51
|
Liu R, Zhao E, Yu H, Yuan C, Abbas MN, Cui H. Methylation across the central dogma in health and diseases: new therapeutic strategies. Signal Transduct Target Ther 2023; 8:310. [PMID: 37620312 PMCID: PMC10449936 DOI: 10.1038/s41392-023-01528-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 08/26/2023] Open
Abstract
The proper transfer of genetic information from DNA to RNA to protein is essential for cell-fate control, development, and health. Methylation of DNA, RNAs, histones, and non-histone proteins is a reversible post-synthesis modification that finetunes gene expression and function in diverse physiological processes. Aberrant methylation caused by genetic mutations or environmental stimuli promotes various diseases and accelerates aging, necessitating the development of therapies to correct the disease-driver methylation imbalance. In this Review, we summarize the operating system of methylation across the central dogma, which includes writers, erasers, readers, and reader-independent outputs. We then discuss how dysregulation of the system contributes to neurological disorders, cancer, and aging. Current small-molecule compounds that target the modifiers show modest success in certain cancers. The methylome-wide action and lack of specificity lead to undesirable biological effects and cytotoxicity, limiting their therapeutic application, especially for diseases with a monogenic cause or different directions of methylation changes. Emerging tools capable of site-specific methylation manipulation hold great promise to solve this dilemma. With the refinement of delivery vehicles, these new tools are well positioned to advance the basic research and clinical translation of the methylation field.
Collapse
Affiliation(s)
- Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Erhu Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Huijuan Yu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Chaoyu Yuan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
| | - Muhammad Nadeem Abbas
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
52
|
Abstract
Modelling adult diseases to understand their aetiology and progression, and to develop new therapies, is a major challenge for medical biology. We are excited by new efforts in the zebrafish community to develop models of adult diseases that range from cancer to heart, infectious and age-related diseases, and those that relate to toxicology and complex social behaviours. Here, we discuss some of the advances in the field of zebrafish models of adult disease, and where we see opportunities and challenges ahead.
Collapse
Affiliation(s)
- Richard M. White
- Ludwig Cancer Institute, Nuffield Department of Medicine, Old Road Campus Research Building, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - E. Elizabeth Patton
- MRC Human Genetics Unit, CRUK Scotland Centre and Edinburgh Cancer Research, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH42XU, UK
| |
Collapse
|
53
|
Lorbeer FK, Rieser G, Goel A, Wang M, Oh A, Yeh I, Bastian BC, Hockemeyer D. Distinct senescence mechanisms restrain progression of dysplastic nevi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.14.548818. [PMID: 37503286 PMCID: PMC10369942 DOI: 10.1101/2023.07.14.548818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
TERT promoter mutations (TPMs) are frequently found in different cancer types, including approximately 70% of sun-exposed skin melanomas. In melanoma, TPMs are among the earliest mutations and can be present during the transition from nevus to melanoma. However, the specific factors that contribute to the selection of TPMs in certain nevi subsets are not well understood. To investigate this, we analyzed a group of dysplastic nevi (DN) by sequencing genes commonly mutated in melanocytic neoplasms. We examined the relationship between the identified mutations, patient age, telomere length, histological features, and the expression of p16. Our findings reveal that TPMs are more prevalent in DN from older patients and are associated with shorter telomeres. Importantly, these TPMs were not found in nevi with BRAF V600E mutations. Conversely, DN with BRAF V600E mutations were observed in younger patients, had longer telomeres, and a higher proportion of p16-positive cells. This suggests that these nevi arrest growth independently of telomere shortening through a mechanism known as oncogene-induced senescence (OIS). These characteristics extend to melanoma sequencing data sets, where melanomas with BRAF V600E mutations were more likely to have CDKN2A inactivation, overriding OIS. In contrast, melanomas without BRAF V600E mutations showed a higher frequency of TPMs. Our data imply that TPMs are selected to bypass replicative senescence (RS) in cells that were not arrested by OIS. Overall, our results indicate that a subset of melanocytic neoplasms face constraints from RS, while others encounter OIS and RS. The order in which these barriers are overcome during progression to melanoma depends on the mutational context.
Collapse
|
54
|
Lumaquin-Yin D, Montal E, Johns E, Baggiolini A, Huang TH, Ma Y, LaPlante C, Suresh S, Studer L, White RM. Lipid droplets are a metabolic vulnerability in melanoma. Nat Commun 2023; 14:3192. [PMID: 37268606 PMCID: PMC10238408 DOI: 10.1038/s41467-023-38831-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2023] [Indexed: 06/04/2023] Open
Abstract
Melanoma exhibits numerous transcriptional cell states including neural crest-like cells as well as pigmented melanocytic cells. How these different cell states relate to distinct tumorigenic phenotypes remains unclear. Here, we use a zebrafish melanoma model to identify a transcriptional program linking the melanocytic cell state to a dependence on lipid droplets, the specialized organelle responsible for lipid storage. Single-cell RNA-sequencing of these tumors show a concordance between genes regulating pigmentation and those involved in lipid and oxidative metabolism. This state is conserved across human melanoma cell lines and patient tumors. This melanocytic state demonstrates increased fatty acid uptake, an increased number of lipid droplets, and dependence upon fatty acid oxidative metabolism. Genetic and pharmacologic suppression of lipid droplet production is sufficient to disrupt cell cycle progression and slow melanoma growth in vivo. Because the melanocytic cell state is linked to poor outcomes in patients, these data indicate a metabolic vulnerability in melanoma that depends on the lipid droplet organelle.
Collapse
Affiliation(s)
- Dianne Lumaquin-Yin
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
| | - Emily Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eleanor Johns
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yilun Ma
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
| | - Charlotte LaPlante
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
| | - Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lorenz Studer
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- University of Oxford, Ludwig Cancer Research, Nuffield Department of Medicine, Oxford, UK.
| |
Collapse
|
55
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
56
|
Abstract
Over the past decade, melanoma has led the field in new cancer treatments, with impressive gains in on-treatment survival but more modest improvements in overall survival. Melanoma presents heterogeneity and transcriptional plasticity that recapitulates distinct melanocyte developmental states and phenotypes, allowing it to adapt to and eventually escape even the most advanced treatments. Despite remarkable advances in our understanding of melanoma biology and genetics, the melanoma cell of origin is still fiercely debated because both melanocyte stem cells and mature melanocytes can be transformed. Animal models and high-throughput single-cell sequencing approaches have opened new opportunities to address this question. Here, we discuss the melanocytic journey from the neural crest, where they emerge as melanoblasts, to the fully mature pigmented melanocytes resident in several tissues. We describe a new understanding of melanocyte biology and the different melanocyte subpopulations and microenvironments they inhabit, and how this provides unique insights into melanoma initiation and progression. We highlight recent findings on melanoma heterogeneity and transcriptional plasticity and their implications for exciting new research areas and treatment opportunities. The lessons from melanocyte biology reveal how cells that are present to protect us from the damaging effects of ultraviolet radiation reach back to their origins to become a potentially deadly cancer.
