51
|
Liu Z, Li X, Gao Y, Liu J, Feng Y, Liu Y, Wang J, Wang C, Wang D, He J, Han W, Mei Q, Sun Y. Epigenetic reprogramming of Runx3 reinforces CD8 + T-cell function and improves the clinical response to immunotherapy. Mol Cancer 2023; 22:84. [PMID: 37189103 DOI: 10.1186/s12943-023-01768-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Checkpoint blockade immunotherapy, represented by PD-1 or PD-L1 antibody treatment, has been of tremendous success in clinical practice. However, the low clinical response rate and lack of biomarkers for prediction of the immune response limit the clinical application of anti-PD-1 immunotherapy. Our recent work showed that a combination of low-dose decitabine and PD-1-ab significantly improved the complete response (CR) rate of cHL patients from 32 to 71%, which indicates that there is a significant correlation between epigenetic regulation and the clinical response to immunotherapy. METHODS We recruited two groups of Hodgkin lymphoma patients who were treated with anti-PD-1 and DAC+anti-PD-1. CD8+ T cells were isolated from the patients' peripheral blood, DNA methylation was analyzed by EPIC, the expression profile was analyzed by RNA-seq, and multigroup analysis was performed with IPA and GSEA functional annotations. We explored the effect of DAC on the function of CD8+ T cells in the blood, spleen, tumor and lymph nodes using a mouse model. Furthermore, we explored the function of Tils in the tumor microenvironment. Then, we constructed Runx3-knockout mice to confirm the T-cell-specific function of Runx3 in CD8+ T cells and analyzed various subtypes of T cells and cytokines using mass cytometry (CyTOF). RESULTS Multiomics analysis identified that DNA methylation reprogramming of Runx3 was a crucial mediator of CD8+ T-cell function. Multiomics data showed that reversal of methylation of the Runx3 promoter promoted the infiltration of CD8+ TILs and mitigated the exhaustion of CD8+ T cells. Furthermore, experiments on tissue-specific Runx3-knockout mice showed that Runx3 deficiency reduced CD8+ T infiltration and the differentiation of effector T and memory T cells. Furthermore, Runx3 deficiency significantly decreased CCR3 and CCR5 levels. Immunotherapy experiments in Runx3 conditional knockout mice showed that DAC could not reverse the resistance of anti-PD-1 in the absence of Runx3. Moreover, both our clinical data and data from TISIDB showed that Runx3 could be a potential biomarker for immunotherapy to predict the clinical response rate. CONCLUSION We demonstrate that the DNA methylation of Runx3 plays a critical role in CD8+ T-cell infiltration and differentiation during decitabine-primed PD-1-ab immunotherapy, which provides a supporting mechanism for the essential role of epiregulation in immunotherapy.
Collapse
Affiliation(s)
- Zongzhi Liu
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
| | - Xiang Li
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yibo Gao
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jiejie Liu
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yating Feng
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Yang Liu
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Junyun Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chunmeng Wang
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 310058, China.
| | - Jie He
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Weidong Han
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China.
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Qian Mei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, 102206, Beijing, China.
- Department of Bio-therapeutic, the First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yingli Sun
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
52
|
Burdziak C, Alonso-Curbelo D, Walle T, Reyes J, Barriga FM, Haviv D, Xie Y, Zhao Z, Zhao CJ, Chen HA, Chaudhary O, Masilionis I, Choo ZN, Gao V, Luan W, Wuest A, Ho YJ, Wei Y, Quail DF, Koche R, Mazutis L, Chaligné R, Nawy T, Lowe SW, Pe’er D. Epigenetic plasticity cooperates with cell-cell interactions to direct pancreatic tumorigenesis. Science 2023; 380:eadd5327. [PMID: 37167403 PMCID: PMC10316746 DOI: 10.1126/science.add5327] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
The response to tumor-initiating inflammatory and genetic insults can vary among morphologically indistinguishable cells, suggesting as yet uncharacterized roles for epigenetic plasticity during early neoplasia. To investigate the origins and impact of such plasticity, we performed single-cell analyses on normal, inflamed, premalignant, and malignant tissues in autochthonous models of pancreatic cancer. We reproducibly identified heterogeneous cell states that are primed for diverse, late-emerging neoplastic fates and linked these to chromatin remodeling at cell-cell communication loci. Using an inference approach, we revealed signaling gene modules and tissue-level cross-talk, including a neoplasia-driving feedback loop between discrete epithelial and immune cell populations that was functionally validated in mice. Our results uncover a neoplasia-specific tissue-remodeling program that may be exploited for pancreatic cancer interception.
Collapse
Affiliation(s)
- Cassandra Burdziak
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Direna Alonso-Curbelo
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology; Barcelona 08028, Spain
| | - Thomas Walle
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ); Heidelberg 69120, Germany
- Department of Medical Oncology, National Center for Tumor Diseases; Heidelberg University Hospital, Heidelberg 69120, Germany
- German Cancer Consortium (DKTK); Heidelberg 69120, Germany
| | - José Reyes
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Francisco M. Barriga
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Doron Haviv
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Yubin Xie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Zhen Zhao
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai; New York, NY 10029, USA
| | - Chujun Julia Zhao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Hsuan-An Chen
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Ignas Masilionis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Zi-Ning Choo
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Vianne Gao
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine; New York, NY 10065, USA
| | - Wei Luan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Alexandra Wuest
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yuhong Wei
- Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University; Montreal, QC H3A 1A3, Canada
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Linas Mazutis
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Institute of Biotechnology, Life Sciences Centre; Vilnius University, Vilnius LT 02158, Lithuania
| | - Ronan Chaligné
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center; Memorial Sloan Kettering Cancer Center, New York 10065, NY, USA
| | - Tal Nawy
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| | - Dana Pe’er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
| |
Collapse
|
53
|
The Gut-Prostate Axis: A New Perspective of Prostate Cancer Biology through the Gut Microbiome. Cancers (Basel) 2023; 15:cancers15051375. [PMID: 36900168 PMCID: PMC10000196 DOI: 10.3390/cancers15051375] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Obesity and a high-fat diet are risk factors associated with prostate cancer, and lifestyle, especially diet, impacts the gut microbiome. The gut microbiome plays important roles in the development of several diseases, such as Alzheimer's disease, rheumatoid arthritis, and colon cancer. The analysis of feces from patients with prostate cancer by 16S rRNA sequencing has uncovered various associations between altered gut microbiomes and prostate cancer. Gut dysbiosis caused by the leakage of gut bacterial metabolites, such as short-chain fatty acids and lipopolysaccharide results in prostate cancer growth. Gut microbiota also play a role in the metabolism of androgen which could affect castration-resistant prostate cancer. Moreover, men with high-risk prostate cancer share a specific gut microbiome and treatments such as androgen-deprivation therapy alter the gut microbiome in a manner that favors prostate cancer growth. Thus, implementing interventions aiming to modify lifestyle or altering the gut microbiome with prebiotics or probiotics may curtail the development of prostate cancer. From this perspective, the "Gut-Prostate Axis" plays a fundamental bidirectional role in prostate cancer biology and should be considered when screening and treating prostate cancer patients.
Collapse
|
54
|
Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics. Nat Biotechnol 2023; 41:212-221. [PMID: 36076083 DOI: 10.1038/s41587-022-01447-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
The analysis of cell-free DNA (cfDNA) in plasma provides information on pathological processes in the body. Blood cfDNA is in the form of nucleosomes, which maintain their tissue- and cancer-specific epigenetic state. We developed a single-molecule multiparametric assay to comprehensively profile the epigenetics of plasma-isolated nucleosomes (EPINUC), DNA methylation and cancer-specific protein biomarkers. Our system allows for high-resolution detection of six active and repressive histone modifications and their ratios and combinatorial patterns on millions of individual nucleosomes by single-molecule imaging. In addition, our system provides sensitive and quantitative data on plasma proteins, including detection of non-secreted tumor-specific proteins, such as mutant p53. EPINUC analysis of a cohort of 63 colorectal cancer, 10 pancreatic cancer and 33 healthy plasma samples detected cancer with high accuracy and sensitivity, even at early stages. Finally, combining EPINUC with direct single-molecule DNA sequencing revealed the tissue of origin of colorectal, pancreatic, lung and breast tumors. EPINUC provides multilayered information of potential clinical relevance from limited (<1 ml) liquid biopsy material.
Collapse
|
55
|
Sparbier CE, Gillespie A, Gomez J, Kumari N, Motazedian A, Chan KL, Bell CC, Gilan O, Chan YC, Popp S, Gough DJ, Eckersley-Maslin MA, Dawson SJ, Lehner PJ, Sutherland KD, Ernst P, McGeehan GM, Lam EYN, Burr ML, Dawson MA. Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes. Nat Cell Biol 2023; 25:258-272. [PMID: 36635503 PMCID: PMC7614190 DOI: 10.1038/s41556-022-01056-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2022] [Indexed: 01/14/2023]
Abstract
Precise control of activating H3K4me3 and repressive H3K27me3 histone modifications at bivalent promoters is essential for normal development and frequently corrupted in cancer. By coupling a cell surface readout of bivalent MHC class I gene expression with whole-genome CRISPR-Cas9 screens, we identify specific roles for MTF2-PRC2.1, PCGF1-PRC1.1 and Menin-KMT2A/B complexes in maintaining bivalency. Genetic loss or pharmacological inhibition of Menin unexpectedly phenocopies the effects of polycomb disruption, resulting in derepression of bivalent genes in both cancer cells and pluripotent stem cells. While Menin and KMT2A/B contribute to H3K4me3 at active genes, a separate Menin-independent function of KMT2A/B maintains H3K4me3 and opposes polycomb-mediated repression at bivalent genes. Release of KMT2A from active genes following Menin targeting alters the balance of polycomb and KMT2A at bivalent genes, facilitating gene activation. This functional partitioning of Menin-KMT2A/B complex components reveals therapeutic opportunities that can be leveraged through inhibition of Menin.
