TD cell populations. Moreover, asymmetric damage segregation in stem cells leads to less concentrated damage distribution in the stem cell population, which may be more robust to the stochastic changes in the damage. The feedback regulation from stem cells can reduce oscillations and population overshoot in the process, and improve the fitness of stem cells by increasing the percentage of cells with less damage in the stem cell population.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Wing-Cheong Lo
- Department of Mathematics, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Ching-Shin Chou
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
66
|
Morrow CS, Porter TJ, Xu N, Arndt ZP, Ako-Asare K, Heo HJ, Thompson EAN, Moore DL. Vimentin Coordinates Protein Turnover at the Aggresome during Neural Stem Cell Quiescence Exit. Cell Stem Cell 2020; 26:558-568.e9. [PMID: 32109376 DOI: 10.1016/j.stem.2020.01.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/31/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023]
Abstract
Maintaining a healthy proteome throughout life is critical for proper somatic stem cell function, but the complexities of the stem cell response to increases in damaged or aggregated proteins remain unclear. Here we demonstrate that adult neural stem cells (NSCs) utilize aggresomes to recover from disrupted proteostasis and describe a novel function for the intermediate filament vimentin in proteostasis as a spatial coordinator of proteasomes to the aggresome. In the absence of vimentin, NSCs have a reduced capacity to exit quiescence, a time when NSCs are required to clear a wave of aggregated proteins, and demonstrate an early age-dependent decline in proliferation and neurogenesis. Taken together, these data reveal a significant role of vimentin and aggresomes in the regulation of proteostasis during quiescent NSC activation.
Collapse
Affiliation(s)
- Christopher S Morrow
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Tiaira J Porter
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Nan Xu
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Zachary P Arndt
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Kayla Ako-Asare
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | - Helen J Heo
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA
| | | | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI 53705, USA.
| |
Collapse
|
67
|
Schlachetzki JCM, Toda T, Mertens J. When function follows form: Nuclear compartment structure and the epigenetic landscape of the aging neuron. Exp Gerontol 2020; 133:110876. [PMID: 32068088 DOI: 10.1016/j.exger.2020.110876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The human brain is affected by cellular aging. Neurons are primarily generated during embryogenesis and early life with a limited capacity for renewal and replacement, making them some of the oldest cells in the human body. Our present understanding of neurodegenerative diseases points towards advanced neuronal age as a prerequisite for the development of these disorders. While significant progress has been made in understanding the relationship between aging and neurological disease, it will be essential to delve further into the molecular mechanisms of neuronal aging in order to develop therapeutic interventions targeting age-related brain dysfunction. In this mini review, we highlight recent findings on the relationship between the aging of nuclear structures and changes in the epigenetic landscape during neuronal aging and disease.
Collapse
Affiliation(s)
- Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tomohisa Toda
- Nuclear Architecture in Neural Plasticity and Aging, German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Jerome Mertens
- Institute of Molecular Biology & CMBI, Leopold-Franzens-University Innsbruck, Austria; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
68
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
69
|
Abstract
Aging brain becomes susceptible to neurodegenerative diseases due to the shifting of microglia and astrocyte phenotypes to an active “pro-inflammatory” state, causing chronic low-grade neuroinflammation. Despite the fact that the role of neuroinflammation during aging has been extensively studied in recent years, the underlying causes remain unclear. The identification of relevant proteins and understanding their potential roles in neuroinflammation can help explain their potential of becoming biomarkers in the aging brain and as drug targets for prevention and treatment. This will eventually reduce the chances of developing neurodegenerative diseases and promote healthier lives in the elderly. In this review, we have summarized the morphological and cellular changes in the aging brain, the effects of age-related neuroinflammation, and the potential role of cofilin-1 during neuroinflammation. We also discuss other factors contributing to brain aging and neuroinflammation.
Collapse
Affiliation(s)
- Amsha S Alsegiani
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
70
|
Abstract
The molecular basis for the neural stem cell quiescence-to-activation transition has become an important focus in the study of adult neurogenesis. Recently in Cell, Kalamakis et al. (2019) show that aged neural stem cells face greater barriers to exiting quiescence, imposed by the niche through inflammation and altered Wnt signaling.