Collapse
Affiliation(s)
- Patricia P Centeno
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Valeria Pavet
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Richard Marais
- Molecular Oncology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Oncodrug Ltd, Alderly Park, Macclesfield, UK.
| |
Collapse
|
57
|
Binet R, Lambert JP, Tomkova M, Tischfield S, Baggiolini A, Picaud S, Sarkar S, Louphrasitthiphol P, Dias D, Carreira S, Humphrey T, Fillipakopoulos P, White R, Goding CR. DNA damage-induced interaction between a lineage addiction oncogenic transcription factor and the MRN complex shapes a tissue-specific DNA Damage Response and cancer predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537819. [PMID: 37131595 PMCID: PMC10153263 DOI: 10.1101/2023.04.21.537819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since genome instability can drive cancer initiation and progression, cells have evolved highly effective and ubiquitous DNA Damage Response (DDR) programs. However, some cells, in skin for example, are normally exposed to high levels of DNA damaging agents. Whether such high-risk cells possess lineage-specific mechanisms that tailor DNA repair to the tissue remains largely unknown. Here we show, using melanoma as a model, that the microphthalmia-associated transcription factor MITF, a lineage addition oncogene that coordinates many aspects of melanocyte and melanoma biology, plays a non-transcriptional role in shaping the DDR. On exposure to DNA damaging agents, MITF is phosphorylated by ATM/DNA-PKcs, and unexpectedly its interactome is dramatically remodelled; most transcription (co)factors dissociate, and instead MITF interacts with the MRE11-RAD50-NBS1 (MRN) complex. Consequently, cells with high MITF levels accumulate stalled replication forks, and display defects in homologous recombination-mediated repair associated with impaired MRN recruitment to DNA damage. In agreement, high MITF levels are associated with increased SNV burden in melanoma. Significantly, the SUMOylation-defective MITF-E318K melanoma predisposition mutation recapitulates the effects of ATM/DNA-PKcs-phosphorylated MITF. Our data suggest that a non-transcriptional function of a lineage-restricted transcription factor contributes to a tissue-specialised modulation of the DDR that can impact cancer initiation.
Collapse
Affiliation(s)
- Romuald Binet
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Jean-Philippe Lambert
- Department of Molecular Medicine, Cancer Research Center and Big Data Research Center, Université Laval, Quebec, Canada; Endocrinology – Nephrology Axis, CHU de Québec – Université Laval Research Center, Quebec City, QC, Canada, G1V 4G2
| | - Marketa Tomkova
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Biochemistry and Molecular Medicine, University of California, Davis, USA
| | - Samuel Tischfield
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- Center for Stem Cell Biology and Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sarah Picaud
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Diogo Dias
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Suzanne Carreira
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Timothy Humphrey
- CRUK MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Panagis Fillipakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Richard White
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| |
Collapse
|
58
|
Weeden CE, Hill W, Lim EL, Grönroos E, Swanton C. Impact of risk factors on early cancer evolution. Cell 2023; 186:1541-1563. [PMID: 37059064 DOI: 10.1016/j.cell.2023.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Recent identification of oncogenic cells within healthy tissues and the prevalence of indolent cancers found incidentally at autopsies reveal a greater complexity in tumor initiation than previously appreciated. The human body contains roughly 40 trillion cells of 200 different types that are organized within a complex three-dimensional matrix, necessitating exquisite mechanisms to restrain aberrant outgrowth of malignant cells that have the capacity to kill the host. Understanding how this defense is overcome to trigger tumorigenesis and why cancer is so extraordinarily rare at the cellular level is vital to future prevention therapies. In this review, we discuss how early initiated cells are protected from further tumorigenesis and the non-mutagenic pathways by which cancer risk factors promote tumor growth. By nature, the absence of permanent genomic alterations potentially renders these tumor-promoting mechanisms clinically targetable. Finally, we consider existing strategies for early cancer interception with perspectives on the next steps for molecular cancer prevention.
Collapse
Affiliation(s)
- Clare E Weeden
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Emilia L Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK.
| |
Collapse
|
59
|
Gopalan V, Hannenhalli S. Towards a Synthesis of the Non-Genetic and Genetic Views of Cancer in Understanding Pancreatic Ductal Adenocarcinoma Initiation and Prevention. Cancers (Basel) 2023; 15:cancers15072159. [PMID: 37046820 PMCID: PMC10093726 DOI: 10.3390/cancers15072159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
While much of the research in oncogenesis and cancer therapy has focused on mutations in key cancer driver genes, more recent work suggests a complementary non-genetic paradigm. This paradigm focuses on how transcriptional and phenotypic heterogeneity, even in clonally derived cells, can create sub-populations associated with oncogenesis, metastasis, and therapy resistance. We discuss this complementary paradigm in the context of pancreatic ductal adenocarcinoma. A better understanding of cellular transcriptional heterogeneity and its association with oncogenesis can lead to more effective therapies that prevent tumor initiation and slow progression.
Collapse
Affiliation(s)
- Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
60
|
Davalos V, Lovell CD, Von Itter R, Dolgalev I, Agrawal P, Baptiste G, Kahler DJ, Sokolova E, Moran S, Piqué L, Vega-Saenz de Miera E, Fontanals-Cirera B, Karz A, Tsirigos A, Yun C, Darvishian F, Etchevers HC, Osman I, Esteller M, Schober M, Hernando E. An epigenetic switch controls an alternative NR2F2 isoform that unleashes a metastatic program in melanoma. Nat Commun 2023; 14:1867. [PMID: 37015919 PMCID: PMC10073109 DOI: 10.1038/s41467-023-36967-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/24/2023] [Indexed: 04/06/2023] Open
Abstract
Metastatic melanoma develops once transformed melanocytic cells begin to de-differentiate into migratory and invasive melanoma cells with neural crest cell (NCC)-like and epithelial-to-mesenchymal transition (EMT)-like features. However, it is still unclear how transformed melanocytes assume a metastatic melanoma cell state. Here, we define DNA methylation changes that accompany metastatic progression in melanoma patients and discover Nuclear Receptor Subfamily 2 Group F, Member 2 - isoform 2 (NR2F2-Iso2) as an epigenetically regulated metastasis driver. NR2F2-Iso2 is transcribed from an alternative transcriptional start site (TSS) and it is truncated at the N-terminal end which encodes the NR2F2 DNA-binding domain. We find that NR2F2-Iso2 expression is turned off by DNA methylation when NCCs differentiate into melanocytes. Conversely, this process is reversed during metastatic melanoma progression, when NR2F2-Iso2 becomes increasingly hypomethylated and re-expressed. Our functional and molecular studies suggest that NR2F2-Iso2 drives metastatic melanoma progression by modulating the activity of full-length NR2F2 (Isoform 1) over EMT- and NCC-associated target genes. Our findings indicate that DNA methylation changes play a crucial role during metastatic melanoma progression, and their control of NR2F2 activity allows transformed melanocytes to acquire NCC-like and EMT-like features. This epigenetically regulated transcriptional plasticity facilitates cell state transitions and metastatic spread.