Collapse
Affiliation(s)
- Christina E Sparbier
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrea Gillespie
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Juliana Gomez
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nishi Kumari
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ali Motazedian
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kah Lok Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Charles C Bell
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Omer Gilan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - Yih-Chih Chan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah Popp
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel J Gough
- Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Melanie A Eckersley-Maslin
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sarah-Jane Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul J Lehner
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Patricia Ernst
- Section of Hematology, Oncology and Bone Marrow Transplant, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Enid Y N Lam
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
- Department of Anatomical Pathology, ACT Pathology, Canberra Health Services, Canberra, Australian Capital Territory, Australia.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Department of Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.
- Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
56
|
The Addition of Hypomethylating Agents to Low-Intensity Induction Chemotherapy Does Not Improve Outcomes in Elderly Acute Myeloid Leukemia Patients: A Single-Center Retrospective Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59010114. [PMID: 36676738 PMCID: PMC9865460 DOI: 10.3390/medicina59010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 01/08/2023]
Abstract
Background and Objectives: This study aimed to evaluate whether the addition of hypomethylating agents (HMA) to low-intensity chemotherapy can enhance the clinical efficacy of induction treatment for elderly acute myeloid leukemia (AML) patients who are unsuitable for standard induction therapy. Materials and Methods: This study retrospectively analyzed 117 patients over 60 years old who were initially diagnosed with AML and received low-intensity induction treatment in the Department of Hematology in Anhui provincial hospital from January 2015 to December 2020. Twenty-three patients were excluded, and the remaining 94 patients were divided into two groups according to the selection of induction regimens. Results: Forty-four patients received HMA combined with low-intensity chemotherapy, and the other 50 patients received only low-intensity induction chemotherapy. Forty-three patients (45.7%) obtained complete remission (CR) after the initial induction treatment. The CR rate in the HMA plus low-intensity chemotherapy group was 34.1% (15/44), and in the single low-intensity chemotherapy group was 56.0% (28/50) (p = 0.04). The 30 days cumulative early death rates were 9.1% (95% CI: 3.5-22.4%) in the HMA plus low-intensity chemotherapy group and 6.0% (95% CI: 2.0-17.5%) in the single low-intensity chemotherapy group, respectively (p = 0.59), and the one-year cumulative relapse rates were 21.1% (95% Cl: 9.8-41.9%) and 33.3% (95% Cl: 20.3-51.5%), respectively (p = 0.80). The one-year overall survival (OS) rates for patients in the HMA plus low-intensity chemotherapy group and the single low-intensity chemotherapy group were 37.3% (95% Cl: 23.1-51.5%) and 55.4% (95% Cl: 40.5-67.9%), respectively (p = 0.098), and the one-year event-free survival (EFS) rates were 8.5% (95% Cl: 2.2-20.6%) and 20.6% (95% Cl: 9.1-35.3%), respectively (p = 0.058). Conclusions: This study showed that the addition of HMA to low-intensity induction chemotherapy does not improve prognosis in elderly AML patients who are unsuitable for standard induction chemotherapy.
Collapse
|
57
|
Li S. Inferring the Cancer Cellular Epigenome Heterogeneity via DNA Methylation Patterns. Cancer Treat Res 2023; 190:375-393. [PMID: 38113008 DOI: 10.1007/978-3-031-45654-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tumor cells evolve through space and time, generating genetically and phenotypically diverse cancer cell populations that are continually subjected to the selection pressures of their microenvironment and cancer treatment.
Collapse
Affiliation(s)
- Sheng Li
- The Jackson Laboratory for Genomic Medicine and Cancer Center, Farmington, USA.
| |
Collapse
|
58
|
Izadi ME, Sabzyan H. Reactive Molecular Dynamics Simulation of the Structural Damages of the B-DNA Induced by the Oxidation/Nitration of Guanine. J Phys Chem B 2022; 126:10347-10359. [PMID: 36448964 DOI: 10.1021/acs.jpcb.2c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Reactive molecular dynamics simulations (RMD) have been carried out to investigate structural alterations of the dodecamer double-strand B-DNA due to the oxidation/nitration modifications introduced to its guanine bases, including 8-oxoguanine, 8-nitroguanine, and 5-guanidino-4-nitroimidazole, considering two distribution patterns. These modifications may arise in the case of cancer treatment using oxidative/nitrosative reactive nitrogen species as anticancer agents. Results show that these mutations affect structural characteristics of the B-DNA dodecamer in the order 8-nitroguanine > 5-guanidino-4-nitroimidazole ≫ 8-oxoguanine. For instance, the base-pair per turn for these modified B-DNA are changed respectively to 9.79, 10.88 and 10.58 from 10.51 in the native defect-free B-DNA, which is compatible with the experimental value of 10.10. In addition, these mutations allow more water molecules to diffuse into the dodecamer structure and consequently increase the possibility of the penetration of reactive and nonreactive species toward constituting nucleic base-pairs. The largest variation of the B-DNA structure is observed for the mutated B-DNA with 8-nitroguanine modifications applied to its separated CG base-pairs along the dodecamer chain. The structural changes introduced by these nitro-/oxo-modified guanine bases can be considered as a critical step in the damage of the DNA structure and alterations of its function.
Collapse
Affiliation(s)
| | - Hassan Sabzyan
- Department of Chemistry, University of Isfahan, Isfahan81746-873441, I. R. Iran
| |
Collapse
|
59
|
Montella L, Cuomo M, Del Gaudio N, Buonaiuto M, Costabile D, Visconti R, Di Risi T, Vinciguerra R, Trio F, Ferraro S, Bove G, Facchini G, Altucci L, Chiariotti L, Della Monica R. Epigenetic alterations in glioblastomas: Diagnostic, prognostic and therapeutic relevance. Int J Cancer 2022. [PMID: 36479695 DOI: 10.1002/ijc.34381] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma, the most common and heterogeneous tumor affecting brain parenchyma, is dismally characterized by a very poor prognosis. Thus, the search of new, more effective treatments is a vital need. Here, we will review the druggable epigenetic features of glioblastomas that are, indeed, currently explored in preclinical studies and in clinical trials for the development of more effective, personalized treatments. In detail, we will review the studies that have led to the identification of epigenetic signatures, IDH mutations, MGMT gene methylation, histone modification alterations, H3K27 mutations and epitranscriptome landscapes of glioblastomas, in each case discussing the corresponding targeted therapies and their potential efficacy. Finally, we will emphasize how recent technological improvements permit to routinely investigate many glioblastoma epigenetic biomarkers in clinical practice, further enforcing the hope that personalized drugs, targeting specific epigenetic features, could be in future a therapeutic option for selected patients.
Collapse
Affiliation(s)
- Liliana Montella
- ASL NA2 NORD, Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, Pozzuoli, Italy
| | - Mariella Cuomo
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michela Buonaiuto
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Davide Costabile
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,SEMM-European School of Molecular Medicine, University of Naples "Federico II", Naples, Italy
| | - Roberta Visconti
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Institute for the Experimental Endocrinology and Oncology, Italian National Council of Research, Naples, Italy
| | - Teodolinda Di Risi
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Public Health, University of Naples "Federico II", Naples, Italy
| | | | | | - Sara Ferraro
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | - Guglielmo Bove
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gaetano Facchini
- ASL NA2 NORD, Oncology Operative Unit, "Santa Maria delle Grazie" Hospital, Pozzuoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,BIOGEM, Ariano Irpino, Italy
| | - Lorenzo Chiariotti
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Rosa Della Monica
- CEINGE Biotecnologie Avanzate scarl, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
60
|
Luo Y, Zhang Z, Zheng B, Wu P, Zhang G, Wang L, Zeng Q, Yang Z, Xue L, Zeng H, Tan F, Xue Q, Gao S, Sun N, He J. Comprehensive analyses of N 6 -methyladenosine-related long noncoding RNA profiles with prognosis, chemotherapy response, and immune landscape in small cell lung cancer. Cancer Sci 2022; 113:4289-4299. [PMID: 36047973 DOI: 10.1111/cas.15553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022] Open
Abstract
Small cell lung cancer (SCLC) is the most devastating subtype of lung cancer with no clinically available prognostic biomarkers. N6 -methyladenosine (m6 A) and noncoding RNAs play critical roles in cancer development and treatment response. However, little is known about m6 A-related long noncoding RNAs (lncRNAs) in SCLC. We used 206 limited-stage SCLC (LS-SCLC) samples from two cohorts to undertake the first and most comprehensive exploration of the m6 A-related lncRNA profile in SCLC and constructed a relevant prognostic signature. In total, 289 m6 A-related lncRNAs were screened out. We then built a seven-lncRNA-based signature in the training cohort with 48 RNA sequencing data using univariate and multivariate Cox regression models. The signature was well validated in an independent cohort containing 158 cases with quantitative PCR data. In both cohorts, the signature divided patients into high- and low-risk groups with significantly different survival rates (both p < 0.001). Our signature predicted chemotherapy survival benefit in patients with LS-SCLC. Receiver operating characteristic and C-index analyses indicated that the signature was better at predicting prognosis and chemotherapy benefit than other clinicopathologic features. Moreover, the signature was identified as an independent predictor of prognosis and chemotherapy response in different cohorts. Furthermore, functional analysis showed that multiple activated immune-related pathways were enriched in the low-risk group. Additionally, the signature was also closely related to various immune checkpoints and inflammatory responses. We generated the first clinically available m6 A-related lncRNA signature to predict prognosis and chemotherapy benefit in patients with LS-SCLC. Our findings could help optimize the clinical management of patients with LS-SCLC and inform future therapeutic targets for SCLC.
