51
|
Antibiotic Killing of Diversely Generated Populations of Nonreplicating Bacteria. Antimicrob Agents Chemother 2019; 63:AAC.02360-18. [PMID: 31036690 PMCID: PMC6591645 DOI: 10.1128/aac.02360-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/18/2019] [Indexed: 01/11/2023] Open
Abstract
Nonreplicating bacteria are known to be (or at least commonly thought to be) refractory to antibiotics to which they are genetically susceptible. Here, we explore the sensitivity to killing by bactericidal antibiotics of three classes of nonreplicating populations of planktonic bacteria: (i) stationary phase, when the concentration of resources and/or nutrients are too low to allow for population growth; (ii) persisters, minority subpopulations of susceptible bacteria surviving exposure to bactericidal antibiotics; and (iii) antibiotic-static cells, bacteria exposed to antibiotics that prevent their replication but kill them slowly if at all, the so-called bacteriostatic drugs. Using experimental populations of Staphylococcus aureus Newman and Escherichia coli K-12 (MG1655) and, respectively, nine and seven different bactericidal antibiotics, we estimated the rates at which these drugs kill these different types of nonreplicating bacteria. In contrast to the common belief that bacteria that are nonreplicating are refractory to antibiotic-mediated killing, all three types of nonreplicating populations of these Gram-positive and Gram-negative bacteria are consistently killed by aminoglycosides and the peptide antibiotics daptomycin and colistin, respectively. This result indicates that nonreplicating cells, irrespectively of why they do not replicate, have an almost identical response to bactericidal antibiotics. We discuss the implications of these results to our understanding of the mechanisms of action of antibiotics and the possibility of adding a short-course of aminoglycosides or peptide antibiotics to conventional therapy of bacterial infections.
Collapse
|
52
|
Zhu M, Dai X. Growth suppression by altered (p)ppGpp levels results from non-optimal resource allocation in Escherichia coli. Nucleic Acids Res 2019; 47:4684-4693. [PMID: 30916318 PMCID: PMC6511861 DOI: 10.1093/nar/gkz211] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/23/2022] Open
Abstract
Understanding how bacteria coordinate gene expression with biomass growth to adapt to various stress conditions remains a grand challenge in biology. Stress response is often associated with dramatic accumulation of cellular guanosine tetra- or penta-phosphate (p)ppGpp (also known as 'magic spot'), which is a key second messenger participating in regulating various biochemical and physiological processes of bacteria. Despite of the extensive studies on the mechanism of gene regulation by (p)ppGpp during stringent response, the connection between (p)ppGpp and bacterial steady-state exponential growth remains elusive. Here, we establish a versatile genetic approach to systematically perturb the (p)ppGpp level of Escherichia coli through titrating either the single-function (p)ppGpp synthetase or the singe-function (p)ppGpp hydrolase and quantitatively characterize cell growth and gene expression. Strikingly, increased and decreased (p)ppGpp levels both cause remarkable growth suppression of E. coli. From a coarse-grained insight, we demonstrate that increased (p)ppGpp levels limit ribosome synthesis while decreased (p)ppGpp levels limit the expression of metabolic proteins, both resulting in non-optimal resource allocation. Our study reveals a profound role of (p)ppGpp in regulating bacterial growth through governing global resource allocation. Moreover, we highlight the Mesh1 (p)ppGpp hydrolase from Drosophila melanogaster as a powerful genetic tool for interrogating bacterial (p)ppGpp physiology.
Collapse
Affiliation(s)
- Manlu Zhu
- School of life sciences, Central China Normal University, Wuhan, Hubei Province, China
| | - Xiongfeng Dai
- School of life sciences, Central China Normal University, Wuhan, Hubei Province, China
| |
Collapse
|
53
|
Myka KK, Gottesman ME. DksA and DNA double-strand break repair. Curr Genet 2019; 65:1297-1300. [PMID: 31076845 DOI: 10.1007/s00294-019-00983-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022]
Abstract
We use genetic assays to suggest that transcription-coupled repair or new origin formation in Escherichia coli involves removal of RNAP to create an RNA primer for DNA synthesis. Transcription factor DksA was shown to play a role in numerous reactions involving RNA polymerase. Some, but not all, of the activities of DksA at promoters or during transcription elongation require (p)ppGpp. In addition to its role during transcription, DksA is also involved in maintaining genome integrity. Cells lacking DksA are sensitive to multiple DNA damaging agents including UV light, ionizing radiation, mitomycin C, and nalidixic acid. Here, we focus on two recent studies addressing the importance of DksA in the repair of double-strand breaks (DSBs), one by Sivaramakrishnan et al. (Nature 550:214-218, 2017) and one originating in our laboratory, Myka et al. (Mol Microbiol 111:1382-1397. https://doi.org/10.1111/mmi.14227 , 2019). It appears that depending on the type and possibly location of DNA damage, DksA can play either a passive or an active role in DSB repair. The passive role relies on exclusion of anti-backtracking factors from the RNAP secondary channel. The exact mechanism of active DksA-mediated DNA repair is unknown. However, DksA was proposed to destabilize transcription complexes, thus clearing the way for recombination and DNA repair. Based on the requirement for DksA, both in repair of DSBs and the R-loop-dependent formation of new origins of DNA replication, we propose that DksA may allow for removal of RNAP without unwinding of the RNA:DNA hybrid, which can then be extended by a DNA polymerase. This mechanism obviates the need for RNAP backtracking to repair damaged DNA.
Collapse
Affiliation(s)
- Kamila K Myka
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.,Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
54
|
Saha T, Shukla K, Thakur RS, Desingu A, Nagaraju G. Mycobacterium tuberculosis UvrD1 and UvrD2 helicases unwind G-quadruplex DNA. FEBS J 2019; 286:2062-2086. [PMID: 30821905 DOI: 10.1111/febs.14798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/07/2019] [Accepted: 02/28/2019] [Indexed: 01/31/2023]
Abstract
Unresolved G-quadruplex (G4) DNA secondary structures impede DNA replication and can lead to DNA breaks and to genome instability. Helicases are known to unwind G4 structures and thereby facilitate genome duplication. Escherichia coli UvrD is a multifunctional helicase that participates in DNA repair, recombination and replication. Previously, we had demonstrated a novel role of E. coli UvrD helicase in resolving G4 structures. Mycobacterium tuberculosis genome encodes two orthologs of E. coli UvrD helicase, UvrD1 and UvrD2. It is unclear whether UvrD1 or UvrD2 or both helicases unwind G4 DNA structures. Here, we demonstrate that M. tuberculosis UvrD1 and UvrD2 unwind G4 tetraplexes. Both helicases were proficient in resolving previously characterized tetramolecular G4 structures in an ATP hydrolysis and single-stranded 3'-tail-dependent manner. Notably, M. tuberculosis UvrD1 and UvrD2 were efficient in unwinding G4 structures derived from the potential G4 forming sequences present in the M. tuberculosis genome. These data suggest an extended role for M. tuberculosis UvrD1 and UvrD2 helicases in resolving G4 DNA structures and provide insights into the maintenance of genome integrity via G4 DNA resolution.