Collapse
Affiliation(s)
- Veronica Davalos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain.
| | - Claudia D Lovell
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Richard Von Itter
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Igor Dolgalev
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Praveen Agrawal
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine/ Montefiore, Bronx, NY, 10461, USA
| | - Gillian Baptiste
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - David J Kahler
- High Throughput Biology Core, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Elena Sokolova
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Sebastian Moran
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Laia Piqué
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
| | - Eleazar Vega-Saenz de Miera
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Barbara Fontanals-Cirera
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Alcida Karz
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Chi Yun
- High Throughput Biology Core, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Farbod Darvishian
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | | | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
- Centro de Investigacion Biomedica en Red, Cancer (CIBERONC), Madrid, Spain
| | - Markus Schober
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
- The Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Cell Biology, New York Grossman University School of Medicine, New York, NY, 10016, USA.
| | - Eva Hernando
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
61
|
Fan Y, Hackland J, Baggiolini A, Hung LY, Zhao H, Zumbo P, Oberst P, Minotti AP, Hergenreder E, Najjar S, Huang Z, Cruz NM, Zhong A, Sidharta M, Zhou T, de Stanchina E, Betel D, White RM, Gershon M, Margolis KG, Studer L. hPSC-derived sacral neural crest enables rescue in a severe model of Hirschsprung's disease. Cell Stem Cell 2023; 30:264-282.e9. [PMID: 36868194 PMCID: PMC10034921 DOI: 10.1016/j.stem.2023.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/22/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023]
Abstract
The enteric nervous system (ENS) is derived from both the vagal and sacral component of the neural crest (NC). Here, we present the derivation of sacral ENS precursors from human PSCs via timed exposure to FGF, WNT, and GDF11, which enables posterior patterning and transition from posterior trunk to sacral NC identity, respectively. Using a SOX2::H2B-tdTomato/T::H2B-GFP dual reporter hPSC line, we demonstrate that both trunk and sacral NC emerge from a double-positive neuro-mesodermal progenitor (NMP). Vagal and sacral NC precursors yield distinct neuronal subtypes and migratory behaviors in vitro and in vivo. Remarkably, xenografting of both vagal and sacral NC lineages is required to rescue a mouse model of total aganglionosis, suggesting opportunities in the treatment of severe forms of Hirschsprung's disease.
Collapse
Affiliation(s)
- Yujie Fan
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - James Hackland
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Arianna Baggiolini
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lin Y Hung
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA
| | - Polina Oberst
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew P Minotti
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10065, USA
| | - Sarah Najjar
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Zixing Huang
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Nelly M Cruz
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aaron Zhong
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mega Sidharta
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting Zhou
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; The SKI Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medicine, New York, NY 10065, USA; Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Richard M White
- Cancer Biology and Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael Gershon
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA; Department of Pediatrics, NYU Grossman School of Medicine, New York, NY 10010, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
62
|
Walsh R, Giacomelli E, Ciceri G, Rittenhouse C, Galimberti M, Wu Y, Muller J, Vezzoli E, Jungverdorben J, Zhou T, Barker RA, Cattaneo E, Studer L, Baggiolini A. Generation of human cerebral organoids with a structured outer subventricular zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528906. [PMID: 36824730 PMCID: PMC9949131 DOI: 10.1101/2023.02.17.528906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Mammalian outer radial glia (oRG) emerge as cortical progenitor cells that directly support the development of an enlarged outer subventricular zone (oSVZ) and, in turn, the expansion of the neocortex. The in vitro generation of oRG is essential to model and investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 pathway using LIF, which is not produced in guided cortical organoids, we developed a cerebral organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The structured oSVZ is composed of progenitor cells expressing specific oRG markers such as GFAP, LIFR, HOPX , which closely matches human oRG in vivo . In this microenvironment, cortical neurons showed faster maturation with enhanced metabolic and functional activity. Incorporation of hPSC-derived brain vascular LIF- producing pericytes in cerebral organoids mimicked the effects of LIF treatment. These data indicate that the cellular complexity of the cortical microenvironment, including cell-types of the brain vasculature, favors the appearance of oRG and provides a platform to routinely study oRG in hPSC-derived brain organoids.
Collapse
|
63
|
Montal E, Lumaquin D, Ma Y, Suresh S, White RM. Modeling the effects of genetic- and diet-induced obesity on melanoma progression in zebrafish. Dis Model Mech 2023; 16:285858. [PMID: 36472402 PMCID: PMC9884122 DOI: 10.1242/dmm.049671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is a rising concern and associated with an increase in numerous cancers, often in a sex-specific manner. Preclinical models are needed to deconvolute the intersection between obesity, sex and melanoma. Here, we generated a zebrafish system that can be used as a platform for studying these factors. We studied how germline overexpression of Agrp along with a high-fat diet affects melanomas dependent on BRAFV600E and loss of p53. This revealed an increase in tumor incidence and area in male, but not female, obese fish, consistent with the clinical literature. We then determined whether this was further affected by additional somatic mutations in the clinically relevant genes rb1 or ptena/b. We found that the male obesogenic effect on melanoma was present with tumors generated with BRAF;p53;Rb1 but not BRAF;p53;Pten. These data indicate that both germline (Agrp) and somatic (BRAF, Rb1) mutations contribute to obesity-related effects in melanoma. Given the rapid genetic tools available in the zebrafish, this provides a high-throughput system to dissect the interactions of genetics, diet, sex and host factors in obesity-related cancers.
Collapse
Affiliation(s)
- Emily Montal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dianne Lumaquin
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Yilun Ma
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Shruthy Suresh
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Richard M. White
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA,Author for correspondence ()
| |
Collapse
|
64
|
MacRae CA, Peterson RT. Zebrafish as a Mainstream Model for In Vivo Systems Pharmacology and Toxicology. Annu Rev Pharmacol Toxicol 2023; 63:43-64. [PMID: 36151053 DOI: 10.1146/annurev-pharmtox-051421-105617] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pharmacology and toxicology are part of a much broader effort to understand the relationship between chemistry and biology. While biomedicine has necessarily focused on specific cases, typically of direct human relevance, there are real advantages in pursuing more systematic approaches to characterizing how health and disease are influenced by small molecules and other interventions. In this context, the zebrafish is now established as the representative screenable vertebrate and, through ongoing advances in the available scale of genome editing and automated phenotyping, is beginning to address systems-level solutions to some biomedical problems. The addition of broader efforts to integrate information content across preclinical model organisms and the incorporation of rigorous analytics, including closed-loop deep learning, will facilitate efforts to create systems pharmacology and toxicology with the ability to continuously optimize chemical biological interactions around societal needs. In this review, we outline progress toward this goal.