Collapse
|
71
|
Quiescence of Adult Mammalian Neural Stem Cells: A Highly Regulated Rest. Neuron 2019; 104:834-848. [DOI: 10.1016/j.neuron.2019.09.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
|
72
|
Łapińska U, Glover G, Capilla-Lasheras P, Young AJ, Pagliara S. Bacterial ageing in the absence of external stressors. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180442. [PMID: 31587633 PMCID: PMC6792439 DOI: 10.1098/rstb.2018.0442] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/03/2022] Open
Abstract
Evidence of ageing in the bacterium Escherichia coli was a landmark finding in senescence research, as it suggested that even organisms with morphologically symmetrical fission may have evolved strategies to permit damage accumulation. However, recent work has suggested that ageing is only detectable in this organism in the presence of extrinsic stressors, such as the fluorescent proteins and strong light sources typically used to excite them. Here we combine microfluidics with brightfield microscopy to provide evidence of ageing in E. coli in the absence of these stressors. We report (i) that the doubling time of the lineage of cells that consistently inherits the 'maternal old pole' progressively increases with successive rounds of cell division until it reaches an apparent asymptote, and (ii) that the parental cell divides asymmetrically, with the old pole daughter showing a longer doubling time and slower glucose accumulation than the new pole daughter. Notably, these patterns arise without the progressive accumulation or asymmetric partitioning of observable misfolded-protein aggregates, phenomena previously hypothesized to cause the ageing phenotype. Our findings suggest that ageing is part of the naturally occurring ecologically-relevant phenotype of this bacterium and highlight the importance of alternative mechanisms of damage accumulation in this context. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Urszula Łapińska
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Georgina Glover
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Pablo Capilla-Lasheras
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Andrew J. Young
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Stefano Pagliara
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
73
|
Abstract
Asymmetric cell division (ACD) is a conserved strategy for achieving cell diversity. A cell can undergo an intrinsic ACD through asymmetric segregation of cell fate determinants or cellular organelles. Recently, a new biophysical concept known as biomolecular phase separation, through which proteins and/or RNAs autonomously form a highly concentrated non-membrane-enclosed compartment via multivalent interactions, has provided new insights into the assembly and regulation of many membrane-less or membrane-attached organelles. Intriguingly, biomolecular phase separation is suggested to drive asymmetric condensation of cell fate determinants during ACD as well as organization of cellular organelles involved in ACD. In this Perspective, I first summarize recent findings on the molecular basis governing intrinsic ACD. Then I will discuss how ACD might be regulated by formation of dense molecular assemblies via phase separation.
Collapse
Affiliation(s)
- Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences , Shanghai Medical College of Fudan University , Shanghai 200032 , China
| |
Collapse
|
74
|
Khorraminejad-Shirazi M, Dorvash M, Estedlal A, Hoveidaei AH, Mazloomrezaei M, Mosaddeghi P. Aging: A cell source limiting factor in tissue engineering. World J Stem Cells 2019; 11:787-802. [PMID: 31692986 PMCID: PMC6828594 DOI: 10.4252/wjsc.v11.i10.787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/03/2019] [Accepted: 09/05/2019] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering has yet to reach its ideal goal, i.e. creating profitable off-the-shelf tissues and organs, designing scaffolds and three-dimensional tissue architectures that can maintain the blood supply, proper biomaterial selection, and identifying the most efficient cell source for use in cell therapy and tissue engineering. These are still the major challenges in this field. Regarding the identification of the most appropriate cell source, aging as a factor that affects both somatic and stem cells and limits their function and applications is a preventable and, at least to some extents, a reversible phenomenon. Here, we reviewed different stem cell types, namely embryonic stem cells, adult stem cells, induced pluripotent stem cells, and genetically modified stem cells, as well as their sources, i.e. autologous, allogeneic, and xenogeneic sources. Afterward, we approached aging by discussing the functional decline of aged stem cells and different intrinsic and extrinsic factors that are involved in stem cell aging including replicative senescence and Hayflick limit, autophagy, epigenetic changes, miRNAs, mTOR and AMPK pathways, and the role of mitochondria in stem cell senescence. Finally, various interventions for rejuvenation and geroprotection of stem cells are discussed. These interventions can be applied in cell therapy and tissue engineering methods to conquer aging as a limiting factor, both in original cell source and in the in vitro proliferated cells.
Collapse
Affiliation(s)
- Mohammadhossein Khorraminejad-Shirazi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mohammadreza Dorvash
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| | - Alireza Estedlal
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Amir Human Hoveidaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Mohsen Mazloomrezaei
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| | - Pouria Mosaddeghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Cell and Molecular Medicine Student Research Group, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran
| |
Collapse
|
75
|
Abstract
Longevity reflects the ability to maintain homeostatic conditions necessary for life as an organism ages. A long-lived organism must contend not only with environmental hazards but also with internal entropy and macromolecular damage that result in the loss of fitness during ageing, a phenomenon known as senescence. Although central to many of the core concepts in biology, ageing and longevity have primarily been investigated in sexually reproducing, multicellular organisms. However, growing evidence suggests that microorganisms undergo senescence, and can also exhibit extreme longevity. In this Review, we integrate theoretical and empirical insights to establish a unified perspective on senescence and longevity. We discuss the evolutionary origins, genetic mechanisms and functional consequences of microbial ageing. In addition to having biomedical implications, insights into microbial ageing shed light on the role of ageing in the origin of life and the upper limits to longevity.
Collapse
|
76
|
Yao X, Wei W, Wang X, Chenglin L, Björklund M, Ouyang H. Stem cell derived exosomes: microRNA therapy for age-related musculoskeletal disorders. Biomaterials 2019; 224:119492. [PMID: 31557588 DOI: 10.1016/j.biomaterials.2019.119492] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Age-associated musculoskeletal disorders (MSDs) have been historically overlooked by mainstream biopharmaceutical researchers. However, it has now been recognized that stem and progenitor cells confer innate healing capacity for the musculoskeletal system. Current evidence indicates that exosomes are particularly important in this process as they can mediate sequential and reciprocal interactions between cells to initiate and enhance healing. The present review focuses on stem cells (SCs) derived exosomes as a regenerative therapy for treatment of musculoskeletal disorders. We discuss mechanisms involving exosome-mediated transfer of RNAs and how these have been demonstrated in vitro and in vivo to affect signal transduction pathways in target cells. We envision that standardized protocols for stem cell culture as well as for the isolation and characterization of exosomes enable GMP-compliant large-scale production of SCs-derived exosomes. Hence, potential new treatment for age-related degenerative diseases can be seen in the horizon.