Collapse
Affiliation(s)
- Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lide Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaoyang Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Zeng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
61
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
62
|
Recent advances in microfluidic single-cell analysis and its applications in drug development. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
63
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
64
|
Wang P, Song Q, Ren J, Zhang W, Wang Y, Zhou L, Wang D, Chen K, Jiang L, Zhang B, Chen W, Qu C, Zhao H, Jiao Y. Simultaneous analysis of mutations and methylations in circulating cell-free DNA for hepatocellular carcinoma detection. Sci Transl Med 2022; 14:eabp8704. [PMID: 36417488 DOI: 10.1126/scitranslmed.abp8704] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell-free DNA (cfDNA)-based liquid biopsy is a promising approach for the early detection of cancer. A major hurdle is the limited yield of cfDNA from one blood draw, limiting the use of most samples to one test of either mutation or methylation. Here, we develop a technology, Mutation Capsule Plus (MCP), which enables multiplex profiling of one cfDNA sample, including simultaneous detection of genetic and epigenetic alterations and genome-wide discovery of methylation markers. With this technology, we performed de novo screening of methylation markers on cfDNA samples from 30 hepatocellular carcinoma (HCC) cases and 30 non-HCC controls. The methylation markers enriched in HCC cfDNA were further profiled in parallel with a panel of mutations on a training cohort of 60 HCC and 60 non-HCC cases, resulting in an HCC detection model. We validated the model in an independent retrospective cohort with 58 HCC and 198 non-HCC cases and got 90% sensitivity with 94% specificity. Furthermore, we applied the model to a prospective cohort of 311 asymptomatic hepatitis B virus carriers with normal liver ultrasonography and serum AFP concentration. The model detected four of the five HCC cases in the cohort, showing 80% sensitivity and 94% specificity. These findings demonstrate that the MCP technology has potential for the discovery and validation of multiomics biomarkers for the noninvasive detection of cancer. This study also provides a comprehensive database of genetic and epigenetic alterations in the cfDNA of a large cohort of HCC cases and high-risk non-HCC individuals.
Collapse
Affiliation(s)
- Pei Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qianqian Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jie Ren
- Fanshengzi Clinical Laboratory, Beijing 102206, China
| | - Weilong Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Colleges, Beijing 100021, China
| | - Lin Zhou
- Fanshengzi Clinical Laboratory, Beijing 102206, China
| | - Dongmei Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Colleges, Beijing 100021, China
| | - Kun Chen
- Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Colleges, Beijing 100021, China
| | - Liping Jiang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bochao Zhang
- Fanshengzi Clinical Laboratory, Beijing 102206, China
| | - Wanqing Chen
- Office of Cancer Screening, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Pan-jia-yuan South Lane, Chaoyang District, Beijing 100021, China
| | - Chunfeng Qu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Immunology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Colleges, Beijing 100021, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
65
|
Sánchez-Molina S, Figuerola-Bou E, Sánchez-Margalet V, de la Cruz-Merino L, Mora J, de Álava Casado E, García-Domínguez DJ, Hontecillas-Prieto L. Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers (Basel) 2022; 14:5473. [PMID: 36358891 PMCID: PMC9658520 DOI: 10.3390/cancers14215473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ewing Sarcoma (EWS) is an aggressive bone and soft tissue tumor that mainly affects children, adolescents, and young adults. The standard therapy, including chemotherapy, surgery, and radiotherapy, has substantially improved the survival of EWS patients with localized disease. Unfortunately, this multimodal treatment remains elusive in clinics for those patients with recurrent or metastatic disease who have an unfavorable prognosis. Consistently, there is an urgent need to find new strategies for patients that fail to respond to standard therapies. In this regard, in the last decade, treatments targeting epigenetic dependencies in tumor cells and the immune system have emerged into the clinical scenario. Additionally, recent advances in nanomedicine provide novel delivery drug systems, which may address challenges such as side effects and toxicity. Therefore, therapeutic strategies stemming from epigenetics, immunology, and nanomedicine yield promising alternatives for treating these patients. In this review, we highlight the most relevant EWS preclinical and clinical studies in epigenetics, immunotherapy, and nanotherapy conducted in the last five years.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique de Álava Casado
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel José García-Domínguez
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
66
|
Alexandrova E, Lamberti J, Memoli D, Quercia C, Melone V, Rizzo F, Tarallo R, Giurato G, Nassa G, Weisz A. Combinatorial targeting of menin and the histone methyltransferase DOT1L as a novel therapeutic strategy for treatment of chemotherapy-resistant ovarian cancer. Cancer Cell Int 2022; 22:336. [PMID: 36333801 PMCID: PMC9636786 DOI: 10.1186/s12935-022-02740-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Background Ovarian cancer (OC) is characterized by a low response rate and high frequency of resistance development to currently available treatments. The therapeutic potential of histone methyltransferase DOT1L inhibitor in OC cells has been demonstrated, but optimal efficacy and safety of this targeted therapy approach still require improvement. We set forth to evaluate if this problem can be overcome by combinatorial targeting of this epigenetic modifier and menin, one of its functional partners in chromatin. Methods siRNA-mediated gene knock-down and pharmacological inhibition of menin, a key component of the MLL/SET1 complex and a fitness gene in OC cells, coupled to cell proliferation assays on a panel of high grade serous OC cell lines, including chemotherapy-sensitive and -resistant clones, were applied in order to evaluate how depletion or blockade of this enzyme influences growth and viability of OC cells. RNA sequencing was applied to identify menin target genes and pathways, and the effects of combined inhibition of menin and DOT1L on growth and transcriptome of these OC models were evaluated. Results Silencing and pharmacological inhibition of menin exert antiproliferative effects in all OC cells tested and, in PEO1 and PEO4 cells, a profound impact on transcriptome via down-regulation of cell cycle regulatory pathways, aryl hydrocarbon receptor, MYC and KRAS signalling. We demonstrated association of menin and DOT1L in OC cells and identified a subset of genes co-regulated by the two factors. Interestingly, co-treatment with DOT1L and menin pharmacological inhibitors exerts an additive effect on growth inhibition on chemotherapy-sensitive and -refractory OC cells mediated by transcriptome changes controlled by menin and DOT1L activities. Conclusion These results indicate that menin functionally cooperates with DOT1L in OC cells modulating transcription of genes involved in key cellular functions including, among others, cell proliferation and survival, that are strongly affected by combined inhibition of these two epigenetic regulators, suggesting that this may represent a novel therapeutic strategy for chemotherapy-resistant OCs. Trial registration NA; The manuscript does not contain clinical trials. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02740-6.
Collapse
|
67
|
Barghout SH, Mann MK, Aman A, Yu Y, Alteen MG, Schimmer AD, Schapira M, Arrowsmith CH, Barsyte-Lovejoy D. Combinatorial Anticancer Drug Screen Identifies Off-Target Effects of Epigenetic Chemical Probes. ACS Chem Biol 2022; 17:2801-2816. [PMID: 36084291 DOI: 10.1021/acschembio.2c00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Anticancer drug response is determined by genetic and epigenetic mechanisms. To identify the epigenetic regulators of anticancer drug response, we conducted a chemical epigenetic screen using chemical probes that target different epigenetic modulators. In this screen, we tested 31 epigenetic probes in combination with 14 mechanistically diverse anticancer agents and identified 8 epigenetic probes that significantly potentiate the cytotoxicity of TAK-243, a first-in-class ubiquitin-activating enzyme (UBA1) inhibitor evaluated in several solid and hematologic malignancies. These probes are TP-472, GSK864, A-196, UNC1999, SGC-CBP30, and PFI-4 (and its related analogues GSK6853 and GSK5959), and they target BRD9/7, mutant IDH1, SUV420H1/2, EZH2/1, p300/CBP, and BRPF1B, respectively. In contrast to epigenetic probes, negative control compounds did not have a significant impact on TAK-243 cytotoxicity. Potentiation of TAK-243 cytotoxicity was associated with reduced ubiquitylation and induction of apoptosis. Mechanistically, these epigenetic probes exerted their potentiation by inhibiting the efflux transporter ATP-binding cassette subfamily G member 2 (ABCG2) without inducing significant changes in the ubiquitylation pathways or ABCG2 expression levels. As assessed by docking analysis, the identified probes could potentially interact with ABCG2. Based on these data, we have developed a cell-based assay that can quantitatively evaluate ABCG2 inhibition by drug candidates. In conclusion, our study identifies epigenetic probes that profoundly potentiate TAK-243 cytotoxicity through off-target ABCG2 inhibition. We also provide experimental evidence that several negative control compounds cannot exclude a subset of off-target effects of chemical probes. Finally, potentiation of TAK-243 cytotoxicity can serve as a quantitative measure of ABCG2-inhibitory activity.