Collapse
Affiliation(s)
- Tias Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Kaustubh Shukla
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Ambika Desingu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
55
|
Myka KK, Küsters K, Washburn R, Gottesman ME. DksA-RNA polymerase interactions support new origin formation and DNA repair in Escherichia coli. Mol Microbiol 2019; 111:1382-1397. [PMID: 30779388 PMCID: PMC6488371 DOI: 10.1111/mmi.14227] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2019] [Indexed: 01/04/2023]
Abstract
The formation of new replication origins (cSDR) and repair of DNA double‐strand breaks (DSBs) in E. coli share a commonality. We find that the two processes require the RNAP‐associated factor, DksA. However, whereas cSDR also relies on (p)ppGpp, the alarmone molecule is dispensable for the repair of topoisomerase type II (Top II) DNA adducts and associated DSBs. The requirement for DksA in repair of nalidixic acid (Nal)‐induced DSBs or for the formation of new origins is not suppressed by a greA deletion mutation, indicating an active role of DksA rather than competition with GreA for insertion into the RNAP secondary channel. Like dksA mutations, transcription termination factor Rho mutations also confer sensitivity to Nal. The rho and dksA mutations are not epistatic, suggesting they involve different repair pathways. The roles of DksA in DSB repair and cSDR differ; certain DksA and RNAP mutants are able to support the first process, but not the latter. We suggest that new origin formation and DNA repair of protein adducts with DSBs may both involve the removal of RNAP without destruction of the RNA:DNA hybrid.
Collapse
Affiliation(s)
- Kamila K Myka
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Kira Küsters
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Robert Washburn
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| | - Max E Gottesman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
56
|
Cruvinel GT, Neves HI, Spira B. Glyphosate induces the synthesis of ppGpp. Mol Genet Genomics 2019; 294:191-198. [PMID: 30284619 DOI: 10.1007/s00438-018-1499-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
Abstract
Glyphosate, the most widely used herbicide in both agricultural and urban areas is toxic for plants and for many bacterial species. The mechanism of action of glyphosate is through the inhibition of the EPSP synthase, a key enzyme in the biosynthetic pathway of aromatic amino acids. Here we show that glyphosate induces the stringent response in Escherichia coli. Bacteria treated with glyphosate stop growing and accumulate ppGpp. Both growth arrest and ppGpp accumulation are restored to normal levels upon addition of aromatic amino acids. Glyphosate-induced ppGpp accumulation is dependent on the presence of the (p)ppGpp synthetase RelA. However, unlike other cases of amino acid starvation, pppGpp could not be discerned. In a gppA background both ppGpp and pppGpp accumulated when exposed to glyphosate. Conversely, the wild-type strain and gppA mutant treated with serine hydroxamate accumulated high levels of both ppGpp and pppGpp. Altogether, the data indicate that glyphosate induces amino acid starvation resulting in a moderate accumulation of ppGpp and a reversible stringent response.
Collapse
Affiliation(s)
- Gabriela Torres Cruvinel
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Henrique Iglesias Neves
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beny Spira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
57
|
Saba J, Chua XY, Mishanina TV, Nayak D, Windgassen TA, Mooney RA, Landick R. The elemental mechanism of transcriptional pausing. eLife 2019; 8:e40981. [PMID: 30618376 PMCID: PMC6336406 DOI: 10.7554/elife.40981] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Transcriptional pausing underlies regulation of cellular RNA biogenesis. A consensus pause sequence that acts on RNA polymerases (RNAPs) from bacteria to mammals halts RNAP in an elemental paused state from which longer-lived pauses can arise. Although the structural foundations of pauses prolonged by backtracking or nascent RNA hairpins are recognized, the fundamental mechanism of the elemental pause is less well-defined. Here we report a mechanistic dissection that establishes the elemental pause signal (i) is multipartite; (ii) causes a modest conformational shift that puts γ-proteobacterial RNAP in an off-pathway state in which template base loading but not RNA translocation is inhibited; and (iii) allows RNAP to enter pretranslocated and one-base-pair backtracked states easily even though the half-translocated state observed in paused cryo-EM structures rate-limits pause escape. Our findings provide a mechanistic basis for the elemental pause and a framework to understand how pausing is modulated by sequence, cellular conditions, and regulators.
Collapse
Affiliation(s)
- Jason Saba
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Xien Yu Chua
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Tatiana V Mishanina
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Dhananjaya Nayak
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Tricia A Windgassen
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Rachel Anne Mooney
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
| | - Robert Landick
- Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUnited States
- Department of BacteriologyUniversity of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
58
|
Ragheb MN, Thomason MK, Hsu C, Nugent P, Gage J, Samadpour AN, Kariisa A, Merrikh CN, Miller SI, Sherman DR, Merrikh H. Inhibiting the Evolution of Antibiotic Resistance. Mol Cell 2018; 73:157-165.e5. [PMID: 30449724 PMCID: PMC6320318 DOI: 10.1016/j.molcel.2018.10.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/17/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
Abstract
Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an “evolvability factor” that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd’s role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with “anti-evolution” drugs)—in particular, Mfd—providing an unexplored route toward battling the AMR crisis. The bacterial transcription-coupled repair (TCR) factor Mfd promotes mutagenesis Mfd-driven mutagenesis accelerates the evolution of antimicrobial resistance (AMR) The rapid evolution of AMR requires Mfd’s interaction with RpoB and UvrA Mfd may be an ideal target for “anti-evolution” drugs that inhibit AMR development
Collapse
Affiliation(s)
- Mark N Ragheb
- Department of Microbiology, University of Washington, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | | | - Chris Hsu
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Patrick Nugent
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - John Gage
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ankunda Kariisa
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David R Sherman
- Center for Infectious Disease Research, Seattle, WA, USA; Interdiscipinary Program of Pathobiology, Department of Global Health, University of Washington, Seattle, WA, USA
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
59
|
Galperin MY. What bacteria want. Environ Microbiol 2018; 20:4221-4229. [PMID: 30187651 DOI: 10.1111/1462-2920.14398] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/27/2022]
Abstract
Bacterial signal transduction systems are responsible for sensing environmental cues and adjusting the cellular behaviour and/or metabolism in response to these cues. They also monitor the intracellular conditions and the status of the cell envelope and the cytoplasmic membrane and trigger various stress responses to counteract adverse changes. This surveillance involves several classes of sensor proteins: histidine kinases; chemoreceptors; membrane components of the sugar phosphotransferase system; adenylate, diadenylate and diguanylate cyclases and certain cAMP, c-di-AMP and c-di-GMP phosphodiesterases; extracytoplasmic function sigma factors and Ser/Thr/Tyr protein kinases and phosphoprotein phosphatases. We have compiled a detailed listing of sensor proteins that are encoded in the genomes of Escherichia coli, Bacillus subtilis and 10 widespread pathogens: Chlamydia trachomatis, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, Mycoplasma pneumoniae, Neisseria gonorrhoeae, Porphyromonas gingivalis, Rickettsia typhi, Streptococcus pyogenes and Treponema pallidum, and checked what, if anything, is known about their functions. This listing shows significant gaps in the understanding of which environmental and intracellular cues are perceived by these bacteria and which cellular responses are triggered by the changes in the respective parameters. A better understanding of bacterial preferences may suggest new ways to modulate the expression of virulence factors and therefore decrease the reliance on antibiotics to fight infection.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
60
|
Sivaramakrishnan P, Gordon AJE, Halliday JA, Herman C. How Acts of Infidelity Promote DNA Break Repair: Collision and Collusion Between DNA Repair and Transcription. Bioessays 2018; 40:e1800045. [PMID: 30091472 PMCID: PMC6334755 DOI: 10.1002/bies.201800045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/07/2018] [Indexed: 12/20/2022]
Abstract
Transcription is a fundamental cellular process and the first step in gene regulation. Although RNA polymerase (RNAP) is highly processive, in growing cells the progression of transcription can be hindered by obstacles on the DNA template, such as damaged DNA. The authors recent findings highlight a trade-off between transcription fidelity and DNA break repair. While a lot of work has focused on the interaction between transcription and nucleotide excision repair, less is known about how transcription influences the repair of DNA breaks. The authors suggest that when the cell experiences stress from DNA breaks, the control of RNAP processivity affects the balance between preserving transcription integrity and DNA repair. Here, how the conflict between transcription and DNA double-strand break (DSB) repair threatens the integrity of both RNA and DNA are discussed. In reviewing this field, the authors speculate on cellular paradigms where this equilibrium is well sustained, and instances where the maintenance of transcription fidelity is favored over genome stability.