Collapse
Affiliation(s)
- Xudong Yao
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wei
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaozhao Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Li Chenglin
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mikael Björklund
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University, Haining, China; Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cells and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
77
|
Karabasheva D, Smyth JT. A novel, dynein-independent mechanism focuses the endoplasmic reticulum around spindle poles in dividing Drosophila spermatocytes. Sci Rep 2019; 9:12456. [PMID: 31462700 PMCID: PMC6713755 DOI: 10.1038/s41598-019-48860-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/14/2019] [Indexed: 01/04/2023] Open
Abstract
In dividing animal cells the endoplasmic reticulum (ER) concentrates around the poles of the spindle apparatus by associating with astral microtubules (MTs), and this association is essential for proper ER partitioning to progeny cells. The mechanisms that associate the ER with astral MTs are unknown. Because astral MT minus-ends are anchored by centrosomes at spindle poles, we hypothesized that the MT minus-end motor dynein mediates ER concentration around spindle poles. Live in vivo imaging of Drosophila spermatocytes revealed that dynein is required for ER concentration around centrosomes during late interphase. In marked contrast, however, dynein suppression had no effect on ER association with astral MTs and concentration around spindle poles in early M-phase. In fact, there was a sudden onset of ER association with astral MTs in dynein RNAi cells, revealing activation of an M-phase specific mechanism of ER-MT association. ER redistribution to spindle poles also did not require non-claret disjunctional (ncd), the other known Drosophila MT minus-end motor, nor Klp61F, a MT plus-end motor that generates spindle poleward forces. Collectively, our results suggest that a novel, M-phase specific mechanism of ER-MT association that is independent of MT minus-end motors is required for proper ER partitioning in dividing cells.
Collapse
Affiliation(s)
- Darya Karabasheva
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, 20814, USA
| | - Jeremy T Smyth
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MD, 20814, USA.
| |
Collapse
|
78
|
Ermolaeva M, Neri F, Ori A, Rudolph KL. Cellular and epigenetic drivers of stem cell ageing. Nat Rev Mol Cell Biol 2019; 19:594-610. [PMID: 29858605 DOI: 10.1038/s41580-018-0020-3] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult tissue stem cells have a pivotal role in tissue maintenance and regeneration throughout the lifespan of multicellular organisms. Loss of tissue homeostasis during post-reproductive lifespan is caused, at least in part, by a decline in stem cell function and is associated with an increased incidence of diseases. Hallmarks of ageing include the accumulation of molecular damage, failure of quality control systems, metabolic changes and alterations in epigenome stability. In this Review, we discuss recent evidence in support of a novel concept whereby cell-intrinsic damage that accumulates during ageing and cell-extrinsic changes in ageing stem cell niches and the blood result in modifications of the stem cell epigenome. These cumulative epigenetic alterations in stem cells might be the cause of the deregulation of developmental pathways seen during ageing. In turn, they could confer a selective advantage to mutant and epigenetically drifted stem cells with altered self-renewal and functions, which contribute to the development of ageing-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ermolaeva
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Francesco Neri
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - K Lenhard Rudolph
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany. .,Medical Faculty Jena, University Hospital Jena (UKJ), Jena, Germany.
| |
Collapse
|
79
|
Peifer AC, Maxwell PH. Preferential Ty1 retromobility in mother cells and nonquiescent stationary phase cells is associated with increased concentrations of total Gag or processed Gag and is inhibited by exposure to a high concentration of calcium. Aging (Albany NY) 2019; 10:402-424. [PMID: 29562219 PMCID: PMC5892695 DOI: 10.18632/aging.101402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/16/2018] [Indexed: 01/31/2023]
Abstract
Retrotransposons are abundant mobile DNA elements in eukaryotic genomes that are more active with age in diverse species. Details of the regulation and consequences of retrotransposon activity during aging remain to be determined. Ty1 retromobility in Saccharomyces cerevisiae is more frequent in mother cells compared to daughter cells, and we found that Ty1 was more mobile in nonquiescent compared to quiescent subpopulations of stationary phase cells. This retromobility asymmetry was absent in mutant strains lacking BRP1 that have reduced expression of the essential Pma1p plasma membrane proton pump, lacking the mRNA decay gene LSM1, and in cells exposed to a high concentration of calcium. Mother cells had higher levels of Ty1 Gag protein than daughters. The proportion of protease-processed Gag decreased as cells transitioned to stationary phase, processed Gag was the dominant form in nonquiescent cells, but was virtually absent from quiescent cells. Treatment with calcium reduced total Gag levels and the proportion of processed Gag, particularly in mother cells. We also found that Ty1 reduced the fitness of proliferating but not stationary phase cells. These findings may be relevant to understanding regulation and consequences of retrotransposons during aging in other organisms, due to conserved impacts and regulation of retrotransposons.