Collapse
Affiliation(s)
- Calum A MacRae
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts, USA;
| | | |
Collapse
|
65
|
Suresh S, Rabbie R, Garg M, Lumaquin D, Huang TH, Montal E, Ma Y, Cruz NM, Tang X, Nsengimana J, Newton-Bishop J, Hunter MV, Zhu Y, Chen K, de Stanchina E, Adams DJ, White RM. Identifying the Transcriptional Drivers of Metastasis Embedded within Localized Melanoma. Cancer Discov 2023; 13:194-215. [PMID: 36259947 PMCID: PMC9827116 DOI: 10.1158/2159-8290.cd-22-0427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 01/16/2023]
Abstract
In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roy Rabbie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Dianne Lumaquin
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yilun Ma
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xinran Tang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Biochemistry and Structural Biology, Cellular and Developmental Biology and Molecular Biology Ph.D. Program, Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Miranda V. Hunter
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuxin Zhu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
66
|
Czerwinska P, Mackiewicz AA. Bromodomain (BrD) Family Members as Regulators of Cancer Stemness-A Comprehensive Review. Int J Mol Sci 2023; 24:995. [PMID: 36674511 PMCID: PMC9861003 DOI: 10.3390/ijms24020995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.
Collapse
Affiliation(s)
- Patrycja Czerwinska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
67
|
Fu J, Zhang J, Chen X, Liu Z, Yang X, He Z, Hao Y, Liu B, Yao D. ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target. Theranostics 2023; 13:787-809. [PMID: 36632213 PMCID: PMC9830439 DOI: 10.7150/thno.78840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.
Collapse
Affiliation(s)
- Jiahui Fu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xuetao Yang
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| |
Collapse
|
68
|
A targetable MYBL2-ATAD2 axis governs cell proliferation in ovarian cancer. Cancer Gene Ther 2023; 30:192-208. [PMID: 36151333 DOI: 10.1038/s41417-022-00538-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
The chromatin-modifying enzyme ATAD2 confers oncogenic competence and proliferative advantage in malignances. We previously identified ATAD2 as a marker and driver of cell proliferation in ovarian cancer (OC); however, the mechanisms whereby ATAD2 is regulated and involved in cell proliferation are still unclear. Here, we disclose that ATAD2 displays a classical G2/M gene signature, functioning to facilitate mitotic progression. ATAD2 ablation caused mitotic arrest and decreased the ability of OC cells to pass through nocodazole-arrested mitosis. ChIP-seq data analyses demonstrated that DREAM and MYBL2-MuvB (MMB), two switchable MuvB-based complexes, bind the CHR elements in the ATAD2 promoter, representing a typical feature and principle mechanism of the periodic regulation of G2/M genes. As a downstream target of MYBL2, ATAD2 deletion significantly impaired MYBL2-driven cell proliferation. Intriguingly, ATAD2 silencing also fed back to destabilize the MYBL2 protein. The significant coexpression of MYBL2 and ATAD2 at both the bulk tissue and single-cell levels highlights the existence of the MYBL2-ATAD2 signaling in OC patients. This signaling is activated during tumorigenesis and correlated with TP53 mutation, and its hyperactivation was found especially in high-grade serous and drug-resistant OCs. Disrupting this signaling by CRISPR/Cas9-mediated ATAD2 ablation inhibited the in vivo growth of OC in a subcutaneous tumor xenograft mouse model, while pharmacologically targeting this signaling with an ATAD2 inhibitor demonstrated high therapeutic efficacy in both drug-sensitive and drug-resistant OC cells. Collectively, we identified a novel MYBL2-ATAD2 proliferative signaling axis and highlighted its potential application in developing new therapeutic strategies, especially for high-grade serous and drug-resistant OCs.
Collapse
|
69
|
Tu SM, Moran C, Norton W, Zacharias NM. Stem Cell Theory of Cancer: Origin of Metastasis and Sub-clonality. Semin Diagn Pathol 2023; 40:63-68. [PMID: 35729019 DOI: 10.1053/j.semdp.2022.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/09/2022] [Indexed: 01/28/2023]
Abstract
Metastasis may be the secret weapon cancer uses to dominate and subjugate, to persist and prevail. However, it is no longer a secret when we realize that a stem cell has the same ways and means to fulfill its own omnipotence and accomplish its own omnipresence… and when we realize that a cancer cell has its own version of stem-ness origin and stem-like nature. In this perspective, we discuss whether stem-ness enables metastasis or mutations drive metastasis. We ponder about low-grade versus high-grade tumors and about primary versus metastatic tumors. We wonder about stochasticity and hierarchy in the genesis and evolution of cancer and of metastasis. We postulate that metastasis may hold the elusive code that makes or breaks a stem-cell versus a genetic theory of cancer. We speculate that the vaunted model of multistep carcinogenesis may be in error and needs some belated remodeling and a major overhaul. We propose that subsequent malignant neoplasms from germ cell tumors and donor-derived malignancies in organ transplants are quintessential experiments of nature and by man that may eventually empower us to elucidate a stem-cell origin of cancer and metastasis. Unfortunately, even the best experiments of cancer and of metastasis will be left unfinished, overlooked, or forgotten, when we do not formulate a proper cancer theory derived from pertinent and illuminating clinical observations. Ultimately, there should be no consternations when we realize that metastasis has a stem-cell rather than a genetic origin, and no reservations when we recognize that metastasis has been providing us some of the most enduring tests and endearing proofs to demonstrate that cancer is indeed a stem-cell rather than a genetic disease after all.
Collapse
Affiliation(s)
- Shi-Ming Tu
- Division of Hematology and Oncology, University of Arkansas for Medical Sciences.
| | - Cesar Moran
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center.
| | - William Norton
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center.
| | - Niki M Zacharias
- Department of Urology - Research, The University of Texas MD Anderson Cancer Center.
| |
Collapse
|
70
|
Mina M, Iyer A, Ciriello G. Epistasis and evolutionary dependencies in human cancers. Curr Opin Genet Dev 2022; 77:101989. [PMID: 36182742 DOI: 10.1016/j.gde.2022.101989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 01/27/2023]
Abstract
Cancer evolution is driven by the concerted action of multiple molecular alterations, which emerge and are selected during tumor progression. An alteration is selected when it provides an advantage to the tumor cell. However, the advantage provided by a specific alteration depends on the tumor lineage, cell epigenetic state, and presence of additional alterations. In this case, we say that an evolutionary dependency exists between an alteration and what influences its selection. Epistatic interactions between altered genes lead to evolutionary dependencies (EDs), by favoring or vetoing specific combinations of events. Large-scale cancer genomics studies have discovered examples of such dependencies, and showed that they influence tumor progression, disease phenotypes, and therapeutic response. In the past decade, several algorithmic approaches have been proposed to infer EDs from large-scale genomics datasets. These methods adopt diverse strategies to address common challenges and shed new light on cancer evolutionary trajectories. Here, we review these efforts starting from a simple conceptualization of the problem, presenting the tackled and still unmet needs in the field, and discussing the implications of EDs in cancer biology and precision oncology.