Collapse
Affiliation(s)
- Priya Sivaramakrishnan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alasdair J E Gordon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer A Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor College of Medicine, Dan L. Duncan Comprehensive Cancer Center, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
61
|
Involvement of transcription-coupled repair factor Mfd and DNA helicase UvrD in mutational processes in Pseudomonas putida. DNA Repair (Amst) 2018; 72:18-27. [PMID: 30292721 DOI: 10.1016/j.dnarep.2018.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 11/20/2022]
Abstract
Stalled RNA polymerases (RNAPs) pose an obstacle for the replicating complexes, which could lead to transcription-replication conflicts and result in genetic instability. Stalled RNAPs and DNA lesions blocking RNAP elongation are removed by transcription-coupled repair (TCR), the process which in bacteria is mediated by TCR factor Mfd and helicase UvrD. Although the mechanism of TCR has been extensively studied, its role in mutagenesis is still obscure. In the current study we have investigated the role of Mfd and UvrD in mutational processes in soil bacterium Pseudomonas putida. Our results revealed that UvrD helicase is essential to prevent the emergence of mutations, as the loss of uvrD resulted in elevated mutant frequency both in exponential- and stationary-phase bacterial cultures. UvrD was also found to be necessary to survive DNA damage, but NER or MMR pathways are not completely abolished in UvrD-deficient P. putida. Mfd-deficiency had a moderate impact on surviving DNA damage and did not influence the frequency of mutations occurred in exponentially growing bacteria. However, the absence of Mfd caused approximately a two-fold decline in stationary-phase mutant frequency compared to the P. putida wild-type strain and suppressed the elevated mutant frequency observed in the ΔuvrD strain. Remarkably, the Mfd-deficient strain also formed less UV-induced mutants. These results suggest that in P. putida the Mfd-mediated TCR could be associated with UV- and stationary-phase mutagenesis.
Collapse
|
62
|
Svetlov V, Nudler E. Reading of the non-template DNA by transcription elongation factors. Mol Microbiol 2018; 109:417-421. [PMID: 29757477 PMCID: PMC6173973 DOI: 10.1111/mmi.13984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 02/02/2023]
Abstract
Unlike transcription initiation and termination, which have easily discernable signals, such as promoters and terminators, elongation is regulated through a dynamic network involving RNA/DNA pause signals and states-rather than sequence-specific protein interactions. A report by Nedialkov et al. () provides experimental evidence for sequence-specific recruitment of elongation factor RfaH to transcribing RNA polymerase (RNAP) and outlines the mechanism of gene expression regulation by restraint ('locking') of the DNA non-template strand. According to this model, the elongation complex pauses at the so called 'operon polarity sequence' (found in some long bacterial operons coding for virulence genes), when the usually flexible non-template DNA strand adopts a distinct hairpin-loop conformation on the surface of transcribing RNAP. Sequence-specific binding of RfaH to this DNA segment facilitates conversion of RfaH from its inactive closed to its active open conformation. The interaction network formed between RfaH, non-template DNA and RNAP locks DNA in a conformation that renders RNAP resistant to pausing and termination. The effects of such locking on elongation can be mimicked by restraint of the non-template strand due to its shortening. This work advances our understanding of transcription regulation and has important implications for the action of general elongation factors, such as NusG, which lack apparent sequence-specificity, as well as for the mechanisms of other linked processes, such as transcription-coupled DNA repair.
Collapse
Affiliation(s)
- Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
63
|
ppGpp Controls Global Gene Expression in Light and in Darkness in S. elongatus. Cell Rep 2018; 21:3155-3165. [PMID: 29241543 DOI: 10.1016/j.celrep.2017.11.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 01/06/2023] Open
Abstract
The bacterial and plant stringent response involves production of the signaling molecules guanosine tetraphosphate and guanosine pentaphosphate ((p)ppGpp), leading to global reorganization of gene expression. The function of the stringent response has been well characterized in stress conditions, but its regulatory role during unstressed growth is less studied. Here, we demonstrate that (p)ppGpp-deficient strains of S. elongatus have globally deregulated biosynthetic capacity, with increased transcription rate, translation rate, and cell size in unstressed conditions in light and impaired viability in darkness. Synthetic restoration of basal guanosine tetraphosphate (ppGpp) levels is sufficient to recover transcriptional balance and appropriate cell size in light and to rescue viability in light/dark conditions, but it is insufficient to enable efficient dark-induced transcriptional shutdown. Our work underscores the importance of basal ppGpp signaling for regulation of cyanobacterial physiology in the absence of stress and for viability in energy-limiting conditions, highlighting that basal (p)ppGpp level is essential in cyanobacteria in the environmental light/dark cycle.
Collapse
|
64
|
Gordon AJE, Sivaramakrishnan P, Halliday JA, Herman C. Transcription infidelity and genome integrity: the parallax view. Transcription 2018; 9:315-320. [PMID: 29929421 DOI: 10.1080/21541264.2018.1491251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
It was recently shown that removal of GreA, a transcription fidelity factor, enhances DNA break repair. This counterintuitive result, arising from unresolved backtracked RNA polymerase impeding DNA resection and thereby facilitating RecA-loading, leads to an interesting corollary: error-free full-length transcripts and broken chromosomes. Therefore, transcription fidelity may compromise genomic integrity.
Collapse
Affiliation(s)
- Alasdair J E Gordon
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Priya Sivaramakrishnan
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,b Department of Genetics , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| | - Jennifer A Halliday
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA
| | - Christophe Herman
- a Department of Molecular and Human Genetics , Baylor College of Medicine , Houston , TX , USA.,c Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA.,d Dan L. Duncan Cancer Center, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
65
|
Akgul A, Akgul A, Lawrence ML, Karsi A. Stress-related genes promote Edwardsiella ictaluri pathogenesis. PLoS One 2018; 13:e0194669. [PMID: 29554143 PMCID: PMC5858854 DOI: 10.1371/journal.pone.0194669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/07/2018] [Indexed: 12/22/2022] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative anaerobic rod and the causative agent of enteric septicemia of channel catfish (ESC), which is one of the most prevalent diseases of catfish, causing significant economic losses in the catfish industry. E. ictaluri is resistant to complement system and macrophage killing, which results in rapid systemic septicemia. However, mechanisms of E. ictaluri stress responses under conditions of host environment are not studied well. Therefore, in this work, we report E. ictaluri stress responses during hydrogen peroxide, low pH, and catfish serum stresses as well as during catfish invasion. E. ictaluri stress responses were characterized by identifying expression of 13 universal stress protein (USP) genes (usp01-usp13) and seven USP-interacting protein genes (groEL, groES, dnaK, grpE, and clpB, grpE, relA). Data indicated that three usp genes (usp05, usp07, and usp13) were highly expressed in all stress conditions. Similarly, E. ictaluri heat shock proteins groEL, groES, dnaK, grpE, and clpB were highly expressed in oxidative stress. Also, E. ictaluri grpE and relA were highly expressed in catfish spleen and head kidney. These findings contribute to our understanding of stress response mechanisms in E. ictaluri stress response, and stress-related proteins that are essential for E. ictaluri could be potential targets for live attenuated vaccine development against ESC.