Collapse
Affiliation(s)
- Andrew C Peifer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.,Wadsworth Center, Division of Genetics, Albany, NY 12208, USA
| |
Collapse
|
80
|
Denoth-Lippuner A, Jessberger S. Mechanisms of cellular rejuvenation. FEBS Lett 2019; 593:3381-3392. [PMID: 31197818 DOI: 10.1002/1873-3468.13483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 01/15/2023]
Abstract
Aging leads to changes on an organismal but also cellular level. However, the exact mechanisms of cellular aging in mammals remain poorly understood and the identity and functional role of aging factors, some of which have previously been defined in model organisms such as Saccharomyces cerevisiae, remain elusive. Remarkably, during cellular reprogramming most if not all aging hallmarks are erased, offering a novel entry point to study aging and rejuvenation on a cellular level. On the other hand, direct reprogramming of old cells into cells of a different fate preserves many aging signs. Therefore, investigating the process of reprogramming and comparing it to direct reprogramming may yield novel insights about the clearing of aging factors, which is the basis of rejuvenation. Here, we discuss how reprogramming might lead to rejuvenation of a cell, an organ, or even the whole organism.
Collapse
Affiliation(s)
- Annina Denoth-Lippuner
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, Switzerland
| |
Collapse
|
81
|
Megyeri M, Prasad R, Volpert G, Sliwa-Gonzalez A, Haribowo AG, Aguilera-Romero A, Riezman H, Barral Y, Futerman AH, Schuldiner M. Yeast ceramide synthases, Lag1 and Lac1, have distinct substrate specificity. J Cell Sci 2019; 132:jcs.228411. [PMID: 31164445 PMCID: PMC6602303 DOI: 10.1242/jcs.228411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/20/2019] [Indexed: 12/30/2022] Open
Abstract
LAG1 was the first longevity assurance gene discovered in Saccharomyces cerevisiae. The Lag1 protein is a ceramide synthase and its homolog, Lac1, has a similar enzymatic function but no role in aging. Lag1 and Lac1 lie in an enzymatic branch point of the sphingolipid pathway that is interconnected by the activity of the C4 hydroxylase, Sur2. By uncoupling the enzymatic branch point and using lipidomic mass spectrometry, metabolic labeling and in vitro assays we show that Lag1 preferentially synthesizes phyto-sphingolipids. Using photo-bleaching experiments we show that Lag1 is uniquely required for the establishment of a lateral diffusion barrier in the nuclear envelope, which depends on phytoceramide. Given the role of this diffusion barrier in the retention of aging factors in the mother cell, we suggest that the different specificities of the two ceramide synthases, and the specific effect of Lag1 on asymmetrical inheritance, may explain why Δlag1 cells have an increased lifespan while Δlac1 cells do not. Highlighted Article: Distinct substrate specificities of Lag1 and Lac1, the two yeast ceramide synthases, are revealed, shedding light on their physiological roles.
Collapse
Affiliation(s)
- Márton Megyeri
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.,Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rupali Prasad
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Giora Volpert
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - A Galih Haribowo
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | | | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva 1211, Switzerland
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
82
|
Proenca AM, Rang CU, Qiu A, Shi C, Chao L. Cell aging preserves cellular immortality in the presence of lethal levels of damage. PLoS Biol 2019; 17:e3000266. [PMID: 31120870 PMCID: PMC6532838 DOI: 10.1371/journal.pbio.3000266] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
Cellular aging, a progressive functional decline driven by damage accumulation, often culminates in the mortality of a cell lineage. Certain lineages, however, are able to sustain long-lasting immortality, as prominently exemplified by stem cells. Here, we show that Escherichia coli cell lineages exhibit comparable patterns of mortality and immortality. Through single-cell microscopy and microfluidic techniques, we find that these patterns are explained by the dynamics of damage accumulation and asymmetric partitioning between daughter cells. At low damage accumulation rates, both aging and rejuvenating lineages retain immortality by reaching their respective states of physiological equilibrium. We show that both asymmetry and equilibrium are present in repair mutants lacking certain repair chaperones, suggesting that intact repair capacity is not essential for immortal proliferation. We show that this growth equilibrium, however, is displaced by extrinsic damage in a dosage-dependent response. Moreover, we demonstrate that aging lineages become mortal when damage accumulation rates surpass a threshold, whereas rejuvenating lineages within the same population remain immortal. Thus, the processes of damage accumulation and partitioning through asymmetric cell division are essential in the determination of proliferative mortality and immortality in bacterial populations. This study provides further evidence for the characterization of cellular aging as a general process, affecting prokaryotes and eukaryotes alike and according to similar evolutionary constraints. A study of Escherichia coli shows that bacterial lineages maintain replicative immortality by reaching an equilibrium between aging and rejuvenation; when this equilibrium is disrupted, aging lineages cross their immortality threshold, becoming mortal, while rejuvenating lineages are favored by asymmetry and retain immortality within the same population.