Collapse
Affiliation(s)
- Samir H Barghout
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Mandeep K Mann
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ahmed Aman
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yifan Yu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Matthew G Alteen
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron D Schimmer
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Matthieu Schapira
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
68
|
Ge T, Gu X, Jia R, Ge S, Chai P, Zhuang A, Fan X. Crosstalk between metabolic reprogramming and epigenetics in cancer: updates on mechanisms and therapeutic opportunities. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1049-1082. [PMID: 36266736 PMCID: PMC9648395 DOI: 10.1002/cac2.12374] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022]
Abstract
Reversible, spatial, and temporal regulation of metabolic reprogramming and epigenetic homeostasis are prominent hallmarks of carcinogenesis. Cancer cells reprogram their metabolism to meet the high bioenergetic and biosynthetic demands for vigorous proliferation. Epigenetic dysregulation is a common feature of human cancers, which contributes to tumorigenesis and maintenance of the malignant phenotypes by regulating gene expression. The epigenome is sensitive to metabolic changes. Metabolism produces various metabolites that are substrates, cofactors, or inhibitors of epigenetic enzymes. Alterations in metabolic pathways and fluctuations in intermediate metabolites convey information regarding the intracellular metabolic status into the nucleus by modulating the activity of epigenetic enzymes and thus remodeling the epigenetic landscape, inducing transcriptional responses to heterogeneous metabolic requirements. Cancer metabolism is regulated by epigenetic machinery at both transcriptional and post‐transcriptional levels. Epigenetic modifiers, chromatin remodelers and non‐coding RNAs are integral contributors to the regulatory networks involved in cancer metabolism, facilitating malignant transformation. However, the significance of the close connection between metabolism and epigenetics in the context of cancer has not been fully deciphered. Thus, it will be constructive to summarize and update the emerging new evidence supporting this bidirectional crosstalk and deeply assess how the crosstalk between metabolic reprogramming and epigenetic abnormalities could be exploited to optimize treatment paradigms and establish new therapeutic options. In this review, we summarize the central mechanisms by which epigenetics and metabolism reciprocally modulate each other in cancer and elaborate upon and update the major contributions of the interplays between epigenetic aberrations and metabolic rewiring to cancer initiation and development. Finally, we highlight the potential therapeutic opportunities for hematological malignancies and solid tumors by targeting this epigenetic‐metabolic circuit. In summary, we endeavored to depict the current understanding of the coordination between these fundamental abnormalities more comprehensively and provide new perspectives for utilizing metabolic and epigenetic targets for cancer treatment.
Collapse
Affiliation(s)
- Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China.,Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, P. R. China
| |
Collapse
|
69
|
Signaling pathways and targeted therapies in lung squamous cell carcinoma: mechanisms and clinical trials. Signal Transduct Target Ther 2022; 7:353. [PMID: 36198685 PMCID: PMC9535022 DOI: 10.1038/s41392-022-01200-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death across the world. Unlike lung adenocarcinoma, patients with lung squamous cell carcinoma (LSCC) have not benefitted from targeted therapies. Although immunotherapy has significantly improved cancer patients' outcomes, the relatively low response rate and severe adverse events hinder the clinical application of this promising treatment in LSCC. Therefore, it is of vital importance to have a better understanding of the mechanisms underlying the pathogenesis of LSCC as well as the inner connection among different signaling pathways, which will surely provide opportunities for more effective therapeutic interventions for LSCC. In this review, new insights were given about classical signaling pathways which have been proved in other cancer types but not in LSCC, including PI3K signaling pathway, VEGF/VEGFR signaling, and CDK4/6 pathway. Other signaling pathways which may have therapeutic potentials in LSCC were also discussed, including the FGFR1 pathway, EGFR pathway, and KEAP1/NRF2 pathway. Next, chromosome 3q, which harbors two key squamous differentiation markers SOX2 and TP63 is discussed as well as its related potential therapeutic targets. We also provided some progress of LSCC in epigenetic therapies and immune checkpoints blockade (ICB) therapies. Subsequently, we outlined some combination strategies of ICB therapies and other targeted therapies. Finally, prospects and challenges were given related to the exploration and application of novel therapeutic strategies for LSCC.
Collapse
|
70
|
Evan T, Wang VMY, Behrens A. The roles of intratumour heterogeneity in the biology and treatment of pancreatic ductal adenocarcinoma. Oncogene 2022; 41:4686-4695. [PMID: 36088504 PMCID: PMC9568427 DOI: 10.1038/s41388-022-02448-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022]
Abstract
Intratumour heterogeneity (ITH) has become an important focus of cancer research in recent years. ITH describes the cellular variation that enables tumour evolution, including tumour progression, metastasis and resistance to treatment. The selection and expansion of genetically distinct treatment-resistant cancer cell clones provides one explanation for treatment failure. However, tumour cell variation need not be genetically encoded. In pancreatic ductal adenocarcinoma (PDAC) in particular, the complex tumour microenvironment as well as crosstalk between tumour and stromal cells result in exceptionally variable tumour cell phenotypes that are also highly adaptable. In this review we discuss four different types of phenotypic heterogeneity within PDAC, from morphological to metabolic heterogeneity. We suggest that these different types of ITH are not independent, but, rather, can inform one another. Lastly, we highlight recent findings that suggest how therapeutic efforts may halt PDAC progression by constraining cellular heterogeneity.
Collapse
Affiliation(s)
- Theodore Evan
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | | | - Axel Behrens
- Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, SW3 6JB, UK.
- Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ, UK.
- CRUK Convergence Science Centre, Imperial College London, SW7 2AZ, London, UK.
| |
Collapse
|
71
|
Tetrahydrocurcumin Chemosensitizes Breast Cancer to Albumin-Bound Paclitaxel by Enhancing SPARC Expression through Demethylation. JOURNAL OF ONCOLOGY 2022; 2022:7961537. [PMID: 36157225 PMCID: PMC9507704 DOI: 10.1155/2022/7961537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
Paclitaxel is an effective chemotherapy drug for breast cancer (BC); however, drug resistance affects long-term clinical applications. In this study, we aimed to explore whether a natural compound, tetrahydrocurcumin (THC), could sensitize BC to albumin-bound paclitaxel (ab-PTX). The in vitro sensitization effect of THC to ab-PTX was evaluated in human BC cell lines, and in vivo chemosensitivity was measured using a xenograft BC tumor model. The expression of secreted protein acidic and rich in cysteine (SPARC), a speculated protein interacting with ab-PTX, was measured. Methylation-specific polymerase chain reaction (MSP) was used to further explore whether demethylation of SPARC by THC contributed to its chemosensitivity capabilities. Higher SPARC expression was correlated with a better prognosis in patients with BC. In vitro analysis showed THC enhanced the inhibitory effect of ab-PTX on BC cells and xenograft tumors and showed significant chemosensitivity. This enhancement mainly relied on upregulating the expression of SPARC through downregulating methylation of the SPARC gene. The demethylating agent, 5-Aza-2′-deoxycytidine (5-Aza-Cdr), decreased THC's chemosensitivity effect, further confirming this molecular mechanism. THC enhanced the inhibitory effect of ab-PTX in BC by downregulating methylation of the SPARC gene. Further, upregulated SPARC increased the efficacy of ab-PTX.
Collapse
|
72
|
Feng J, Meng X. Histone modification and histone modification-targeted anti-cancer drugs in breast cancer: Fundamentals and beyond. Front Pharmacol 2022; 13:946811. [PMID: 36188615 PMCID: PMC9522521 DOI: 10.3389/fphar.2022.946811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/15/2022] [Indexed: 12/21/2022] Open
Abstract
Dysregulated epigenetic enzymes and resultant abnormal epigenetic modifications (EMs) have been suggested to be closely related to tumor occurrence and progression. Histone modifications (HMs) can assist in maintaining genome stability, DNA repair, transcription, and chromatin modulation within breast cancer (BC) cells. In addition, HMs are reversible, dynamic processes involving the associations of different enzymes with molecular compounds. Abnormal HMs (e.g. histone methylation and histone acetylation) have been identified to be tightly related to BC occurrence and development, even though their underlying mechanisms remain largely unclear. EMs are reversible, and as a result, epigenetic enzymes have aroused wide attention as anti-tumor therapeutic targets. At present, treatments to restore aberrant EMs within BC cells have entered preclinical or clinical trials. In addition, no existing studies have comprehensively analyzed aberrant HMs within BC cells; in addition, HM-targeting BC treatments remain to be further investigated. Histone and non-histone protein methylation is becoming an attractive anti-tumor epigenetic therapeutic target; such methylation-related enzyme inhibitors are under development at present. Consequently, the present work focuses on summarizing relevant studies on HMs related to BC and the possible mechanisms associated with abnormal HMs. Additionally, we also aim to analyze existing therapeutic agents together with those drugs approved and tested through pre-clinical and clinical trials, to assess their roles in HMs. Moreover, epi-drugs that target HMT inhibitors and HDAC inhibitors should be tested in preclinical and clinical studies for the treatment of BC. Epi-drugs that target histone methylation (HMT inhibitors) and histone acetylation (HDAC inhibitors) have now entered clinical trials or are approved by the US Food and Drug Administration (FDA). Therefore, the review covers the difficulties in applying HM-targeting treatments in clinics and proposes feasible approaches for overcoming such difficulties and promoting their use in treating BC cases.