Collapse
Affiliation(s)
- Ali Akgul
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Ayfer Akgul
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States of America
- * E-mail:
| |
Collapse
|
66
|
Species-Specific Interactions of Arr with RplK Mediate Stringent Response in Bacteria. J Bacteriol 2018; 200:JB.00722-17. [PMID: 29311276 DOI: 10.1128/jb.00722-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria respond to stressful growth conditions through a conserved phenomenon of stringent response mediated by synthesis of stress alarmones ppGpp and pppGpp [referred to as (p)ppGpp]. (p)ppGpp synthesis is known to occur by ribosome-associated RelA. In addition, a dual-function protein, SpoT (with both synthetase and hydrolase activities), maintains (p)ppGpp homeostasis. The presence of (p)ppGpp is also known to contribute to antibiotic resistance in bacteria. Mycobacterium smegmatis possesses Arr, which inactivates rifampin by its ADP ribosylation. Arr has been shown to be upregulated in response to stress. However, the roles Arr might play during growth have remained unclear. We show that Arr confers growth fitness advantage to M. smegmatis even in the absence of rifampin. Arr deficiency in M. smegmatis resulted in deficiency of biofilm formation. Further, we show that while Arr does not interact with the wild-type Escherichia coli ribosomes, it interacts with them when the E. coli ribosomal protein L11 (a stringent response regulator) is replaced with its homolog from M. smegmatis The Arr interaction with E. coli ribosomes occurs even when the N-terminal 33 amino acids of its L11 protein were replaced with the corresponding sequence of M. smegmatis L11 (Msm-EcoL11 chimeric protein). Interestingly, Arr interaction with the E. coli ribosomes harboring M. smegmatis L11 or Msm-EcoL11 results in the synthesis of ppGpp in vivo Our study shows a novel role of antibiotic resistance gene arr in stress response.IMPORTANCEMycobacterium smegmatis, like many other bacteria, possesses an ADP-ribosyltransferase, Arr, which confers resistance to the first-line antituberculosis drug, rifampin, by its ADP ribosylation. In this report, we show that in addition to its known property of conferring resistance to rifampin, Arr confers growth fitness advantage to M. smegmatis even when there is no rifampin in the growth medium. We then show that Arr establishes species-specific interactions with ribosomes through the N-terminal sequence of ribosomal protein L11 (a stringent response regulator) and results in ppGpp (stress alarmone) synthesis. Deficiency of Arr in M. smegmatis results in deficiency of biofilm formation. Arr protein is physiologically important both in conferring antibiotic resistance as well as in mediating stringent response.
Collapse
|
67
|
Park SJ, Song S, Yang GS, Kim PM, Yoon S, Kim JH, Sung J. The Chemical Fluctuation Theorem governing gene expression. Nat Commun 2018; 9:297. [PMID: 29352116 PMCID: PMC5775451 DOI: 10.1038/s41467-017-02737-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/20/2017] [Indexed: 11/20/2022] Open
Abstract
Gene expression is a complex stochastic process composed of numerous enzymatic reactions with rates coupled to hidden cell-state variables. Despite advances in single-cell technologies, the lack of a theory accurately describing the gene expression process has restricted a robust, quantitative understanding of gene expression variability among cells. Here we present the Chemical Fluctuation Theorem (CFT), providing an accurate relationship between the environment-coupled chemical dynamics of gene expression and gene expression variability. Combined with a general, accurate model of environment-coupled transcription processes, the CFT provides a unified explanation of mRNA variability for various experimental systems. From this analysis, we construct a quantitative model of transcription dynamics enabling analytic predictions for the dependence of mRNA noise on the mRNA lifetime distribution, confirmed against stochastic simulation. This work suggests promising new directions for quantitative investigation into cellular control over biological functions by making complex dynamics of intracellular reactions accessible to rigorous mathematical deductions. A unified framework to understand gene expression noise is still lacking. Here the authors derive a universal theorem relating the biological noise with dynamics of birth and death processes and present a model of transcription dynamics, allowing analytical prediction of the dependence of mRNA noise on mRNA lifetime variability.
Collapse
Affiliation(s)
- Seong Jun Park
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul, 06974, Korea.,Department of Chemistry, Chung-Ang University, Seoul, 06974, Korea.,National Institute of Innovative Functional Imaging, Chung-Ang University, Seoul, 06974, Korea
| | - Sanggeun Song
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul, 06974, Korea.,Department of Chemistry, Chung-Ang University, Seoul, 06974, Korea.,National Institute of Innovative Functional Imaging, Chung-Ang University, Seoul, 06974, Korea
| | - Gil-Suk Yang
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul, 06974, Korea
| | - Philip M Kim
- Terrence Donnelly Center for Cellular and Biomolecular Research, Department of Molecular Genetics and Department of Computer Science, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Sangwoon Yoon
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Korea.
| | - Ji-Hyun Kim
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul, 06974, Korea.
| | - Jaeyoung Sung
- Creative Research Initiative Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul, 06974, Korea. .,Department of Chemistry, Chung-Ang University, Seoul, 06974, Korea. .,National Institute of Innovative Functional Imaging, Chung-Ang University, Seoul, 06974, Korea.
| |
Collapse
|
68
|
Liu Z, Wang Y, Tong X, Su Y, Yang L, Wang D, Zhao Y. De novo assembly and comparative transcriptome characterization of Poecilobdella javanica provide insight into blood feeding of medicinal leeches. Mol Omics 2018; 14:352-361. [DOI: 10.1039/c8mo00098k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Leeches (family Hirudinidae) are classic model invertebrates used in diverse clinical treatments, such as reconstructive microsurgery, hypertension, and gangrene treatment.
Collapse
Affiliation(s)
- Zichao Liu
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Yanjie Wang
- Jules Stein Eye Institute, Department of Ophthalmology, University of California
- Los Angeles
- USA
| | - Xiangrong Tong
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Yuan Su
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Lijiang Yang
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Debin Wang
- Department of Life Science & Technology, Kunming University, Kunming Key Laboratory of Hydroecology Restoration of Dianchi Lake, Key Laboratory of Special Biological Resource Development & Utilization of Universities in Yunnan Province
- Kunming
- China
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles
- Los Angeles
- USA
| |
Collapse
|
69
|
Escherichia coli and Neisseria gonorrhoeae UvrD helicase unwinds G4 DNA structures. Biochem J 2017; 474:3579-3597. [PMID: 28916651 DOI: 10.1042/bcj20170587] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/06/2017] [Accepted: 09/07/2017] [Indexed: 11/17/2022]
Abstract
G-quadruplex (G4) secondary structures have been implicated in various biological processes, including gene expression, DNA replication and telomere maintenance. However, unresolved G4 structures impede replication progression which can lead to the generation of DNA double-strand breaks and genome instability. Helicases have been shown to resolve G4 structures to facilitate faithful duplication of the genome. Escherichia coli UvrD (EcUvrD) helicase plays a crucial role in nucleotide excision repair, mismatch repair and in the regulation of homologous recombination. Here, we demonstrate a novel role of E. coli and Neisseria gonorrhoeae UvrD in resolving G4 tetraplexes. EcUvrD and Ngonorrhoeae UvrD were proficient in unwinding previously characterized tetramolecular G4 structures. Notably, EcUvrD was equally efficient in resolving tetramolecular and bimolecular G4 DNA that were derived from the potential G4-forming sequences from the genome of E. coli Interestingly, in addition to resolving intermolecular G4 structures, EcUvrD was robust in unwinding intramolecular G4 structures. These data for the first time provide evidence for the role of UvrD in the resolution of G4 structures, which has implications for the in vivo role of UvrD helicase in G4 DNA resolution and genome maintenance.