Collapse
Affiliation(s)
- Audrey Menegaz Proenca
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil
- * E-mail: (AMP); (LC)
| | - Camilla Ulla Rang
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Andrew Qiu
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Chao Shi
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Lin Chao
- Section of Ecology, Behavior and Evolution, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (AMP); (LC)
| |
Collapse
|
83
|
Sola-Carvajal A, Revêchon G, Helgadottir HT, Whisenant D, Hagblom R, Döhla J, Katajisto P, Brodin D, Fagerström-Billai F, Viceconte N, Eriksson M. Accumulation of Progerin Affects the Symmetry of Cell Division and Is Associated with Impaired Wnt Signaling and the Mislocalization of Nuclear Envelope Proteins. J Invest Dermatol 2019; 139:2272-2280.e12. [PMID: 31128203 DOI: 10.1016/j.jid.2019.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022]
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is the result of a defective form of the lamin A protein called progerin. While progerin is known to disrupt the properties of the nuclear lamina, the underlying mechanisms responsible for the pathophysiology of HGPS remain less clear. Previous studies in our laboratory have shown that progerin expression in murine epidermal basal cells results in impaired stratification and halted development of the skin. Stratification and differentiation of the epidermis is regulated by asymmetric stem cell division. Here, we show that expression of progerin impairs the ability of stem cells to maintain tissue homeostasis as a result of altered cell division. Quantification of basal skin cells showed an increase in symmetric cell division that correlated with progerin accumulation in HGPS mice. Investigation of the mechanisms underlying this phenomenon revealed a putative role of Wnt/β-catenin signaling. Further analysis suggested an alteration in the nuclear translocation of β-catenin involving the inner and outer nuclear membrane proteins, emerin and nesprin-2. Taken together, our results suggest a direct involvement of progerin in the transmission of Wnt signaling and normal stem cell division. These insights into the molecular mechanisms of progerin may help develop new treatment strategies for HGPS.
Collapse
Affiliation(s)
- Agustín Sola-Carvajal
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| | - Gwladys Revêchon
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Hafdis T Helgadottir
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Daniel Whisenant
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Robin Hagblom
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Julia Döhla
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David Brodin
- Bioinformatics and Expression Core Facility, Karolinska Institutet, Huddinge, Sweden
| | | | - Nikenza Viceconte
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Eriksson
- Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
84
|
Asymmetric division events promote variability in cell cycle duration in animal cells and Escherichia coli. Nat Commun 2019; 10:1901. [PMID: 31015409 PMCID: PMC6478688 DOI: 10.1038/s41467-019-09413-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/08/2019] [Indexed: 11/29/2022] Open
Abstract
Asymmetric cell division is a major mechanism generating cell diversity. As cell cycle duration varies among cells in mammalian tissue culture cells, we asked whether their division asymmetry contributes to this variability. We identify among sibling cells an outlier using hierarchical clustering on cell cycle durations of granddaughter cells obtained by lineage tracking of single histone2B-labelled MDCKs. Remarkably, divisions involving outlier cells are not uniformly distributed in lineages, as shown by permutation tests, but appear to emerge from asymmetric divisions taking place at non-stochastic levels: a parent cell influences with 95% confidence and 0.5% error the unequal partitioning of the cell cycle duration in its two progenies. Upon ninein downregulation, this variability propagation is lost, and outlier frequency and variability in cell cycle durations in lineages is reduced. As external influences are not detectable, we propose that a cell-autonomous process, possibly involved in cell specialisation, determines cell cycle duration variability. We know that variations in cell cycle duration between cells naturally occur but the mechanisms are largely unknown. Here, using lineage tracking, hierarchical clustering and Monte Carlo methods, the authors show that large differences in granddaughter cell cycle duration are driven by asymmetric divisions.
Collapse
|
85
|
Rodriguez-Fernandez IA, Qi Y, Jasper H. Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction. Nat Commun 2019; 10:1050. [PMID: 30837466 PMCID: PMC6401111 DOI: 10.1038/s41467-019-08982-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/09/2019] [Indexed: 01/08/2023] Open
Abstract
A decline in protein homeostasis (proteostasis) has been proposed as a hallmark of aging. Somatic stem cells (SCs) uniquely maintain their proteostatic capacity through mechanisms that remain incompletely understood. Here, we describe and characterize a ‘proteostatic checkpoint’ in Drosophila intestinal SCs (ISCs). Following a breakdown of proteostasis, ISCs coordinate cell cycle arrest with protein aggregate clearance by Atg8-mediated activation of the Nrf2-like transcription factor cap-n-collar C (CncC). CncC induces the cell cycle inhibitor Dacapo and proteolytic genes. The capacity to engage this checkpoint is lost in ISCs from aging flies, and we show that it can be restored by treating flies with an Nrf2 activator, or by over-expression of CncC or Atg8a. This limits age-related intestinal barrier dysfunction and can result in lifespan extension. Our findings identify a new mechanism by which somatic SCs preserve proteostasis, and highlight potential intervention strategies to maintain regenerative homeostasis. Protein homeostasis maintenance (proteostasis) is critical for cell function, but declines during aging. Here the authors detail a proteostatic checkpoint in Drosophila intestinal stem cells coordinating cell cycle arrest with protein aggregate clearance, along with its role in aging related intestinal dysfunction.