Collapse
|
73
|
Liu J, Yang L, Liu X, Liu L, Liu M, Feng X, Luo J. lncRNA HOTTIP Recruits EZH2 to Inhibit PTEN Expression and Participates in IM Resistance in Chronic Myeloid Leukemia. Stem Cells Int 2022; 2022:9993393. [PMID: 36117724 PMCID: PMC9477575 DOI: 10.1155/2022/9993393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Objective To investigate that HOTTIP suppressed PTEN gene expression and was involved in IM resistance in chronic myeloid leukemia through recruitment of EZH2 protein. Methods Seventy-one cases of bone marrow monocytes diagnosed with CML in the Second Hospital of Hebei Medical University from 2018 to 2021 were selected. These patients were diagnosed with CML by bone marrow morphology, immunology, molecular biology, and cytogenetics, of which 36 were sensitive to IM and 35 were resistant to IM. We selected K562 and IR-K562 cells preserved in the laboratory as our subjects to study the expression levels of HOTTIP in the bone marrow cells of IM CML-resistant patients and IM-resistant cells. Results In this study, we found that HOTTIP was highly expressed in the bone marrow and cell lines of CML patients resistant to Imatinib mesylate (IM). In in vitro experiments, lentiviral knockdown of HOTTIP inhibited CML cell proliferation and promoted apoptosis, and knockdown of HOTTIP also increased sensitivity to IM. Mechanistically, highly expressed HOTTIP is involved in the biological process of IM resistance by recruiting Zeste homologous protein 2 enhancer (EZH2) to inhibit the expression of phosphatase and Tensin homologous protein (PTEN) genes. Conclusions We confirmed that HOTTIP and EZH2 are highly expressed in IM-resistant patients and IM-resistant CML cell lines. In CML cell lines, HOTTIP is involved in regulating the proliferation and apoptosis of CML cells and resistance to IM.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lin Yang
- Key Laboratory of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiaojun Liu
- Key Laboratory of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Lu Liu
- Key Laboratory of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Menghan Liu
- Key Laboratory of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xuefeng Feng
- Key Laboratory of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Jianmin Luo
- Key Laboratory of Hematology, Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
74
|
Li Y, Liu B, Yin X, Jiang Z, Fang C, Chen N, Zhang B, Dai L, Yin Y. Targeted demethylation of the SLC5A7 promotor inhibits colorectal cancer progression. Clin Epigenetics 2022; 14:92. [PMID: 35858918 PMCID: PMC9301853 DOI: 10.1186/s13148-022-01308-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 07/04/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND SLC5A7 (solute carrier family 5 member 7), also known as choline transporter 1 (CHT1), is downregulated in colorectal cancer (CRC) and functions as a tumor suppressor. However, the mechanisms underlying the inactivation of SLC5A7 in CRC remain to be elucidated. RESULTS In the present study, two broad-spectrum demethylation agents (azacitidine and decitabine) employed to treat CRC cells significantly upregulated SLC5A7 expression. Further results based on the CRC cohort and TCGA database indicated that SLC5A7 promoter methylation inversely correlated with SLC5A7 expression, and the status of SLC5A7 promotor methylation showed a promising prognostic value for patients with CRC. Next, the dCas9-multiGCN4/scFv-TET1CD-based precision demethylation system was constructed, which could significantly and specifically promote SLC5A7 expression in CRC cells through sgRNA targeting the SLC5A7 promoter. Both in vitro and in vivo experiments demonstrated that targeted demethylation of SLC5A7 by dCas9-multiGCN4/scFv-TET1CD-sgSLC5A7 inhibited tumor growth by stabilizing p53 and regulating downstream targets. CONCLUSIONS Collectively, DNA promoter methylation caused inactivation of SLC5A7 in CRC, and targeted demethylation of SLC5A7 might be a therapeutic target for CRC and other cancers.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastrointestinal Surgery, Guang'an People's Hospital, Guang'an, 638500, Sichuan, People's Republic of China
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Baike Liu
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xiaonan Yin
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhiyuan Jiang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China
- School of Pharmacy, Chengdu Medical College, Chengdu, 610500, People's Republic of China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yuan Yin
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
75
|
Salvati A, Melone V, Sellitto A, Rizzo F, Tarallo R, Nyman TA, Giurato G, Nassa G, Weisz A. Combinatorial targeting of a chromatin complex comprising Dot1L, menin and the tyrosine kinase BAZ1B reveals a new therapeutic vulnerability of endocrine therapy-resistant breast cancer. BREAST CANCER RESEARCH : BCR 2022; 24:52. [PMID: 35850772 PMCID: PMC9290241 DOI: 10.1186/s13058-022-01547-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 07/03/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Targeting vulnerabilities of cancer cells by inhibiting key regulators of cell proliferation or survival represents a promising way to overcome resistance to current therapies. In breast cancer (BC), resistance to endocrine therapy results from constitutively active or aberrant estrogen receptor alpha (ERα) signaling to the genome. Targeting components of the ERα pathway in these tumors represents, therefore, a rational way toward effective new treatments. Interaction proteomics identified several proteins associated with ERα in BC cells, including epigenetic complexes controlling gene transcription comprising the scaffold protein menin and the histone methyltransferase Dot1L. METHODS We combined chromatin immunoprecipitation, transcriptome sequencing, siRNA-mediated gene knockdown (kd), pharmacological inhibition coupled to cellular and functional assays and interaction proteomics in antiestrogen (AE)-sensitive and AE-resistant human BC cell models to: map menin and Dot1L chromatin localization, search for their common and specific target genes, measure the effects of single or combinatorial knockdown or pharmacological inhibition of these proteins on cell proliferation and survival, and characterize their nuclear interactomes. RESULTS Dot1L and menin associate in MCF-7 cells chromatin, where they co-localize in a significant fraction of sites, resulting in co-regulation of genes involved, among others, in estrogen, p53, HIF1α and death receptor signaling, regulation of cell cycle and epithelial-to-mesenchymal transition. Specific inhibitors of the two factors synergize with each other for inhibition of cell proliferation of AE (tamoxifen or fulvestrant)-sensitive and AE-resistant BC cells. Menin and Dot1L interactomes share a sizeable fraction of their nuclear partners, the majority being known BC fitness genes. Interestingly, these include B-WICH and WINAC complexes that share BAZ1B, a bromodomain protein comprising a tyrosine-protein kinase domain playing a central role in chromatin remodeling and transcriptional regulation. BAZ1B kd caused significant inhibition of ERα expression, proliferation and transcriptome changes resulting in inhibition of estrogen, myc, mTOR, PI3K and AKT signaling and metabolic pathways in AE-sensitive and AE-resistant BC cells. CONCLUSIONS Identification of a functional interplay between ERα, Dot1L, menin and BAZ1B and the significant effects of their co-inhibition on cell proliferation and survival in cell models of endocrine therapy-resistant BC reveal a new therapeutic vulnerability of these aggressive diseases.
Collapse
Affiliation(s)
- Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.,Medical Genomics Program, Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', Università di Salerno, 84131, Salerno, Italy
| | - Viola Melone
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Assunta Sellitto
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.,Genome Research Center for Health, 84081, Baronissi, SA, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.,Genome Research Center for Health, 84081, Baronissi, SA, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, 0424, Oslo, Norway
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy. .,Genome Research Center for Health, 84081, Baronissi, SA, Italy.
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy. .,Genome Research Center for Health, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy. .,Medical Genomics Program, Division of Oncology, AOU 'S. Giovanni di Dio e Ruggi d'Aragona', Università di Salerno, 84131, Salerno, Italy. .,Genome Research Center for Health, 84081, Baronissi, SA, Italy.
| |
Collapse
|
76
|
Sun Z, Wang X, Vedell P, Kocher J. DNA methylation signature predicts cancer response to demethylation agents from profiling diverse cancer cell lines. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:789-792. [PMID: 35716010 PMCID: PMC9395315 DOI: 10.1002/cac2.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Zhifu Sun
- Division of Computational BiologyDepartment of Quantitative Health SciencesMayo ClinicRochesterMN55905USA
| | - Xuewei Wang
- Division of Computational BiologyDepartment of Quantitative Health SciencesMayo ClinicRochesterMN55905USA
| | - Pete Vedell
- Division of Computational BiologyDepartment of Quantitative Health SciencesMayo ClinicRochesterMN55905USA
| | - Jean‐Pierre Kocher
- Division of Computational BiologyDepartment of Quantitative Health SciencesMayo ClinicRochesterMN55905USA
| |
Collapse
|
77
|
Zambelli A, Sgarra R, De Sanctis R, Agostinetto E, Santoro A, Manfioletti G. Heterogeneity of triple-negative breast cancer: understanding the Daedalian labyrinth and how it could reveal new drug targets. Expert Opin Ther Targets 2022; 26:557-573. [PMID: 35638300 DOI: 10.1080/14728222.2022.2084380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is considered the most aggressive breast cancer subtype with the least favorable outcomes. However, recent research efforts have generated an enhanced knowledge of the biology of the disease and have provided a new, more comprehensive understanding of the multifaceted ecosystem that underpins TNBC. AREAS COVERED In this review, the authors illustrate the principal biological characteristics of TNBC, the molecular driver alterations, targetable genes, and the biomarkers of immune engagement that have been identified across the subgroups of TNBC. Accordingly, the authors summarize the landscape of the innovative and investigative biomarker-driven therapeutic options in TNBC that emerge from the unique biological basis of the disease. EXPERT OPINION The therapeutic setting of TNBC is rapidly evolving. An enriched understanding of the tumor spatial and temporal heterogeneity and the surrounding microenvironment of this complex disease can effectively support the development of novel and tailored opportunities of treatment.