Collapse
|
70
|
Chen YH, Lu CW, Shyu YT, Lin SS. Revealing the Saline Adaptation Strategies of the Halophilic Bacterium Halomonas beimenensis through High-throughput Omics and Transposon Mutagenesis Approaches. Sci Rep 2017; 7:13037. [PMID: 29026163 PMCID: PMC5638851 DOI: 10.1038/s41598-017-13450-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/22/2017] [Indexed: 12/18/2022] Open
Abstract
Studies on the halotolerance of bacteria are attractive to the fermentation industry. However, a lack of sufficient genomic information has precluded an investigation of the halotolerance of Halomonas beimenensis. Here, we describe the molecular mechanisms of saline adaptation in H. beimenensis based on high-throughput omics and Tn5 transposon mutagenesis. The H. beimenensis genome is 4.05 Mbp and contains 3,807 genes, which were sequenced using short and long reads obtained via deep sequencing. Sixteen Tn5 mutants with a loss of halotolerance were identified. Orthologs of the mutated genes, such as nqrA, trkA, atpC, nadA, and gdhB, have significant biological functions in sodium efflux, potassium uptake, hydrogen ion transport for energy conversion, and compatible solute synthesis, which are known to control halotolerance. Other genes, such as spoT, prkA, mtnN, rsbV, lon, smpB, rfbC, rfbP, tatB, acrR1, and lacA, function in cellular signaling, quorum sensing, transcription/translation, and cell motility also shown critical functions for promoting a halotolerance. In addition, KCl application increased halotolerance and potassium-dependent cell motility in a high-salinity environment. Our results demonstrated that a combination of omics and mutagenesis could be used to facilitate the mechanistic exploitation of saline adaptation in H. beimenensis, which can be applied for biotechnological purposes.
Collapse
Affiliation(s)
- Yan-Huey Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan
| | - Yuan-Tay Shyu
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, 106, Taiwan.
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
- National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, 300, Taiwan.
| |
Collapse
|
71
|
Adebali O, Sancar A, Selby CP. Mfd translocase is necessary and sufficient for transcription-coupled repair in Escherichia coli. J Biol Chem 2017; 292:18386-18391. [PMID: 28986449 DOI: 10.1074/jbc.c117.818807] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/04/2017] [Indexed: 12/26/2022] Open
Abstract
Nucleotide excision repair in Escherichia coli is stimulated by transcription, specifically in the transcribed strand. Previously, it was shown that this transcription-coupled repair (TCR) is mediated by the Mfd translocase. Recently, it was proposed that in fact the majority of TCR in E. coli is catalyzed by a second pathway ("backtracking-mediated TCR") that is dependent on the UvrD helicase and the guanosine pentaphosphate (ppGpp) alarmone/stringent response regulator. Recently, we reported that as measured by the excision repair-sequencing (XR-seq), UvrD plays no role in TCR genome-wide. Here, we tested the role of ppGpp and UvrD in TCR genome-wide and in the lacZ operon using the XR-seq method, which directly measures repair. We found that the mfd mutation abolishes TCR genome-wide and in the lacZ operon. In contrast, the relA-spoT- mutant deficient in ppGpp synthesis carries out normal TCR. We conclude that UvrD and ppGpp play no role in TCR in E. coli.
Collapse
Affiliation(s)
- Ogun Adebali
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| | - Aziz Sancar
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| | - Christopher P Selby
- From the Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260
| |
Collapse
|
72
|
The transcription fidelity factor GreA impedes DNA break repair. Nature 2017; 550:214-218. [PMID: 28976965 PMCID: PMC5654330 DOI: 10.1038/nature23907] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/07/2017] [Indexed: 01/07/2023]
Abstract
Homologous recombination repairs DNA double-strand breaks and must function even on actively transcribed DNA. Because break repair prevents chromosome loss, the completion of repair is expected to outweigh the transcription of broken templates. Yet, the interplay between DNA break repair and transcription processivity is unclear. Here we show that the transcription factor GreA inhibits break repair in Escherichia coli. GreA restarts backtracked RNA polymerase (RNAP) and hence promotes transcription fidelity. We report that removal of GreA results in dramatically enhanced break repair via the classical RecBCD-RecA pathway. Using a deep-sequencing method to measure chromosomal exonucleolytic degradation (XO-Seq), we demonstrate that the absence of GreA limits RecBCD-mediated resection. Our findings suggest that increased RNAP backtracking promotes break repair by instigating RecA loading by RecBCD, without the influence of canonical Chi signals. The idea that backtracked RNAP can stimulate recombination presents a DNA transaction conundrum: a transcription fidelity factor compromises genomic integrity.
Collapse
|
73
|
Bactericidal activity of alpha-bromocinnamaldehyde against persisters in Escherichia coli. PLoS One 2017; 12:e0182122. [PMID: 28750057 PMCID: PMC5531548 DOI: 10.1371/journal.pone.0182122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 07/12/2017] [Indexed: 12/18/2022] Open
Abstract
Persisters are tolerant to multiple antibiotics, and widely distributed in bacteria, fungi, parasites, and even cancerous human cell populations, leading to recurrent infections and relapse after therapy. In this study, we investigated the potential of cinnamaldehyde and its derivatives to eradicate persisters in Escherichia coli. The results showed that 200 μg/ml of alpha-bromocinnamaldehyde (Br-CA) was capable of killing all E. coli cells during the exponential phase. Considering the heterogeneous nature of persisters, multiple types of persisters were induced and exposed to Br-CA. Our results indicated that no cells in the ppGpp-overproducing strain or TisB-overexpressing strain survived the treatment of Br-CA although considerable amounts of persisters to ampicillin (Amp) and ciprofloxacin (Cip) were induced. Chemical induction by carbonyl cyanide m-chlorophenylhydrazone (CCCP) led to the formation of more than 10% persister to Amp and Cip in the entire population, and Br-CA still completely eradicated them. In addition, the cells in the stationary phase, which are usually highly recalcitrant to antibiotics treatment, were also completely eradicated by 400 μg/ml of Br-CA. Further studies showed that neither thiourea (hydroxyl-radical scavenger) nor DPTA (Fe3+ chelator to block the hydroxyl-radical) affected the bactericidal efficiency of the Br-CA to kill E. coli, indicating a ROS-independent bactericidal mechanism. Taken together, we concluded that Br-CA compound has a novel bactericidal mechanism and the potential to mitigate antibiotics resistance crisis.