Collapse
Affiliation(s)
- Marco Mina
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Arvind Iyer
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Leman, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
71
|
Rodrigues FS, Ciccarelli FD, Malanchi I. Reflected stemness as a potential driver of the tumour microenvironment. Trends Cell Biol 2022; 32:979-987. [PMID: 35589467 DOI: 10.1016/j.tcb.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 01/21/2023]
Abstract
A fundamental requirement for cancer initiation is the activation of developmental programmes by mutant cells. Oncogenic signals often confer an undifferentiated, stem cell-like phenotype that supports the long-term proliferative potential of cancer cells. Although cancer is a genetically driven disease, mutations in cancer-driver genes alone are insufficient for tumour formation, and the proliferation of cells harbouring oncogenic mutations depends on their microenvironment. In this Opinion article we discuss how the reprogrammed status of cancer cells not only represents the essence of their tumorigenicity but triggers 'reflected stemness' in their surrounding normal counterparts. We propose that this reciprocal interaction underpins the establishment of the tumour microenvironment (TME).
Collapse
Affiliation(s)
- Felipe S Rodrigues
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
72
|
Freed DM, Sommer J, Punturi N. Emerging target discovery and drug repurposing opportunities in chordoma. Front Oncol 2022; 12:1009193. [PMID: 36387127 PMCID: PMC9647139 DOI: 10.3389/fonc.2022.1009193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/11/2022] [Indexed: 09/01/2023] Open
Abstract
The development of effective and personalized treatment options for patients with rare cancers like chordoma is hampered by numerous challenges. Biomarker-guided repurposing of therapies approved in other indications remains the fastest path to redefining the treatment paradigm, but chordoma's low mutation burden limits the impact of genomics in target discovery and precision oncology efforts. As our knowledge of oncogenic mechanisms across various malignancies has matured, it's become increasingly clear that numerous properties of tumors transcend their genomes - leading to new and uncharted frontiers of therapeutic opportunity. In this review, we discuss how the implementation of cutting-edge tools and approaches is opening new windows into chordoma's vulnerabilities. We also note how a convergence of emerging observations in chordoma and other cancers is leading to the identification and evaluation of new therapeutic hypotheses for this rare cancer.
Collapse
|
73
|
Marechal E, Poliard A, Henry K, Moreno M, Legrix M, Macagno N, Mondielli G, Fauquier T, Barlier A, Etchevers HC. Multiple congenital malformations arise from somatic mosaicism for constitutively active Pik3ca signaling. Front Cell Dev Biol 2022; 10:1013001. [PMID: 36353506 PMCID: PMC9637999 DOI: 10.3389/fcell.2022.1013001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Recurrent missense mutations of the PIK3CA oncogene are among the most frequent drivers of human cancers. These often lead to constitutive activation of its product p110α, a phosphatidylinositol 3-kinase (PI3K) catalytic subunit. In addition to causing a broad range of cancers, the H1047R mutation is also found in affected tissues of a distinct set of congenital tumors and malformations. Collectively termed PIK3CA-related disorders (PRDs), these lead to overgrowth of brain, adipose, connective and musculoskeletal tissues and/or blood and lymphatic vessel components. Vascular malformations are frequently observed in PRD, due to cell-autonomous activation of PI3K signaling within endothelial cells. These, like most muscle, connective tissue and bone, are derived from the embryonic mesoderm. However, important organ systems affected in PRDs are neuroectodermal derivatives. To further examine their development, we drove the most common post-zygotic activating mutation of Pik3ca in neural crest and related embryonic lineages. Outcomes included macrocephaly, cleft secondary palate and more subtle skull anomalies. Surprisingly, Pik3ca-mutant subpopulations of neural crest origin were also associated with widespread cephalic vascular anomalies. Mesectodermal neural crest is a major source of non-endothelial connective tissue in the head, but not the body. To examine the response of vascular connective tissues of the body to constitutive Pik3ca activity during development, we expressed the mutation by way of an Egr2 (Krox20) Cre driver. Lineage tracing led us to observe new lineages that had normally once expressed Krox20 and that may be co-opted in pathogenesis, including vascular pericytes and perimysial fibroblasts. Finally, Schwann cell precursors having transcribed either Krox20 or Sox10 and induced to express constitutively active PI3K were associated with vascular and other tumors. These murine phenotypes may aid discovery of new candidate human PRDs affecting craniofacial and vascular smooth muscle development as well as the reciprocal paracrine signaling mechanisms leading to tissue overgrowth.
Collapse
Affiliation(s)
- Elise Marechal
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Anne Poliard
- URP 2496 Orofacial Pathologies, Imagery and Biotherapies, CNRS, GDR 2031 CREST-NET, Université Paris Cité, Montrouge, France
- School of Dentistry, Université Paris Cité, Montrouge, France
| | - Kilian Henry
- School of Dentistry, Université Paris Cité, Montrouge, France
| | - Mathias Moreno
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Mathilde Legrix
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Nicolas Macagno
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Grégoire Mondielli
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Teddy Fauquier
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
| | - Anne Barlier
- INSERM, MMG, U1251, MarMaRa Institute, Aix Marseille University, Marseille, France
- AP-HM, MMG, MarMaRa Institute, La Conception Hospital Laboratory of Molecular Biology, Marseille, France
| | - Heather C. Etchevers
- INSERM, MMG, U1251, CNRS, GDR 2031 CREST-NET, MarMaRa Institute, Aix Marseille University, Marseille, France
- *Correspondence: Heather C. Etchevers,
| |
Collapse
|
74
|
Torborg SR, Li Z, Chan JE, Tammela T. Cellular and molecular mechanisms of plasticity in cancer. Trends Cancer 2022; 8:735-746. [PMID: 35618573 PMCID: PMC9388572 DOI: 10.1016/j.trecan.2022.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/29/2022]
Abstract
Cancer cells are plastic - they can assume a wide range of distinct phenotypes. Plasticity is integral to cancer initiation and progression, as well as to the emergence and maintenance of intratumoral heterogeneity. Furthermore, plastic cells can rapidly adapt to and evade therapy, which poses a challenge for effective cancer treatment. As such, targeting plasticity in cancer holds tremendous promise. Yet, the principles governing plasticity in cancer cells remain poorly understood. Here, we provide an overview of the fundamental molecular and cellular mechanisms that underlie plasticity in cancer and in other biological contexts, including development and regeneration. We propose a key role for high-plasticity cell states (HPCSs) as crucial nodes for cell state transitions and enablers of intra-tumoral heterogeneity.