Collapse
Affiliation(s)
- Alberto Zambelli
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Riccardo Sgarra
- Department of Life sciences, University of Trieste, Trieste, Italy
| | - Rita De Sanctis
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elisa Agostinetto
- Department of Biomedical Sciences, Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium and Humanitas University, Milan, Italy
| | - Armando Santoro
- Medical Oncology and Hematology Unit, IRCCS - Humanitas Clinical and Research Center, Humanitas Cancer Center, Milan, Italy
| | | |
Collapse
|
78
|
Pete S, Roy N, Kar B, Paira P. Construction of homo and heteronuclear Ru(II), Ir(III) and Re(I) complexes for target specific cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
79
|
Xu Y, Li P, Liu Y, Xin D, Lei W, Liang A, Han W, Qian W. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond) 2022; 42:493-516. [PMID: 35642676 PMCID: PMC9198339 DOI: 10.1002/cac2.12313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors (ICIs) and adoptive cell therapies have received clinical approval for use in certain types of cancer. However, monotherapy with epi-drugs or ICIs has shown limited efficacy in most cancer patients. Epigenetic agents have been shown to regulate the crosstalk between the tumor and host immunity to alleviate immune evasion, suggesting that epi-drugs can potentially synergize with immunotherapy. In this review, we discuss recent insights into the rationales of incorporating epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus on an update of current clinical trials in both hematological and solid malignancies. Furthermore, we outline the future challenges and strategies in the field of cancer epi-immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ping Li
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Yang Liu
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Dijia Xin
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wen Lei
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Aibin Liang
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Wenbin Qian
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| |
Collapse
|
80
|
Brothwell MRS, Barnett GC. Cancer Genetics and Genomics - Part 1. Clin Oncol (R Coll Radiol) 2022; 34:e254-e261. [PMID: 35339325 DOI: 10.1016/j.clon.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/24/2022] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Affiliation(s)
- M R S Brothwell
- Department of Oncology, Colchester Hospital, Colchester, UK.
| | - G C Barnett
- University of Cambridge, Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
81
|
Li D, Yu X, Kottur J, Gong W, Zhang Z, Storey AJ, Tsai YH, Uryu H, Shen Y, Byrum SD, Edmondson RD, Mackintosh SG, Cai L, Liu Z, Aggarwal AK, Tackett AJ, Liu J, Jin J, Wang GG. Discovery of a dual WDR5 and Ikaros PROTAC degrader as an anti-cancer therapeutic. Oncogene 2022; 41:3328-3340. [PMID: 35525905 PMCID: PMC9189076 DOI: 10.1038/s41388-022-02340-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
WD repeat domain 5 (WDR5), an integral component of the MLL/KMT2A lysine methyltransferase complex, is critically involved in oncogenesis and represents an attractive onco-target. Inhibitors targeting protein-protein interactions (PPIs) between WDR5 and its binding partners, however, do not inhibit all of WDR5-mediated oncogenic functions and exert rather limited antitumor effects. Here, we report a cereblon (CRBN)-recruiting proteolysis targeting chimera (PROTAC) of WDR5, MS40, which selectively degrades WDR5 and the well-established neo-substrates of immunomodulatory drugs (IMiDs):CRBN, the Ikaros zinc finger (IKZF) transcription factors IKZF1 and IKZF3. MS40-induced WDR5 degradation caused disassociation of the MLL/KMT2A complex off chromatin, resulting in decreased H3K4me2. Transcriptomic profiling revealed that targets of both WDR5 and IMiDs:CRBN were significantly repressed by treatment of MS40. In MLL-rearranged leukemias, which exhibit IKZF1 high expression and dependency, co-suppression of WDR5 and Ikaros by MS40 is superior in suppressing oncogenesis to the WDR5 PPI inhibitor, to MS40's non-PROTAC analog controls (MS40N1 and MS40N2, which do not bind CRBN and WDR5, respectively), and to a matched VHL-based WDR5 PROTAC (MS169, which degrades WDR5 but not Ikaros). MS40 suppressed the growth of primary leukemia patient cells in vitro and patient-derived xenografts in vivo. Thus, dual degradation of WDR5 and Ikaros is a promising anti-cancer strategy.
Collapse
Affiliation(s)
- Dongxu Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xufen Yu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jithesh Kottur
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weida Gong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yi-Hsuan Tsai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hidetaka Uryu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rick D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Aneel K Aggarwal
- Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
82
|
So J, Lewis AC, Smith LK, Stanley K, Franich R, Yoannidis D, Pijpers L, Dominguez P, Hogg SJ, Vervoort SJ, Brown FC, Johnstone RW, McDonald G, Ulanet DB, Murtie J, Gruber E, Kats LM. Inhibition of pyrimidine biosynthesis targets protein translation in acute myeloid leukemia. EMBO Mol Med 2022; 14:e15203. [PMID: 35514210 PMCID: PMC9260210 DOI: 10.15252/emmm.202115203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial enzyme dihydroorotate dehydrogenase (DHODH) catalyzes one of the rate‐limiting steps in de novo pyrimidine biosynthesis, a pathway that provides essential metabolic precursors for nucleic acids, glycoproteins, and phospholipids. DHODH inhibitors (DHODHi) are clinically used for autoimmune diseases and are emerging as a novel class of anticancer agents, especially in acute myeloid leukemia (AML) where pyrimidine starvation was recently shown to reverse the characteristic differentiation block in AML cells. Herein, we show that DHODH blockade rapidly shuts down protein translation in leukemic stem cells (LSCs) and has potent and selective activity against multiple AML subtypes. Moreover, we find that ablation of CDK5, a gene that is recurrently deleted in AML and related disorders, increases the sensitivity of AML cells to DHODHi. Our studies provide important molecular insights and identify a potential biomarker for an emerging strategy to target AML.
Collapse
Affiliation(s)
- Joan So
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | - Lorey K Smith
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Kym Stanley
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Rheana Franich
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - David Yoannidis
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Lizzy Pijpers
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Pilar Dominguez
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephin J Vervoort
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | - Fiona C Brown
- Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Ricky W Johnstone
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | - Emily Gruber
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | - Lev M Kats
- The Peter MacCallum Cancer Centre, Melbourne, Vic., Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
83
|
Zakharova VV, Magnitov MD, Del Maestro L, Ulianov SV, Glentis A, Uyanik B, Williart A, Karpukhina A, Demidov O, Joliot V, Vassetzky Y, Mège RM, Piel M, Razin S, Ait-Si-Ali S. SETDB1 fuels the lung cancer phenotype by modulating epigenome, 3D genome organization and chromatin mechanical properties. Nucleic Acids Res 2022; 50:4389-4413. [PMID: 35474385 PMCID: PMC9071401 DOI: 10.1093/nar/gkac234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.
Collapse
Affiliation(s)
- Vlada V Zakharova
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Mikhail D Magnitov
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia
| | - Laurence Del Maestro
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Science, Moscow 119334, Russia,Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandros Glentis
- Institute Jacques Monod, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Burhan Uyanik
- INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté F-21000, Dijon, France
| | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, 75248 Paris, France
| | - Anna Karpukhina
- UMR9018, CNRS, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy; 94805 Villejuif, France,Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - Oleg Demidov
- INSERM UMR1231, LipSTIC, University of Burgundy Franche-Comté F-21000, Dijon, France,Institute of Cytology, RAS, 194064 St. Petersburg, Russia,NTU Sirius, 354340 Sochi, Russia
| | - Veronique Joliot
- Epigenetics and Cell Fate (EDC) department, UMR7216, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Yegor S Vassetzky
- UMR9018, CNRS, Université Paris-Sud Paris-Saclay, Institut Gustave Roussy; 94805 Villejuif, France,Koltzov Institute of Developmental Biology, 119334 Moscow, Russia
| | - René-Marc Mège
- Institute Jacques Monod, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, 75248 Paris, France
| | - Sergey V Razin
- Correspondence may also be addressed to Sergey V. Razin. Tel: +7 499 135 3092;
| | | |
Collapse
|
84
|
Lu D, Foley CA, Birla SV, Hepperla AJ, Simon JM, James LI, Hathaway NA. Bioorthogonal Chemical Epigenetic Modifiers Enable Dose-Dependent CRISPR Targeted Gene Activation in Mammalian Cells. ACS Synth Biol 2022; 11:1397-1407. [PMID: 35302756 PMCID: PMC9048219 DOI: 10.1021/acssynbio.1c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
CRISPR-Cas9 systems have been developed to regulate gene expression by using either fusions to epigenetic regulators or, more recently, through the use of chemically mediated strategies. These approaches have armed researchers with new tools to examine the function of proteins by intricately controlling expression levels of specific genes. Here we present a CRISPR-based chemical approach that uses a new chemical epigenetic modifier (CEM) to hone to a gene targeted with a catalytically inactive Cas9 (dCas9) bridged to an FK506-binding protein (FKBP) in mammalian cells. One arm of the bifunctional CEM recruits BRD4 to the target site, and the other arm is composed of a bumped ligand that binds to a mutant FKBP with a compensatory hole at F36V. This bump-and-hole strategy allows for activation of target genes in a dose-dependent and reversible fashion with increased specificity and high efficacy, providing a new synthetic biology approach to answer important mechanistic questions in the future.
Collapse
Affiliation(s)
- Dongbo Lu
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Caroline A. Foley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shama V. Birla
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Austin J. Hepperla
- Department of Genetics, UNC Neuroscience Center, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States
| | - Jeremy M. Simon
- Department of Genetics, UNC Neuroscience Center, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nathaniel A. Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
85
|
Du Y, Zhang P, Liu W, Tian J. Optical Imaging of Epigenetic Modifications in Cancer: A Systematic Review. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:88-101. [PMID: 36939779 PMCID: PMC9590553 DOI: 10.1007/s43657-021-00041-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/10/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence has demonstrated that abnormal epigenetic modifications are strongly related to cancer initiation. Thus, sensitive and specific detection of epigenetic modifications could markedly improve biological investigations and cancer precision medicine. A rapid development of molecular imaging approaches for the diagnosis and prognosis of cancer has been observed during the past few years. Various biomarkers unique to epigenetic modifications and targeted imaging probes have been characterized and used to discriminate cancer from healthy tissues, as well as evaluate therapeutic responses. In this study, we summarize the latest studies associated with optical molecular imaging of epigenetic modification targets, such as those involving DNA methylation, histone modification, noncoding RNA regulation, and chromosome remodeling, and further review their clinical application on cancer diagnosis and treatment. Lastly, we further propose the future directions for precision imaging of epigenetic modification in cancer. Supported by promising clinical and preclinical studies associated with optical molecular imaging technology and epigenetic drugs, the central role of epigenetics in cancer should be increasingly recognized and accepted.