Collapse
Affiliation(s)
- Imilce A Rodriguez-Fernandez
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA.,Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA
| | - Yanyan Qi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, 94945-1400, USA. .,Immunology Discovery, Genentech, Inc., 1 DNA Way, South San Francisco, California, 94080, USA. .,Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, 07745, Germany.
| |
Collapse
|
86
|
Senohrabkova L, Malcova I, Hasek J. An aggregation-prone mutant of eIF3a forms reversible assemblies escaping spatial control in exponentially growing yeast cells. Curr Genet 2019; 65:919-940. [PMID: 30715564 DOI: 10.1007/s00294-019-00940-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Cells have elaborated a complex strategy to maintain protein homeostasis under physiological as well as stress conditions with the aim to ensure the smooth functioning of vital processes and producing healthy offspring. Impairment of one of the most important processes in living cells, translation, might have serious consequences including various brain disorders in humans. Here, we describe a variant of the translation initiation factor eIF3a, Rpg1-3, mutated in its PCI domain that displays an attenuated translation efficiency and formation of reversible assemblies at physiological growth conditions. Rpg1-3-GFP assemblies are not sequestered within mother cells only as usual for misfolded-protein aggregates and are freely transmitted from the mother cell into the bud although they are of non-amyloid nature. Their bud-directed transmission and the active movement within the cell area depend on the intact actin cytoskeleton and the related molecular motor Myo2. Mutations in the Rpg1-3 protein render not only eIF3a but, more importantly, also the eIF3 core complex prone to aggregation that is potentiated by the limited availability of Hsp70 and Hsp40 chaperones. Our results open the way to understand mechanisms yeast cells employ to cope with malfunction and aggregation of essential proteins and their complexes.
Collapse
Affiliation(s)
- Lenka Senohrabkova
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, Videnska 1083, 14220, Prague 4, Czech Republic
- First Faculty of Medicine, Charles University, Katerinska 42, 12108, Prague 2, Czech Republic
| | - Ivana Malcova
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, Videnska 1083, 14220, Prague 4, Czech Republic.
| | - Jiri Hasek
- Laboratory of Cell Reproduction, Institute of Microbiology of the CAS, Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|
87
|
|
88
|
Katsimpardi L, Lledo PM. Regulation of neurogenesis in the adult and aging brain. Curr Opin Neurobiol 2018; 53:131-138. [DOI: 10.1016/j.conb.2018.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022]
|
89
|
Adult Hippocampal Neurogenesis: A Coming-of-Age Story. J Neurosci 2018; 38:10401-10410. [PMID: 30381404 DOI: 10.1523/jneurosci.2144-18.2018] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
What has become standard textbook knowledge over the last decade was a hotly debated matter a decade earlier: the proposition that new neurons are generated in the adult mammalian CNS. The early discovery by Altman and colleagues in the 1960s was vulnerable to criticism due to the lack of technical strategies for unequivocal demonstration, quantification, and physiological analysis of newly generated neurons in adult brain tissue. After several technological advancements had been made in the field, we published a paper in 1996 describing the generation of new neurons in the adult rat brain and the decline of hippocampal neurogenesis during aging. The paper coincided with the publication of several other studies that together established neurogenesis as a cellular mechanism in the adult mammalian brain. In this Progressions article, which is by no means a comprehensive review, we recount our personal view of the initial setting that led to our study and we discuss some of its implications and developments that followed. We also address questions that remain regarding the regulation and function of neurogenesis in the adult mammalian brain, in particular the existence of neurogenesis in the adult human brain.
Collapse
|
90
|
Venkei ZG, Yamashita YM. Emerging mechanisms of asymmetric stem cell division. J Cell Biol 2018; 217:3785-3795. [PMID: 30232100 PMCID: PMC6219723 DOI: 10.1083/jcb.201807037] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023] Open
Abstract
Venkei and Yamashita summarize recent advances in our understanding of asymmetric stem cell division in tissue homeostasis. The asymmetric cell division of stem cells, which produces one stem cell and one differentiating cell, has emerged as a mechanism to balance stem cell self-renewal and differentiation. Elaborate cellular mechanisms that orchestrate the processes required for asymmetric cell divisions are often shared between stem cells and other asymmetrically dividing cells. During asymmetric cell division, cells must establish asymmetry/polarity, which is guided by varying degrees of intrinsic versus extrinsic cues, and use intracellular machineries to divide in a desired orientation in the context of the asymmetry/polarity. Recent studies have expanded our knowledge on the mechanisms of asymmetric cell divisions, revealing the previously unappreciated complexity in setting up the cellular and/or environmental asymmetry, ensuring binary outcomes of the fate determination. In this review, we summarize recent progress in understanding the mechanisms and regulations of asymmetric stem cell division.
Collapse
Affiliation(s)
- Zsolt G Venkei
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, MI .,Department of Cell and Developmental Biology, Medical School, University of Michigan, Ann Arbor, MI.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI
| |
Collapse
|
91
|
Age structure landscapes emerge from the equilibrium between aging and rejuvenation in bacterial populations. Nat Commun 2018; 9:3722. [PMID: 30213942 PMCID: PMC6137065 DOI: 10.1038/s41467-018-06154-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
The physiological asymmetry between daughters of a mother bacterium is produced by the inheritance of either old poles, carrying non-genetic damage, or newly synthesized poles. However, as bacteria display long-term growth stability leading to physiological immortality, there is controversy on whether asymmetry corresponds to aging. Here we show that deterministic age structure landscapes emerge from physiologically immortal bacterial lineages. Through single-cell microscopy and microfluidic techniques, we demonstrate that aging and rejuvenating bacterial lineages reach two distinct states of growth equilibria. These equilibria display stabilizing properties, which we quantified according to the compensatory trajectories of continuous lineages throughout generations. Finally, we show that the physiological asymmetry between aging and rejuvenating lineages produces complex age structure landscapes, resulting in a deterministic phenotypic heterogeneity that is neither an artifact of starvation nor a product of extrinsic damage. These findings indicate that physiological immortality and cellular aging can both be manifested in single celled organisms. Some daughter cells inherit the maternal old pole during bacterial division, but does this correspond to aging? Here, Proenca et al. show that constant patterns of aging and rejuvenation connect distinct growth equilibria within bacterial clonal populations, providing evidence for deterministic age structures.