Collapse
Affiliation(s)
- Stefan R Torborg
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, 10065, USA
| | - Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, 10065, USA
| | - Jason E Chan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
75
|
Li Z, Seehawer M, Polyak K. Untangling the web of intratumour heterogeneity. Nat Cell Biol 2022; 24:1192-1201. [PMID: 35941364 DOI: 10.1038/s41556-022-00969-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
Intratumour heterogeneity (ITH) is a hallmark of cancer that drives tumour evolution and disease progression. Technological and computational advances have enabled us to assess ITH at unprecedented depths, yet this accumulating knowledge has not had a substantial clinical impact. This is in part due to a limited understanding of the functional relevance of ITH and the inadequacy of preclinical experimental models to reproduce it. Here, we discuss progress made in these areas and illuminate future directions.
Collapse
Affiliation(s)
- Zheqi Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
76
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
77
|
Wang K, Yang Y, Zheng S, Hu W. Association Mining Identifies MAL2 as a Novel Tumor Suppressor in Colorectal Cancer. Onco Targets Ther 2022; 15:761-769. [PMID: 35847380 PMCID: PMC9278979 DOI: 10.2147/ott.s369670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/04/2022] [Indexed: 12/09/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. However, the driver genes that promote CRC metastasis remain poorly understood. Association mining mines and extracts the repeated correlations and relevance in a dataset to predict the appearance of other data items according to the appearance of one item. Methods Here, the Apriori algorithm was used to find the frequent mutational gene sets (FMGSs) and hidden association rules (ARs) within these FMGSs from 383 CRCs with whole exome sequencing datasets. The weighted correlation network analysis (WGCNA) was used to identify the hub genes in CRC. CCK8, colony formation, cell migration and invasion assays were adopted to detect the roles of hub genes in CRC. Results Intriguingly, we found that MAL2 (myelin and lymphocyte protein 2) was associated with TP53 and APC in stage IV of CRC, and further subnetwork exploration based on WGCNA identified MAL2 as a potent hub gene. To validate the metastasis-related role of MAL2 in CRC, a lentivirus-based overexpression system was utilized to construct MAL2-overexpressing human CRC LOVO cells. Overexpression of MAL2 remarkably inhibited CRC cell proliferation and invasion. Conclusion Our results highlighted that MAL2 acts as a tumor suppressor in CRC and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Kailai Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Yanmei Yang
- Key Laboratory of Reproductive and Genetics, Ministry of Education, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Shu Zheng
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, People's Republic of China
| |
Collapse
|
78
|
Cui G, Wang H, Long S, Zhang T, Guo X, Chen S, Kakuchi T, Duan Q, Zhao D. Thermo- and Light-Responsive Polymer-Coated Magnetic Nanoparticles as Potential Drug Carriers. Front Bioeng Biotechnol 2022; 10:931830. [PMID: 35903791 PMCID: PMC9315361 DOI: 10.3389/fbioe.2022.931830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
A series of thermo- and light-responsive copolymers of poly (N-isopropylacrylamide) (PNIPAM) and 6-[4-(4-methoxy phenyl azo)-phenoxyl-hexyl methacrylate) (AzoMA) (PNIPAM-b-PAzoMA) were synthesized via reversible addition–fragmentation chain transfer (RAFT) radical polymerization. The resulting copolymers had a narrow molecular weight distribution range of 1.06–1.24, in which Mn changed regularly with the monomer concentration. Subsequently, the diblock copolymers were successfully modified on the surface of iron oxide nanoparticles through the interaction between the chemical bonds to prepare Fe3O4@(PNIPAM-b-PAzoMA) nanoparticles. The size of fabricated nanoparticles with excellent thermo-sensitivity and photo-sensitivity was controlled at about 40–50 nm. Cell viability assays suggested that the nanoparticles showed no significant cytotoxicity and potential drug delivery in the tumor microenvironment.
Collapse
Affiliation(s)
- Guihua Cui
- Science and Technology Division, Jilin Medical University, Jilin, China
- Department of Materials Science and Engineering, Changchun University of Science and Technology, Jilin, China
| | - Hao Wang
- Science and Technology Division, Jilin Medical University, Jilin, China
| | - Shengsen Long
- Science and Technology Division, Jilin Medical University, Jilin, China
| | - Tianshuo Zhang
- Science and Technology Division, Jilin Medical University, Jilin, China
| | - Xiaoyu Guo
- Jilin Vocational College of Industry and Technology, Jilin, China
| | - Shuiying Chen
- Department of Materials Science and Engineering, Changchun University of Science and Technology, Jilin, China
| | - Toyoji Kakuchi
- Division of Biotechnology and Macromolecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan
| | - Qian Duan
- Department of Materials Science and Engineering, Changchun University of Science and Technology, Jilin, China
- *Correspondence: Qian Duan, ; Donghai Zhao,
| | - Donghai Zhao
- Science and Technology Division, Jilin Medical University, Jilin, China
- *Correspondence: Qian Duan, ; Donghai Zhao,
| |
Collapse
|
79
|
Cellular plasticity in the neural crest and cancer. Curr Opin Genet Dev 2022; 75:101928. [PMID: 35749971 DOI: 10.1016/j.gde.2022.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
Abstract
In vertebrates, neural crest cells (NCCs) are a multipotent embryonic population generating both neural/neuronal and mesenchymal derivatives, and thus the neural crest (NC) is often referred to as the fourth germ layer. NC development is a dynamic process, where NCCs possess substantial plasticity in transcriptional and epigenomic profiles. Recent technical advances in single-cell and low-input sequencing have empowered fine-resolution characterisation of NC development. In this review, we summarise the latest models underlying NC-plasticity acquirement and cell-fate restriction, outline the connections between NC plasticity and NC-derived cancer and envision the new opportunities in studying NC plasticity and its link to cancer.
Collapse
|
80
|
Manfioletti G, Fedele M. Epithelial-Mesenchymal Transition (EMT) 2021. Int J Mol Sci 2022; 23:ijms23105848. [PMID: 35628655 PMCID: PMC9145979 DOI: 10.3390/ijms23105848] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/27/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a transdifferentiation process wherein epithelial cells acquire characteristics typical of mesenchymal cells [...].
Collapse
Affiliation(s)
| | - Monica Fedele
- National Research Council (CNR), Institute of Experimental Endocrinology and Oncology (IEOS), 80145 Naples, Italy
- Correspondence: or ; Tel.: +39-(081)-545-5751
| |
Collapse
|
81
|
Brunsdon H, Brombin A, Peterson S, Postlethwait JH, Patton EE. Aldh2 is a lineage-specific metabolic gatekeeper in melanocyte stem cells. Development 2022; 149:275182. [PMID: 35485397 PMCID: PMC9188749 DOI: 10.1242/dev.200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/20/2022] [Indexed: 12/31/2022]
Abstract
Melanocyte stem cells (McSCs) in zebrafish serve as an on-demand source of melanocytes during growth and regeneration, but metabolic programs associated with their activation and regenerative processes are not well known. Here, using live imaging coupled with scRNA-sequencing, we discovered that, during regeneration, quiescent McSCs activate a dormant embryonic neural crest transcriptional program followed by an aldehyde dehydrogenase (Aldh) 2 metabolic switch to generate progeny. Unexpectedly, although ALDH2 is well known for its aldehyde-clearing mechanisms, we find that, in regenerating McSCs, Aldh2 activity is required to generate formate – the one-carbon (1C) building block for nucleotide biosynthesis – through formaldehyde metabolism. Consequently, we find that disrupting the 1C cycle with low doses of methotrexate causes melanocyte regeneration defects. In the absence of Aldh2, we find that purines are the metabolic end product sufficient for activated McSCs to generate progeny. Together, our work reveals McSCs undergo a two-step cell state transition during regeneration, and that the reaction products of Aldh2 enzymes have tissue-specific stem cell functions that meet metabolic demands in regeneration. Summary: In zebrafish melanocyte regeneration, quiescent McSCs respond by re-expressing a neural crest identity, followed by an Aldh2-dependent metabolic switch to generate progeny.