Collapse
Affiliation(s)
- Yang Du
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.410726.60000 0004 1797 8419The University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Pei Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Supportive Care Center and Day Oncology Unit, Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Wei Liu
- grid.412474.00000 0001 0027 0586Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Supportive Care Center and Day Oncology Unit, Peking University Cancer Hospital and Institute, Beijing, 100142 China
| | - Jie Tian
- grid.9227.e0000000119573309CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190 China
- grid.64939.310000 0000 9999 1211Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191 China
- grid.440736.20000 0001 0707 115XSchool of Life Science and Technology, Xidian University, Xi’an, 710071 Shaanxi China
| |
Collapse
|
86
|
Mas G, Santoro F, Blanco E, Gamarra Figueroa GP, Le Dily F, Frigè G, Vidal E, Mugianesi F, Ballaré C, Gutierrez A, Sparavier A, Marti-Renom MA, Minucci S, Di Croce L. In vivo temporal resolution of acute promyelocytic leukemia progression reveals a role of Klf4 in suppressing early leukemic transformation. Genes Dev 2022; 36:451-467. [PMID: 35450883 PMCID: PMC9067408 DOI: 10.1101/gad.349115.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
In this study, Mas et al. used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. Their multiomics-integrated analysis identified Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis, and they characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.
Collapse
Affiliation(s)
- Glòria Mas
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Fabio Santoro
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Enrique Blanco
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | | | - François Le Dily
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Gianmaria Frigè
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Enrique Vidal
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Francesca Mugianesi
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Cecilia Ballaré
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Arantxa Gutierrez
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Aleksandra Sparavier
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Centro Nacional de Análisis Genómico (CNAG), Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan 20139, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan 20139, Italy
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
87
|
Sakellakis M, Flores L, Ramachandran S. Patterns of indolence in prostate cancer (Review). Exp Ther Med 2022; 23:351. [PMID: 35493432 PMCID: PMC9019743 DOI: 10.3892/etm.2022.11278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although prostate cancer is a major cause of cancer-related mortality worldwide, most patients will have a relatively indolent clinical course. Contrary to most other types of cancer, even the diagnosis of locally advanced or metastatic disease is not always lethal. The present review aimed to summarize what is known regarding the underlying mechanisms related to the indolent course of subsets of prostate cancer, at various stages. The data suggested that no specific gene alteration by itself was responsible for carcinogenesis or disease aggressiveness. However, pathway analysis identified genetic aberrations in multiple critical pathways that tend to accumulate over the course of the disease. The progression from indolence into aggressive disease is associated with a complex interplay in which genetic and epigenetic factors are involved. The effect of the immune tumor microenvironment is also very important. Emerging evidence has suggested that the upregulation of pathways related to cellular aging and senescence can identify patients with indolent disease. In addition, a number of tumors enter a long-lasting quiescent state. Further research will determine whether halting tumor evolution is a feasible option, and whether the life of patients can be markedly prolonged by inducing tumor senescence or long-term dormancy.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, 18547 Athens, Greece
| | - Laura Flores
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| | - Sumankalai Ramachandran
- Department of Genitourinary Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX 77025, USA
| |
Collapse
|
88
|
Epigenetic Factors as Etiological Agents, Diagnostic Markers, and Therapeutic Targets for Luminal Breast Cancer. Biomedicines 2022; 10:biomedicines10040748. [PMID: 35453496 PMCID: PMC9031900 DOI: 10.3390/biomedicines10040748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
Luminal breast cancer, an etiologically heterogeneous disease, is characterized by high steroid hormone receptor activity and aberrant gene expression profiles. Endocrine therapy and chemotherapy are promising therapeutic approaches to mitigate breast cancer proliferation and recurrence. However, the treatment of therapy-resistant breast cancer is a major challenge. Recent studies on breast cancer etiology have revealed the critical roles of epigenetic factors in luminal breast cancer tumorigenesis and drug resistance. Tumorigenic epigenetic factor-induced aberrant chromatin dynamics dysregulate the onset of gene expression and consequently promote tumorigenesis and metastasis. Epigenetic dysregulation, a type of somatic mutation, is a high-risk factor for breast cancer progression and therapy resistance. Therefore, epigenetic modulators alone or in combination with other therapies are potential therapeutic agents for breast cancer. Several clinical trials have analyzed the therapeutic efficacy of potential epi-drugs for breast cancer and reported beneficial clinical outcomes, including inhibition of tumor cell adhesion and invasiveness and mitigation of endocrine therapy resistance. This review focuses on recent findings on the mechanisms of epigenetic factors in the progression of luminal breast cancer. Additionally, recent findings on the potential of epigenetic factors as diagnostic biomarkers and therapeutic targets for breast cancer are discussed.
Collapse
|
89
|
Khirsariya P, Pospíŝil P, Maier L, Boudný M, Babáŝ M, Kroutil OE, Mráz M, Vácha R, Paruch K. Synthesis and Profiling of Highly Selective Inhibitors of Methyltransferase DOT1L Based on Carbocyclic C-Nucleosides. J Med Chem 2022; 65:5701-5723. [PMID: 35302777 DOI: 10.1021/acs.jmedchem.1c02228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Histone methyltransferase DOT1L is an attractive therapeutic target for the treatment of hematological malignancies. Here, we report the design, synthesis, and profiling of new DOT1L inhibitors based on nonroutine carbocyclic C-nucleoside scaffolds. The experimentally observed SAR was found to be nontrivial as seemingly minor changes of individual substituents resulted in significant changes in the affinity to DOT1L. Molecular modeling suggested that these trends could be related to significant conformational changes of the protein upon interaction with the inhibitors. The compounds 22 and (-)-53 (MU1656), carbocyclic C-nucleoside analogues of the natural nucleoside derivative EPZ004777, and the clinical candidate EPZ5676 (pinometostat) potently and selectively inhibit DOT1L in vitro as well as in the cell. The most potent compound MU1656 was found to be more metabolically stable and significantly less toxic in vivo than pinometostat itself.
Collapse
Affiliation(s)
- Prashant Khirsariya
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Patrik Pospíŝil
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lukáŝ Maier
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| | - Miroslav Boudný
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic
| | - Martin Babáŝ
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ondr Ej Kroutil
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Marek Mráz
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavska 20, 625 00 Brno, Czech Republic
| | - Robert Vácha
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Kamil Paruch
- Department of Chemistry, CZ Openscreen, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital in Brno, 602 00 Brno, Czech Republic
| |
Collapse
|
90
|
Pnueli L, Melamed P. Epigenetic repression of gonadotropin gene expression via a GnRH-mediated DNA delivery system. Gene Ther 2022; 29:294-303. [PMID: 35301447 DOI: 10.1038/s41434-022-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/08/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
The reproductive axis is activated by gonadotropin-releasing hormone (GnRH), which stimulates the pituitary gonadotropes to secrete hormones that drive gonadal function and steroidogenesis. Thus repression of this axis, which is conserved across mammals and sexes, can reduce steroid levels and/or prevent reproduction. Steroid-dependent pathologies, including various cancers, are commonly treated with GnRH super-analogs which have long-term side-effects, while humane solutions for controlling reproduction in domestic and wild animal populations are lacking. GnRH-conjugated toxins are undergoing clinical trials for GnRHR-expressing cancer cells, and have been examined for gonadotrope ablation in animals, but showed low and/or transient effects and administration of toxins has many potential complications. Here we exploit GnRH targeting to gonadotropes to deliver DNA encoding an effector that induces gonadotropin gene repressive epigenetic modifications which are perpetuated over time. Several layers of specificity are endowed through targeting to GnRHR-expressing cells and due to local cleavage of the peptide packaging the DNA; the DNA-encoded effector is expressed and directed to the target genes by the DNA binding domain of a highly specific transcription factor. This design has multiple advantages over existing methods of shutting down the reproductive axis, and its modular design should allow adaptation for broad applications.
Collapse
Affiliation(s)
- Lilach Pnueli
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Philippa Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
91
|
Abstract
The change in cell state from normal to malignant is driven fundamentally by oncogenic mutations in cooperation with epigenetic alterations of chromatin. These alterations in chromatin can be a consequence of environmental stressors or germline and/or somatic mutations that directly alter the structure of chromatin machinery proteins, their levels, or their regulatory function. These changes can result in an inability of the cell to differentiate along a predefined lineage path, or drive a hyperactive, highly proliferative state with addiction to high levels of transcriptional output. We discuss how these genetic alterations hijack the chromatin machinery for the oncogenic process to reveal unique vulnerabilities and novel targets for cancer therapy.