Collapse
|
74
|
Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16. Appl Environ Microbiol 2017; 83:AEM.00755-17. [PMID: 28455332 DOI: 10.1128/aem.00755-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/24/2017] [Indexed: 01/21/2023] Open
Abstract
In this study, we constructed a set of Ralstonia eutropha H16 strains with single, double, or triple deletions of the (p)ppGpp synthase/hydrolase (spoT1), (p)ppGpp synthase (spoT2), and/or polyhydroxybutyrate (PHB) depolymerase (phaZa1 or phaZa3) gene, and we determined the impact on the levels of (p)ppGpp and on accumulated PHB. Mutants with deletions of both the spoT1 and spoT2 genes were unable to synthesize detectable amounts of (p)ppGpp and accumulated only minor amounts of PHB, due to PhaZa1-mediated depolymerization of PHB. In contrast, unusually high levels of PHB were found in strains in which the (p)ppGpp concentration was increased by the overexpression of (p)ppGpp synthase (SpoT2) and the absence of (p)ppGpp hydrolase. Determination of (p)ppGpp levels in wild-type R. eutropha under different growth conditions and induction of the stringent response by amino acid analogs showed that the concentrations of (p)ppGpp during the growth phase determine the amount of PHB remaining in later growth phases by influencing the efficiency of the PHB mobilization system in stationary growth. The data reported for a previously constructed ΔspoT2 strain (C. J. Brigham, D. R. Speth, C. Rha, and A. J. Sinskey, Appl Environ Microbiol 78:8033-8044, 2012, https://doi.org/10.1128/AEM.01693-12) were identified as due to an experimental error in strain construction, and our results are in contrast to the previous indication that the spoT2 gene product is essential for PHB accumulation in R. eutrophaIMPORTANCE Polyhydroxybutyrate (PHB) is an important intracellular carbon and energy storage compound in many prokaryotes and helps cells survive periods of starvation and other stress conditions. Research activities in several laboratories over the past 3 decades have shown that both PHB synthase and PHB depolymerase are constitutively expressed in most PHB-accumulating bacteria, such as Ralstonia eutropha This implies that PHB synthase and depolymerase activities must be well regulated in order to avoid a futile cycle of simultaneous PHB synthesis and PHB degradation (mobilization). Previous reports suggested that the stringent response in Rhizobium etli and R. eutropha is involved in the regulation of PHB metabolism. However, the levels of (p)ppGpp and the influence of those levels on PHB accumulation and PHB mobilization have not yet been determined for any PHB-accumulating species. In this study, we optimized a (p)ppGpp extraction procedure and a high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based detection method for the quantification of (p)ppGpp in R. eutropha This enabled us to study the relationship between the concentrations of (p)ppGpp and the accumulated levels of PHB in the wild type and in several constructed mutant strains. We show that overproduction of the alarmone (p)ppGpp correlated with reduced growth and massive overproduction of PHB. In contrast, in the absence of (p)ppGpp, mobilization of PHB was dramatically enhanced.
Collapse
|
75
|
Abstract
Transcription-coupled DNA repair (TCR) acts on lesions in the transcribed strand of active genes. Helix distorting adducts and other forms of DNA damage often interfere with the progression of the transcription apparatus. Prolonged stalling of RNA polymerase can promote genome instability and also induce cell cycle arrest and apoptosis. These generally unfavorable events are counteracted by RNA polymerase-mediated recruitment of specific proteins to the sites of DNA damage to perform TCR and eventually restore transcription. In this perspective we discuss the decision-making process to employ TCR and we elucidate the intricate biochemical pathways leading to TCR in E. coli and human cells.
Collapse
Affiliation(s)
- Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
76
|
ppGpp and cytotoxicity diversity in Shiga toxin-producing Escherichia coli (STEC) isolates. Epidemiol Infect 2017; 145:2204-2211. [PMID: 28587697 DOI: 10.1017/s0950268817001091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a known food pathogen, which main reservoir is the intestine of ruminants. The abundance of different STEC lineages in nature reflect a heterogeneity that is characterised by the differential expression of certain genotypic characteristics, which in turn are influenced by the environmental conditions to which the microorganism is exposed. Bacterial homeostasis and stress response are under the control of the alarmone guanosine tetraphosphate (ppGpp), which intrinsic levels varies across the E. coli species. In the present study, 50 STEC isolates from healthy sheep were evaluated regarding their ppGpp content, cytotoxicity and other relevant genetic and phenotypic characteristics. We found that the level of ppGpp and cytotoxicity varied considerably among the examined strains. Isolates that harboured the stx2 gene were the least cytotoxic and presented the highest levels of ppGpp. All stx2 isolates belonged to phylogroup A, while strains that carried stx1 or both stx1 and stx2 genes pertained to phylogroup B1. All but two stx2 isolates belonged to the stx2b subtype. Strains that belonged to phylogroup B1 displayed on average low levels of ppGpp and high cytotoxicity. Overall, there was a negative correlation between cytotoxicity and ppGpp.
Collapse
|
77
|
Maharjan RP, Ferenci T. A shifting mutational landscape in 6 nutritional states: Stress-induced mutagenesis as a series of distinct stress input-mutation output relationships. PLoS Biol 2017; 15:e2001477. [PMID: 28594817 PMCID: PMC5464527 DOI: 10.1371/journal.pbio.2001477] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Environmental stresses increase genetic variation in bacteria, plants, and human cancer cells. The linkage between various environments and mutational outcomes has not been systematically investigated, however. Here, we established the influence of nutritional stresses commonly found in the biosphere (carbon, phosphate, nitrogen, oxygen, or iron limitation) on both the rate and spectrum of mutations in Escherichia coli. We found that each limitation was associated with a remarkably distinct mutational profile. Overall mutation rates were not always elevated, and nitrogen, iron, and oxygen limitation resulted in major spectral changes but no net increase in rate. Our results thus suggest that stress-induced mutagenesis is a diverse series of stress input-mutation output linkages that is distinct in every condition. Environment-specific spectra resulted in the differential emergence of traits needing particular mutations in these settings. Mutations requiring transpositions were highest under iron and oxygen limitation, whereas base-pair substitutions and indels were highest under phosphate limitation. The unexpected diversity of input-output effects explains some important phenomena in the mutational biases of evolving genomes. The prevalence of bacterial insertion sequence transpositions in the mammalian gut or in anaerobically stored cultures is due to environmentally determined mutation availability. Likewise, the much-discussed genomic bias towards transition base substitutions in evolving genomes can now be explained as an environment-specific output. Altogether, our conclusion is that environments influence genetic variation as well as selection.
Collapse
Affiliation(s)
- Ram P. Maharjan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Ferenci
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
78
|
Mustaev A, Roberts J, Gottesman M. Transcription elongation. Transcription 2017; 8:150-161. [PMID: 28301288 PMCID: PMC5501382 DOI: 10.1080/21541264.2017.1289294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.
Collapse
Affiliation(s)
- Arkady Mustaev
- PHRI Center, NJMS, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jeffrey Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Max Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
79
|
Owiti N, Lopez C, Singh S, Stephenson A, Kim N. Def1 and Dst1 play distinct roles in repair of AP lesions in highly transcribed genomic regions. DNA Repair (Amst) 2017; 55:31-39. [PMID: 28521214 DOI: 10.1016/j.dnarep.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
Abstract
Abasic or AP sites generated by spontaneous DNA damage accumulate at a higher rate in actively transcribed regions of the genome in S. cerevisiae and are primarily repaired by base excision repair (BER) pathway. We have demonstrated that transcription-coupled nucleotide excision repair (NER) pathway can functionally replace BER to repair those AP sites located on the transcribed strand much like the strand specific repair of UV-induced pyrimidine dimers. Previous reports indicate that Rad26, a yeast homolog of transcription-repair coupling factor CSB, partly mediates strand-specific repair of UV-dimers as well as AP lesions. Here, we report that Def1, known to promote ubiquitination and degradation of stalled RNA polymerase complex, also directs NER to AP lesions on the transcribed strand of an actively transcribed gene but that its function is dependent on metabolic state of the yeast cells. We additionally show that Dst1, a homolog of mammalian transcription elongation factor TFIIS, interferes with NER-dependent repair of AP lesions while suppressing homologous recombination pathway. Overall, Def1 and Dst1 mediate very different outcomes in response to AP-induced transcription arrest.