Collapse
Affiliation(s)
- Hannah Brunsdon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alessandro Brombin
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| | - Samuel Peterson
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK.,Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
82
|
Pich O, Bailey C, Watkins TBK, Zaccaria S, Jamal-Hanjani M, Swanton C. The translational challenges of precision oncology. Cancer Cell 2022; 40:458-478. [PMID: 35487215 DOI: 10.1016/j.ccell.2022.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 04/05/2022] [Indexed: 12/11/2022]
Abstract
The translational challenges in the field of precision oncology are in part related to the biological complexity and diversity of this disease. Technological advances in genomics have facilitated large sequencing efforts and discoveries that have further supported this notion. In this review, we reflect on the impact of these discoveries on our understanding of several concepts: cancer initiation, cancer prevention, early detection, adjuvant therapy and minimal residual disease monitoring, cancer drug resistance, and cancer evolution in metastasis. We discuss key areas of focus for improving cancer outcomes, from biological insights to clinical application, and suggest where the development of these technologies will lead us. Finally, we discuss practical challenges to the wider adoption of molecular profiling in the clinic and the need for robust translational infrastructure.
Collapse
Affiliation(s)
- Oriol Pich
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Chris Bailey
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Medical Oncology, University College London Hospitals, London, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
83
|
Lu Y, Patton EE. Long-term non-invasive drug treatments in adult zebrafish that lead to melanoma drug resistance. Dis Model Mech 2022; 15:dmm049401. [PMID: 35394030 PMCID: PMC9118090 DOI: 10.1242/dmm.049401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Zebrafish embryos are widely used for drug discovery, however, administering drugs to adult zebrafish is limited by current protocols that can cause stress. Here, we developed a drug formulation and administration method for adult zebrafish by producing food-based drug pellets that are consumed voluntarily. We applied this to zebrafish with BRAF-mutant melanoma, a model that has significantly advanced our understanding of melanoma progression, but not of drug resistance due to the limitations of current treatment methods. Zebrafish with melanomas responded to short-term, precise and daily dosing with drug pellets made with the BRAFV600E inhibitor, vemurafenib. On-target drug efficacy was determined by phospho-Erk staining. Continued drug treatment led to the emergence, for the first time in zebrafish, of acquired drug resistance and melanoma relapse, modelling the responses seen in melanoma patients. This method presents a controlled, non-invasive approach that permits long-term drug studies and can be widely applied to adult zebrafish models.
Collapse
Affiliation(s)
| | - E. Elizabeth Patton
- MRC Human Genetics Unit and CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital Campus, EH4 2XU, Edinburgh, UK
| |
Collapse
|
84
|
HDACs and the epigenetic plasticity of cancer cells: Target the complexity. Pharmacol Ther 2022; 238:108190. [PMID: 35430294 DOI: 10.1016/j.pharmthera.2022.108190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Cancer cells must adapt to the hostile conditions of the microenvironment in terms of nutrition, space, and immune system attack. Mutations of DNA are the drivers of the tumorigenic process, but mutations must be able to hijack cellular functions to sustain the spread of mutant genomes. Transcriptional control is a key function in this context and is controlled by the rearrangement of the epigenome. Unlike genomic mutations, the epigenome of cancer cells can in principle be reversed. The discovery of the first epigenetic drugs triggered a contaminating enthusiasm. Unfortunately, the complexity of the epigenetic machinery has frustrated this enthusiasm. To develop efficient patient-oriented epigenetic therapies, we need to better understand the nature of this complexity. In this review, we will discuss recent advances in understanding the contribution of HDACs to the maintenance of the transformed state and the rational for their selective targeting.
Collapse
|
85
|
Weiss JM, Hunter MV, Cruz NM, Baggiolini A, Tagore M, Ma Y, Misale S, Marasco M, Simon-Vermot T, Campbell NR, Newell F, Wilmott JS, Johansson PA, Thompson JF, Long GV, Pearson JV, Mann GJ, Scolyer RA, Waddell N, Montal ED, Huang TH, Jonsson P, Donoghue MTA, Harris CC, Taylor BS, Xu T, Chaligné R, Shliaha PV, Hendrickson R, Jungbluth AA, Lezcano C, Koche R, Studer L, Ariyan CE, Solit DB, Wolchok JD, Merghoub T, Rosen N, Hayward NK, White RM. Anatomic position determines oncogenic specificity in melanoma. Nature 2022; 604:354-361. [PMID: 35355015 PMCID: PMC9355078 DOI: 10.1038/s41586-022-04584-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/25/2022] [Indexed: 12/19/2022]
Abstract
Oncogenic alterations to DNA are not transforming in all cellular contexts1,2. This may be due to pre-existing transcriptional programmes in the cell of origin. Here we define anatomic position as a major determinant of why cells respond to specific oncogenes. Cutaneous melanoma arises throughout the body, whereas the acral subtype arises on the palms of the hands, soles of the feet or under the nails3. We sequenced the DNA of cutaneous and acral melanomas from a large cohort of human patients and found a specific enrichment for BRAF mutations in cutaneous melanoma and enrichment for CRKL amplifications in acral melanoma. We modelled these changes in transgenic zebrafish models and found that CRKL-driven tumours formed predominantly in the fins of the fish. The fins are the evolutionary precursors to tetrapod limbs, indicating that melanocytes in these acral locations may be uniquely susceptible to CRKL. RNA profiling of these fin and limb melanocytes, when compared with body melanocytes, revealed a positional identity gene programme typified by posterior HOX13 genes. This positional gene programme synergized with CRKL to amplify insulin-like growth factor (IGF) signalling and drive tumours at acral sites. Abrogation of this CRKL-driven programme eliminated the anatomic specificity of acral melanoma. These data suggest that the anatomic position of the cell of origin endows it with a unique transcriptional state that makes it susceptible to only certain oncogenic insults.