Collapse
Affiliation(s)
- Berkley Gryder
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
92
|
Ajoolabady A, Aslkhodapasandhokmabad H, Zhou Y, Ren J. Epigenetic modification in alcohol‐related liver diseases. Med Res Rev 2022; 42:1463-1491. [DOI: 10.1002/med.21881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Amir Ajoolabady
- School of Pharmacy University of Wyoming College of Health Sciences Laramie Wyoming USA
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | | | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences Peking University Beijing China
| | - Jun Ren
- School of Pharmacy University of Wyoming College of Health Sciences Laramie Wyoming USA
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine and Pathology University of Washington Seattle Washington USA
| |
Collapse
|
93
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
94
|
Sofía M, Sebastián R, Emanuel C, Branham MT, Marzese DM, Matthew S, De Blas G, Rodolfo A, Michael L, María R. When left does not seem right: epigenetic and bioelectric differences between left- and right-sided breast cancer. Mol Med 2022; 28:15. [PMID: 35123413 PMCID: PMC8817536 DOI: 10.1186/s10020-022-00440-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Background During embryogenesis lateral symmetry is broken, giving rise to Left/Right (L/R) breast tissues with distinct identity. L/R-sided breast tumors exhibit consistently-biased incidence, gene expression, and DNA methylation. We postulate that a differential L/R tumor-microenvironment crosstalk generates different tumorigenesis mechanisms. Methods We performed in-silico analyses on breast tumors of public datasets, developed xenografted tumors, and conditioned MDA-MB-231 cells with L/R mammary extracts. Results We found L/R differential DNA methylation involved in embryogenic and neuron-like functions. Focusing on ion-channels, we discovered significant L/R epigenetic and bioelectric differences. Specifically, L-sided cells presented increased methylation of hyperpolarizing ion channel genes and increased Ca2+ concentration and depolarized membrane potential, compared to R-ones. Functional consequences were associated with increased proliferation in left tumors, assessed by KI67 expression and mitotic count. Conclusions Our findings reveal considerable L/R asymmetry in cancer processes, and suggest specific L/R epigenetic and bioelectric differences as future targets for cancer therapeutic approaches in the breast and many other paired organs. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00440-5.
Collapse
|
95
|
|
96
|
Jacquemin V, Antoine M, Dom G, Detours V, Maenhaut C, Dumont JE. Dynamic Cancer Cell Heterogeneity: Diagnostic and Therapeutic Implications. Cancers (Basel) 2022; 14:280. [PMID: 35053446 PMCID: PMC8773841 DOI: 10.3390/cancers14020280] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Though heterogeneity of cancers is recognized and has been much discussed in recent years, the concept often remains overlooked in different routine examinations. Indeed, in clinical or biological articles, reviews, and textbooks, cancers and cancer cells are generally presented as evolving distinct entities rather than as an independent heterogeneous cooperative cell population with its self-oriented biology. There are, therefore, conceptual gaps which can mislead the interpretations/diagnostic and therapeutic approaches. In this short review, we wish to summarize and discuss various aspects of this dynamic evolving heterogeneity and its biological, pathological, clinical, diagnostic, and therapeutic implications, using thyroid carcinoma as an illustrative example.
Collapse
Affiliation(s)
- Valerie Jacquemin
- Correspondence: (V.J.); (J.E.D.); Tel.: +32-2-555-32-26 (V.J.); +32-2-555-41-34 (J.E.D.)
| | | | | | | | | | - Jacques E. Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles, 1070 Brussels, Belgium; (M.A.); (G.D.); (V.D.); (C.M.)
| |
Collapse
|
97
|
Marunde MR, Popova IK, Weinzapfel EN, Keogh MC. The dCypher Approach to Interrogate Chromatin Reader Activity Against Posttranslational Modification-Defined Histone Peptides and Nucleosomes. Methods Mol Biol 2022; 2458:231-255. [PMID: 35103971 DOI: 10.1007/978-1-0716-2140-0_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bulk chromatin encompasses complex sets of histone posttranslational modifications (PTMs) that recruit (or repel) the diverse reader domains of Chromatin-Associated Proteins (CAPs) to regulate genome processes (e.g., gene expression, DNA repair, mitotic transmission). The binding preference of reader domains for their PTMs mediates localization and functional output, and are often dysregulated in disease. As such, understanding chromatin interactions may lead to novel therapeutic strategies, However the immense chemical diversity of histone PTMs, combined with low-throughput, variable, and nonquantitative methods, has defied accurate CAP characterization. This chapter provides a detailed protocol for dCypher, a novel approach for the rapid, quantitative interrogation of CAPs (as mono- or multivalent Queries) against large panels (10s to 100s) of PTM-defined histone peptide and semisynthetic nucleosomes (the potential Targets). We describe key optimization steps and controls to generate robust binding data. Further, we compare the utility of histone peptide and nucleosome substrates in CAP studies, outlining important considerations in experimental design and data interpretation.
Collapse
|
98
|
Wu L, Zhang Y, Ren J. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: From pathophysiology to therapeutic opportunities. Metabolism 2021; 125:154909. [PMID: 34627873 DOI: 10.1016/j.metabol.2021.154909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Alcohol consumption prompts detrimental psychological, pathophysiological and health issues, representing one of the major causes of death worldwide. Alcohol use disorder (AUD), which is characterized by compulsive alcohol intake and loss of control over alcohol usage, arises from a complex interplay between genetic and environmental factors. More importantly, long-term abuse of alcohol is often tied with unfavorable cardiac remodeling and contractile alterations, a cadre of cardiac responses collectively known as alcoholic cardiomyopathy (ACM). Recent evidence has denoted a pivotal role for ethanol-triggered epigenetic modifications, the interface between genome and environmental cues, in the organismal and cellular responses to ethanol exposure. To-date, three major epigenetic mechanisms (DNA methylation, histone modifications, and RNA-based mechanisms) have been identified for the onset and development of AUD and ACM. Importantly, these epigenetic changes induced by alcohol may be detectable in the blood, thus offering diagnostic, therapeutic, and prognostic promises of epigenetic markers for AUD and alcoholic complications. In addition, several epigenetic drugs have shown efficacies in the management of alcohol abuse, loss of control for alcohol usage, relapse, drinking-related anxiety and behavior in withdrawal. In this context, medications targeting epigenetic modifications may hold promises for pharmaceutical management of AUD and ACM.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
99
|
Arslan E, Schulz J, Rai K. Machine Learning in Epigenomics: Insights into Cancer Biology and Medicine. Biochim Biophys Acta Rev Cancer 2021; 1876:188588. [PMID: 34245839 PMCID: PMC8595561 DOI: 10.1016/j.bbcan.2021.188588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/29/2021] [Accepted: 07/02/2021] [Indexed: 02/01/2023]
Abstract
The recent deluge of genome-wide technologies for the mapping of the epigenome and resulting data in cancer samples has provided the opportunity for gaining insights into and understanding the roles of epigenetic processes in cancer. However, the complexity, high-dimensionality, sparsity, and noise associated with these data pose challenges for extensive integrative analyses. Machine Learning (ML) algorithms are particularly suited for epigenomic data analyses due to their flexibility and ability to learn underlying hidden structures. We will discuss four overlapping but distinct major categories under ML: dimensionality reduction, unsupervised methods, supervised methods, and deep learning (DL). We review the preferred use cases of these algorithms in analyses of cancer epigenomics data with the hope to provide an overview of how ML approaches can be used to explore fundamental questions on the roles of epigenome in cancer biology and medicine.
Collapse
Affiliation(s)
- Emre Arslan
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Jonathan Schulz
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77030, United States of America
| | - Kunal Rai
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77030, United States of America.
| |
Collapse
|
100
|
Djomkam Zune AL, Olwal CO, Tapela K, Owoicho O, Nganyewo NN, Lyko F, Paemka L. Pathogen-Induced Epigenetic Modifications in Cancers: Implications for Prevention, Detection and Treatment of Cancers in Africa. Cancers (Basel) 2021; 13:cancers13236051. [PMID: 34885162 PMCID: PMC8656768 DOI: 10.3390/cancers13236051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a major public health burden worldwide. Tumor formation is caused by multiple intrinsic and extrinsic factors. Many reports have demonstrated a positive correlation between the burden of infectious pathogens and the occurrence of cancers. However, the mechanistic link between pathogens and cancer development remains largely unclear and is subject to active investigations. Apart from somatic mutations that have been widely linked with various cancers, an appreciable body of knowledge points to alterations of host epigenetic patterns as key triggers for cancer development. Several studies have associated various infectious pathogens with epigenetic modifications. It is therefore plausible to assume that pathogens induce carcinogenesis via alteration of normal host epigenetic patterns. Thus, Africa with its disproportionate burden of infectious pathogens is threatened by a dramatic increase in pathogen-mediated cancers. To curb the potential upsurge of such cancers, a better understanding of the role of tropical pathogens in cancer epigenetics could substantially provide resources to improve cancer management among Africans. Therefore, this review discusses cancer epigenetic studies in Africa and the link between tropical pathogens and cancer burden. In addition, we discuss the potential mechanisms by which pathogens induce cancers and the opportunities and challenges of tropical pathogen-induced epigenetic changes for cancer prevention, detection and management.
Collapse
Affiliation(s)
- Alexandra Lindsey Djomkam Zune
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Correspondence: (A.L.D.Z.); (L.P.); Tel.: +233-205652619 (L.P.)
| | - Charles Ochieng’ Olwal
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
| | - Oloche Owoicho
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Department of Biological Sciences, Benue State University, Makurdi P.M.B. 102119, Benue State, Nigeria
| | - Nora Nghochuzie Nganyewo
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Lily Paemka
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra LG 54, Ghana; (C.O.O.); (K.T.); (O.O.); (N.N.N.)
- Correspondence: (A.L.D.Z.); (L.P.); Tel.: +233-205652619 (L.P.)
| |
Collapse
|