Collapse
|
92
|
Liu XY, Zhou CB, Fang C. Nanomaterial-involved neural stem cell research: Disease treatment, cell labeling, and growth regulation. Biomed Pharmacother 2018; 107:583-597. [PMID: 30114642 DOI: 10.1016/j.biopha.2018.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/19/2018] [Accepted: 08/06/2018] [Indexed: 12/21/2022] Open
Abstract
Neural stem cells (NSCs) have been widely investigated for their potential in the treatment of various diseases and transplantation therapy. However, NSC growth regulation, labeling, and its application to disease diagnosis and treatment are outstanding challenges. Recently, nanomaterials have shown promise for various applications including genetic modification, imaging, and controlled drug release. Here we summarize the recent progress in the use of nanomaterials in combination with NSCs for disease treatment and diagnosis, cell labeling, and NSC growth regulation. The toxicity of nanomaterials to NSCs is also discussed.
Collapse
Affiliation(s)
- Xiang-Yu Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China
| | - Cheng-Bin Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 China
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
93
|
Trinchero MF, Buttner KA, Sulkes Cuevas JN, Temprana SG, Fontanet PA, Monzón-Salinas MC, Ledda F, Paratcha G, Schinder AF. High Plasticity of New Granule Cells in the Aging Hippocampus. Cell Rep 2018; 21:1129-1139. [PMID: 29091753 DOI: 10.1016/j.celrep.2017.09.064] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/23/2017] [Accepted: 09/19/2017] [Indexed: 12/16/2022] Open
Abstract
During aging, the brain undergoes changes that impair cognitive capacity and circuit plasticity, including a marked decrease in production of adult-born hippocampal neurons. It is unclear whether development and integration of those new neurons are also affected by age. Here, we show that adult-born granule cells (GCs) in aging mice are scarce and exhibit slow development, but they display a remarkable potential for structural plasticity. Retrovirally labeled 3-week-old GCs in middle-aged mice were small, underdeveloped, and disconnected. Neuronal development and integration were accelerated by voluntary exercise or environmental enrichment. Similar effects were observed via knockdown of Lrig1, an endogenous negative modulator of neurotrophin receptors. Consistently, blocking neurotrophin signaling by Lrig1 overexpression abolished the positive effects of exercise. These results demonstrate an unparalleled degree of plasticity in the aging brain mediated by neurotrophins, whereby new GCs remain immature until becoming rapidly recruited to the network by activity.
Collapse
Affiliation(s)
- Mariela F Trinchero
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Karina A Buttner
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Jessica N Sulkes Cuevas
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Silvio G Temprana
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Paula A Fontanet
- División de Neurociencia Celular y Molecular, Instituto de Biología Celular y Neurociencias (IBCN-CONICET-UBA), Facultad de Medicina, Paraguay 2155, Buenos Aires C1121ABG, Argentina
| | - M Cristina Monzón-Salinas
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Fernanda Ledda
- División de Neurociencia Celular y Molecular, Instituto de Biología Celular y Neurociencias (IBCN-CONICET-UBA), Facultad de Medicina, Paraguay 2155, Buenos Aires C1121ABG, Argentina
| | - Gustavo Paratcha
- División de Neurociencia Celular y Molecular, Instituto de Biología Celular y Neurociencias (IBCN-CONICET-UBA), Facultad de Medicina, Paraguay 2155, Buenos Aires C1121ABG, Argentina
| | - Alejandro F Schinder
- Laboratorio de Plasticidad Neuronal, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
94
|
García-Prat L, Sousa-Victor P, Muñoz-Cánoves P. Proteostatic and Metabolic Control of Stemness. Cell Stem Cell 2018; 20:593-608. [PMID: 28475885 DOI: 10.1016/j.stem.2017.04.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adult stem cells, particularly those resident in tissues with little turnover, are largely quiescent and only activate in response to regenerative demands, while embryonic stem cells continuously replicate, suggesting profoundly different regulatory mechanisms within distinct stem cell types. In recent years, evidence linking metabolism, mitochondrial dynamics, and protein homeostasis (proteostasis) as fundamental regulators of stem cell function has emerged. Here, we discuss new insights into how these networks control potency, self-renewal, differentiation, and aging of highly proliferative embryonic stem cells and quiescent adult stem cells, with a focus on hematopoietic and muscle stem cells and implications for anti-aging research.