Collapse
Affiliation(s)
- Norah Owiti
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Christopher Lopez
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shivani Singh
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Andrei Stephenson
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
80
|
Abstract
Transcription-coupled repair (TCR) serves an important role in preserving genome integrity and maintaining fidelity of replication. Coupling transcription to DNA repair requires a coordinated action of several factors, including transcribing RNA polymerase and various transcription modulators and repair proteins. To study TCR in molecular detail, it is important to employ defined protein complexes in vitro and defined genetic backgrounds in vivo. In this chapter, we present methods to interrogate various aspects of TCR at different stages of repair. We describe promoter-initiated and nucleic acid scaffold-initiated transcription as valid approaches to recapitulate various stages of TCR, and discuss their strengths and weaknesses. We also outline an approach to study TCR in its cellular context using Escherichia coli as a model system.
Collapse
|
81
|
Sanders K, Lin CL, Smith AJ, Cronin N, Fisher G, Eftychidis V, McGlynn P, Savery NJ, Wigley DB, Dillingham MS. The structure and function of an RNA polymerase interaction domain in the PcrA/UvrD helicase. Nucleic Acids Res 2017; 45:3875-3887. [PMID: 28160601 PMCID: PMC5397179 DOI: 10.1093/nar/gkx074] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 11/14/2022] Open
Abstract
The PcrA/UvrD helicase functions in multiple pathways that promote bacterial genome stability including the suppression of conflicts between replication and transcription and facilitating the repair of transcribed DNA. The reported ability of PcrA/UvrD to bind and backtrack RNA polymerase (1,2) might be relevant to these functions, but the structural basis for this activity is poorly understood. In this work, we define a minimal RNA polymerase interaction domain in PcrA, and report its crystal structure at 1.5 Å resolution. The domain adopts a Tudor-like fold that is similar to other RNA polymerase interaction domains, including that of the prototype transcription-repair coupling factor Mfd. Removal or mutation of the interaction domain reduces the ability of PcrA/UvrD to interact with and to remodel RNA polymerase complexes in vitro. The implications of this work for our understanding of the role of PcrA/UvrD at the interface of DNA replication, transcription and repair are discussed.
Collapse
Affiliation(s)
- Kelly Sanders
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chia-Liang Lin
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Abigail J. Smith
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Nora Cronin
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Gemma Fisher
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | | | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Nigel J. Savery
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Dale B. Wigley
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK and Section of Structural Biology, Department of Medicine, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Mark S. Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
82
|
Abstract
Ubiquitous conserved processes that repair DNA damage are essential for the maintenance and propagation of genomes over generations. Then again, inaccuracies in DNA transactions and failures to remove mutagenic lesions cause heritable genome changes. Building on decades of research using genetics and biochemistry, unprecedented quantitative insight into DNA repair mechanisms has come from the new-found ability to measure single proteins in vitro and inside individual living cells. This has brought together biologists, chemists, engineers, physicists, and mathematicians to solve long-standing questions about the way in which repair enzymes search for DNA lesions and form protein complexes that act in DNA repair pathways. Furthermore, unexpected discoveries have resulted from capabilities to resolve molecular heterogeneity and cell subpopulations, provoking new questions about the role of stochastic processes in DNA repair and mutagenesis. These studies are leading to new technologies that will find widespread use in basic research, biotechnology, and medicine.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| | - David J Sherratt
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; ,
| |
Collapse
|
83
|
Myka KK, Hawkins M, Syeda AH, Gupta MK, Meharg C, Dillingham MS, Savery NJ, Lloyd RG, McGlynn P. Inhibiting translation elongation can aid genome duplication in Escherichia coli. Nucleic Acids Res 2017; 45:2571-2584. [PMID: 27956500 PMCID: PMC5389703 DOI: 10.1093/nar/gkw1254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 12/28/2022] Open
Abstract
Conflicts between replication and transcription challenge chromosome duplication. Escherichia coli replisome movement along transcribed DNA is promoted by Rep and UvrD accessory helicases with Δrep ΔuvrD cells being inviable under rapid growth conditions. We have discovered that mutations in a tRNA gene, aspT, in an aminoacyl tRNA synthetase, AspRS, and in a translation factor needed for efficient proline-proline bond formation, EF-P, suppress Δrep ΔuvrD lethality. Thus replication-transcription conflicts can be alleviated by the partial sacrifice of a mechanism that reduces replicative barriers, namely translating ribosomes that reduce RNA polymerase backtracking. Suppression depends on RelA-directed synthesis of (p)ppGpp, a signalling molecule that reduces replication-transcription conflicts, with RelA activation requiring ribosomal pausing. Levels of (p)ppGpp in these suppressors also correlate inversely with the need for Rho activity, an RNA translocase that can bind to emerging transcripts and displace transcription complexes. These data illustrate the fine balance between different mechanisms in facilitating gene expression and genome duplication and demonstrate that accessory helicases are a major determinant of this balance. This balance is also critical for other aspects of bacterial survival: the mutations identified here increase persistence indicating that similar mutations could arise in naturally occurring bacterial populations facing antibiotic challenge.
Collapse
Affiliation(s)
- Kamila K. Myka
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Aisha H. Syeda
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Milind K. Gupta
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Caroline Meharg
- Institute for Global Food Security, Queen's University Belfast, David Keir Building, Malone Road, Belfast BT9 5BN, UK
| | - Mark S. Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK
| | - Nigel J. Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8, 1TD, UK
| | - Robert G. Lloyd
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
84
|
Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:E2440-E2449. [PMID: 28265086 DOI: 10.1073/pnas.1615575114] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphosphate (polyP) granule biogenesis is an ancient and ubiquitous starvation response in bacteria. Although the ability to make polyP is important for survival during quiescence and resistance to diverse environmental stresses, granule genesis is poorly understood. Using quantitative microscopy at high spatial and temporal resolution, we show that granule genesis in Pseudomonas aeruginosa is tightly organized under nitrogen starvation. Following nucleation as many microgranules throughout the nucleoid, polyP granules consolidate and become transiently spatially organized during cell cycle exit. Between 1 and 3 h after nitrogen starvation, a minority of cells have divided, yet the total granule number per cell decreases, total granule volume per cell dramatically increases, and individual granules grow to occupy diameters as large as ∼200 nm. At their peak, mature granules constitute ∼2% of the total cell volume and are evenly spaced along the long cell axis. Following cell cycle exit, granules initially retain a tight spatial organization, yet their size distribution and spacing relax deeper into starvation. Mutant cells lacking polyP elongate during starvation and contain more than one origin. PolyP promotes cell cycle exit by functioning at a step after DNA replication initiation. Together with the universal starvation alarmone (p)ppGpp, polyP has an additive effect on nucleoid dynamics and organization during starvation. Notably, cell cycle exit is temporally coupled to a net increase in polyP granule biomass, suggesting that net synthesis, rather than consumption of the polymer, is important for the mechanism by which polyP promotes completion of cell cycle exit during starvation.