Collapse
Affiliation(s)
- Laura García-Prat
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), E-08003 Barcelona, Spain; Spanish National Center on Cardiovascular Research (CNIC), E-28029 Madrid, Spain; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Pedro Sousa-Victor
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, Novato, CA 94945-1400, USA
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), E-08003 Barcelona, Spain; Spanish National Center on Cardiovascular Research (CNIC), E-28029 Madrid, Spain; ICREA, E-08010 Barcelona, Spain.
| |
Collapse
|
95
|
Pilz GA, Bottes S, Betizeau M, Jörg DJ, Carta S, Simons BD, Helmchen F, Jessberger S. Live imaging of neurogenesis in the adult mouse hippocampus. Science 2018; 359:658-662. [PMID: 29439238 PMCID: PMC6986926 DOI: 10.1126/science.aao5056] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/13/2017] [Indexed: 12/16/2022]
Abstract
Neural stem and progenitor cells (NSPCs) generate neurons throughout life in the mammalian hippocampus. We used chronic in vivo imaging and followed genetically labeled individual NSPCs and their progeny in the mouse hippocampus for up to 2 months. We show that NSPCs targeted by the endogenous Achaete-scute homolog 1 (Ascl1) promoter undergo limited rounds of symmetric and asymmetric divisions, eliciting a burst of neurogenic activity, after which they are lost. Further, our data reveal unexpected asymmetric divisions of nonradial glia-like NSPCs. Cell fates of Ascl1-labeled lineages suggest a developmental-like program involving a sequential transition from a proliferative to a neurogenic phase. By providing a comprehensive description of lineage relationships, from dividing NSPCs to newborn neurons integrating into the hippocampal circuitry, our data offer insight into how NSPCs support life-long hippocampal neurogenesis.
Collapse
Affiliation(s)
- Gregor-Alexander Pilz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Sara Bottes
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Marion Betizeau
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland,Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH) Zurich, 8057 Zurich, Switzerland
| | - David J. Jörg
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Stefano Carta
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland,Laboratory of Neural Circuit Dynamics, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Benjamin D. Simons
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
96
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
97
|
Abstract
Septins are enigmatic proteins; they bind GTP and assemble together like molecular Lego blocks to form intracellular structures of varied shapes such as filaments, rings and gauzes. To shine light on the biological mysteries of septin proteins, leading experts in the field came together for the European Molecular Biology Organization (EMBO) workshop held from 8-11 October 2017 in Berlin. Organized by Helge Ewers (Freie Universität, Berlin, Germany) and Serge Mostowy (Imperial College, London, UK), the workshop convened at the Harnack-Haus, a historic hub of scientific discourse run by the Max Planck Society.
Collapse
Affiliation(s)
- Fabrice Caudron
- School of Biological and Chemical Sciences, Queen Mary University of London, E1 4NS London, UK
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
98
|
J Siney E, Kurbatskaya K, Chatterjee S, Prasannan P, Mudher A, Willaime-Morawek S. Modelling neurodegenerative diseases in vitro: Recent advances in 3D iPSC technologies. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
99
|
Noormohammadi A, Calculli G, Gutierrez-Garcia R, Khodakarami A, Koyuncu S, Vilchez D. Mechanisms of protein homeostasis (proteostasis) maintain stem cell identity in mammalian pluripotent stem cells. Cell Mol Life Sci 2018; 75:275-290. [PMID: 28748323 PMCID: PMC11105389 DOI: 10.1007/s00018-017-2602-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 01/10/2023]
Abstract
Protein homeostasis, or proteostasis, is essential for cell function, development, and organismal viability. The composition of the proteome is adjusted to the specific requirements of a particular cell type and status. Moreover, multiple metabolic and environmental conditions challenge the integrity of the proteome. To maintain the quality of the proteome, the proteostasis network monitors proteins from their synthesis through their degradation. Whereas somatic stem cells lose their ability to maintain proteostasis with age, immortal pluripotent stem cells exhibit a stringent proteostasis network associated with their biological function and intrinsic characteristics. Moreover, growing evidence indicates that enhanced proteostasis mechanisms play a central role in immortality and cell fate decisions of pluripotent stem cells. Here, we will review new insights into the melding fields of proteostasis and pluripotency and their implications for the understanding of organismal development and survival.
Collapse
Affiliation(s)
- Alireza Noormohammadi
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Giuseppe Calculli
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Ricardo Gutierrez-Garcia
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Amirabbas Khodakarami
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph Stelzmann Strasse 26, 50931, Cologne, Germany.
| |
Collapse
|
100
|
Baldi S, Bolognesi A, Meinema AC, Barral Y. Heat stress promotes longevity in budding yeast by relaxing the confinement of age-promoting factors in the mother cell. eLife 2017; 6:28329. [PMID: 29283340 PMCID: PMC5771669 DOI: 10.7554/elife.28329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Although individuals of many species inexorably age, a number of observations established that the rate of aging is modulated in response to a variety of mild stresses. Here, we investigated how heat stress promotes longevity in yeast. We show that upon growth at higher temperature, yeast cells relax the retention of DNA circles, which act as aging factors in the mother cell. The enhanced frequency at which circles redistribute to daughter cells was not due to changes of anaphase duration or nuclear shape but solely to the downregulation of the diffusion barrier in the nuclear envelope. This effect depended on the PKA and Tor1 pathways, downstream of stress-response kinase Pkc1. Inhibition of these responses restored barrier function and circle retention and abrogated the effect of heat stress on longevity. Our data indicate that redistribution of aging factors from aged cells to their progeny can be a mechanism for modulating longevity.
Collapse
Affiliation(s)
- Sandro Baldi
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alessio Bolognesi
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|