Collapse
|
85
|
|
86
|
Van den Bergh B, Fauvart M, Michiels J. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 2017; 41:219-251. [DOI: 10.1093/femsre/fux001] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022] Open
|
87
|
Selby CP. Mfd Protein and Transcription-Repair Coupling in Escherichia coli. Photochem Photobiol 2017; 93:280-295. [PMID: 27864884 DOI: 10.1111/php.12675] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/18/2016] [Indexed: 01/30/2023]
Abstract
In 1989, transcription-repair coupling (TRC) was first described in Escherichia coli, as the transcription-dependent, preferential nucleotide excision repair (NER) of UV photoproducts located in the template DNA strand. This finding led to pioneering biochemical studies of TRC in the laboratory of Professor Aziz Sancar, where, at the time, major contributions were being made toward understanding the roles of the UvrA, UvrB and UvrC proteins in NER. When the repair studies were extended to TRC, template but not coding strand lesions were found to block RNA polymerase (RNAP) in vitro, and unexpectedly, the blocked RNAP inhibited NER. A transcription-repair coupling factor, also called Mfd protein, was found to remove the blocked RNAP, deliver the repair enzyme to the lesion and thereby mediate more rapid repair of the transcription-blocking lesion compared with lesions elsewhere. Structural and functional analyses of Mfd protein revealed helicase motifs responsible for ATP hydrolysis and DNA binding, and regions that interact with RNAP and UvrA. These and additional studies provided a basis upon which other investigators, in following decades, have characterized fascinating and unexpected structural and mechanistic features of Mfd, revealed the possible existence of additional pathways of TRC and discovered additional roles of Mfd in the cell.
Collapse
Affiliation(s)
- Christopher P Selby
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
88
|
Deaconescu AM, Suhanovsky MM. From Mfd to TRCF and Back Again-A Perspective on Bacterial Transcription-coupled Nucleotide Excision Repair. Photochem Photobiol 2017; 93:268-279. [PMID: 27859304 PMCID: PMC5672955 DOI: 10.1111/php.12661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/17/2022]
Abstract
Photochemical and other reactions on DNA cause damage and corrupt genetic information. To counteract this damage, organisms have evolved intricate repair mechanisms that often crosstalk with other DNA-based processes such as transcription. Intriguing observations in the late 1980s and early 1990s led to the discovery of transcription-coupled repair (TCR), a subpathway of nucleotide excision repair. TCR, found in all domains of life, prioritizes for repair lesions located in the transcribed DNA strand, directly read by RNA polymerase. Here, we give a historical overview of developments in the field of bacterial TCR, starting from the pioneering work of Evelyn Witkin and Aziz Sancar, which led to the identification of the first transcription-repair coupling factor (the Mfd protein), to recent studies that have uncovered alternative TCR pathways and regulators.
Collapse
Affiliation(s)
- Alexandra M. Deaconescu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Margaret M. Suhanovsky
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02903, USA
| |
Collapse
|
89
|
A Magic Spot in Genome Maintenance. Trends Genet 2016; 33:58-67. [PMID: 27931778 DOI: 10.1016/j.tig.2016.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/02/2023]
Abstract
Nucleotide excision repair (NER) is the key DNA repair system that eliminates the majority of DNA helix-distorting lesions. RNA polymerase (RNAP) expedites the recognition of DNA damage by NER components via transcription-coupled DNA repair (TCR). In bacteria, a modified nucleotide ppGpp ('magic spot') is a pleiotropic second messenger that mediates the response to nutrient deficiencies by altering the initiation properties of RNAP. In this review, we discuss newly elucidated roles of guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in transcription elongation that couple this alarmone to DNA damage repair and maintenance.
Collapse
|
90
|
Li W, Li S. Facilitators and Repressors of Transcription-coupled DNA Repair in Saccharomyces cerevisiae. Photochem Photobiol 2016; 93:259-267. [PMID: 27796045 DOI: 10.1111/php.12655] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 12/11/2022]
Abstract
Nucleotide excision repair is a well-conserved DNA repair pathway that removes bulky and/or helix-distorting DNA lesions, such as UV-induced cyclobutane pyrimidine dimers and pyrimidine (6-4) pyrimidone photoproducts. Transcription-coupled repair (TCR) is a subpathway of nucleotide excision repair that is dedicated to rapid removal of DNA lesions in the transcribed strand of actively transcribed genes. In eukaryotic cells, TCR is triggered by RNA polymerase II (RNAP II). Rad26, a DNA-dependent ATPase, Rpb9, a nonessential subunit of RNAP II, and Sen1, a 5' to 3' RNA/DNA and DNA helicase, have been shown to facilitate TCR in Saccharomyces cerevisiae. In contrast, a number of factors have also been found to repress TCR in the yeast. These TCR repressors include Rpb4, another nonessential subunit of RNAP II, Spt4/5, a transcription elongation factor complex, and the RNAP II-associated factor 1 complex (PAFc). It appears that the eukaryotic TCR process involves intricate interplays of RNAP II with TCR facilitators and repressors. In this minireview, we summarize recent advances in TCR in S. cerevisiae.
Collapse
Affiliation(s)
- Wentao Li
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shisheng Li
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
91
|
Lee J, Borukhov S. Bacterial RNA Polymerase-DNA Interaction-The Driving Force of Gene Expression and the Target for Drug Action. Front Mol Biosci 2016; 3:73. [PMID: 27882317 PMCID: PMC5101437 DOI: 10.3389/fmolb.2016.00073] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022] Open
Abstract
DNA-dependent multisubunit RNA polymerase (RNAP) is the key enzyme of gene expression and a target of regulation in all kingdoms of life. It is a complex multifunctional molecular machine which, unlike other DNA-binding proteins, engages in extensive and dynamic interactions (both specific and nonspecific) with DNA, and maintains them over a distance. These interactions are controlled by DNA sequences, DNA topology, and a host of regulatory factors. Here, we summarize key recent structural and biochemical studies that elucidate the fine details of RNAP-DNA interactions during initiation. The findings of these studies help unravel the molecular mechanisms of promoter recognition and open complex formation, initiation of transcript synthesis and promoter escape. We also discuss most current advances in the studies of drugs that specifically target RNAP-DNA interactions during transcription initiation and elongation.
Collapse
Affiliation(s)
- Jookyung Lee
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| | - Sergei Borukhov
- Department of Cell Biology, Rowan University School of Osteopathic Medicine Stratford, NJ, USA
| |
Collapse
|
92
|
Krishnan S, Petchiappan A, Singh A, Bhatt A, Chatterji D. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence. Mol Microbiol 2016; 102:168-82. [PMID: 27349932 DOI: 10.1111/mmi.13453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 02/03/2023]
Abstract
Persistent R-loops lead to replicative stress due to RNA polymerase stalling and DNA damage. RNase H enzymes facilitate the organisms to survive in the hostile condition by removing these R-loops. MS_RHII-RSD was previously identified to be the second (p)ppGpp synthetase in Mycobacterium smegmatis. The unique presence of an additional RNase HII domain raises an important question regarding the significance of this bifunctional protein. In this report, we demonstrate its ability to hydrolyze R-loops in Escherichia coli exposed to UV stress. MS_RHII-RSD gene expression was upregulated under UV stress, and this gene deleted strain showed increased R-loop accumulation as compared to the wild type. The domains in isolation are known to be inactive, and the full length protein is required for its function. Domain interdependence studies using active site mutants reveal the necessity of a hexamer form with high alpha helical content. In previous studies, bacterial RNase type HI has been mainly implicated in R-loop hydrolysis, but in this study, the RNase HII domain containing protein showed the activity. The prospective of this differential RNase HII activity is discussed. This is the first report to implicate a (p)ppGpp synthetase protein in R-loop-induced stress response.
Collapse
Affiliation(s)
- Sushma Krishnan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Anushya Petchiappan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Albel Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - Dipankar Chatterji
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|