Collapse
Affiliation(s)
- Joshua M Weiss
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Miranda V Hunter
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arianna Baggiolini
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohita Tagore
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yilun Ma
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Sandra Misale
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michelangelo Marasco
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theresa Simon-Vermot
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nathaniel R Campbell
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology Graduate Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Felicity Newell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter A Johansson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Graham J Mann
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- John Curtin School of Medical Research, Australian National University, Acton, Australian Capital Territory, Australia
- Centre for Cancer Research, Westmead Institute for Medical Research, The University of Sydney, Westmead, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- New South Wales Health Pathology, Sydney, New South Wales, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Emily D Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip Jonsson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark T A Donoghue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher C Harris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tianhao Xu
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronan Chaligné
- Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pavel V Shliaha
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald Hendrickson
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Achim A Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cecilia Lezcano
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lorenz Studer
- Developmental Biology, The Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charlotte E Ariyan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jedd D Wolchok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Weill Cornell Medicine, New York, NY, USA
| | | | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicholas K Hayward
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Richard M White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
86
|
Cell position matters in tumour development. Nature 2022; 604:248-250. [PMID: 35354976 DOI: 10.1038/d41586-022-00856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
87
|
Dreier MR, de la Serna IL. SWI/SNF Chromatin Remodeling Enzymes in Melanoma. EPIGENOMES 2022; 6:epigenomes6010010. [PMID: 35323214 PMCID: PMC8947417 DOI: 10.3390/epigenomes6010010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Melanoma is an aggressive malignancy that arises from the transformation of melanocytes on the skin, mucosal membranes, and uvea of the eye. SWI/SNF chromatin remodeling enzymes are multi-subunit complexes that play important roles in the development of the melanocyte lineage and in the response to ultraviolet radiation, a key environmental risk factor for developing cutaneous melanoma. Exome sequencing has revealed frequent loss of function mutations in genes encoding SWI/SNF subunits in melanoma. However, some SWI/SNF subunits have also been demonstrated to have pro-tumorigenic roles in melanoma and to affect sensitivity to therapeutics. This review summarizes studies that have implicated SWI/SNF components in melanomagenesis and have evaluated how SWI/SNF subunits modulate the response to current therapeutics.
Collapse
|
88
|
Wu M, Huang Q, Xie Y, Wu X, Ma H, Zhang Y, Xia Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J Hematol Oncol 2022; 15:24. [PMID: 35279217 PMCID: PMC8917703 DOI: 10.1186/s13045-022-01242-2] [Citation(s) in RCA: 248] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are promising anticancer targets, among which therapeutic antibodies targeting the PD-1/PD-L1 pathway have been widely applied to cancer treatment in clinical practice and have great potential. However, this treatment is greatly limited by its low response rates in certain cancers, lack of known biomarkers, immune-related toxicity, innate and acquired drug resistance, etc. Overcoming these limitations would significantly expand the anticancer applications of PD-1/PD-L1 blockade and improve the response rate and survival time of cancer patients. In the present review, we first illustrate the biological mechanisms of the PD-1/PD-L1 immune checkpoints and their role in the healthy immune system as well as in the tumor microenvironment (TME). The PD-1/PD-L1 pathway inhibits the anticancer effect of T cells in the TME, which in turn regulates the expression levels of PD-1 and PD-L1 through multiple mechanisms. Several strategies have been proposed to solve the limitations of anti-PD-1/PD-L1 treatment, including combination therapy with other standard treatments, such as chemotherapy, radiotherapy, targeted therapy, anti-angiogenic therapy, other immunotherapies and even diet control. Downregulation of PD-L1 expression in the TME via pharmacological or gene regulation methods improves the efficacy of anti-PD-1/PD-L1 treatment. Surprisingly, recent preclinical studies have shown that upregulation of PD-L1 in the TME also improves the response and efficacy of immune checkpoint blockade. Immunotherapy is a promising anticancer strategy that provides novel insight into clinical applications. This review aims to guide the development of more effective and less toxic anti-PD-1/PD-L1 immunotherapies.
Collapse
Affiliation(s)
- Mengling Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qianrui Huang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yao Xie
- Department of Obstetrics and Gynaecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China
| | - Xuyi Wu
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China
| | - Hongbo Ma
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Department of Rehabilitation Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China. .,Key Laboratory of Rehabilitation Medicine in Sichuan Province/Rehabilitation Medicine Research Institute, Chengdu, 610041, China.
| |
Collapse
|
89
|
Oscier D, Stamatopoulos K, Mirandari A, Strefford J. The Genomics of Hairy Cell Leukaemia and Splenic Diffuse Red Pulp Lymphoma. Cancers (Basel) 2022; 14:697. [PMID: 35158965 PMCID: PMC8833447 DOI: 10.3390/cancers14030697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Classical hairy cell leukaemia (HCLc), its variant form (HCLv), and splenic diffuse red pulp lymphoma (SDRPL) constitute a subset of relatively indolent B cell tumours, with low incidence rates of high-grade transformations, which primarily involve the spleen and bone marrow and are usually associated with circulating tumour cells characterised by villous or irregular cytoplasmic borders. The primary aim of this review is to summarise their cytogenetic, genomic, immunogenetic, and epigenetic features, with a particular focus on the clonal BRAFV600E mutation, present in most cases currently diagnosed with HCLc. We then reflect on their cell of origin and pathogenesis as well as present the clinical implications of improved biological understanding, extending from diagnosis to prognosis assessment and therapy response.
Collapse
Affiliation(s)
- David Oscier
- Department of Haematology, Royal Bournemouth and Christchurch NHS Trust, Bournemouth BH7 7DW, UK
| | - Kostas Stamatopoulos
- Institute of Applied Biosciences, Centre for Research and Technology-Hellas, 57001 Thessaloniki, Greece;
| | - Amatta Mirandari
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| | - Jonathan Strefford
- Cancer Genomics Group, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK; (A.M.); (J.S.)
| |
Collapse
|
90
|
Kramer ET, Godoy PM, Kaufman CK. Transcriptional profile and chromatin accessibility in zebrafish melanocytes and melanoma tumors. G3 (BETHESDA, MD.) 2022; 12:jkab379. [PMID: 34791221 PMCID: PMC8727958 DOI: 10.1093/g3journal/jkab379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/02/2021] [Indexed: 11/14/2022]
Abstract
Transcriptional and epigenetic characterization of melanocytes and melanoma cells isolated from their in vivo context promises to unveil key differences between these developmentally related normal and cancer cell populations. We therefore engineered an enhanced Danio rerio (zebrafish) melanoma model with fluorescently labeled melanocytes to allow for isolation of normal (wild type) and premalignant (BRAFV600E-mutant) populations for comparison to fully transformed BRAFV600E-mutant, p53 loss-of-function melanoma cells. Using fluorescence-activated cell sorting to isolate these populations, we performed high-quality RNA- and ATAC-seq on sorted zebrafish melanocytes vs. melanoma cells, which we provide as a resource here. Melanocytes had consistent transcriptional and accessibility profiles, as did melanoma cells. Comparing melanocytes and melanoma, we note 4128 differentially expressed genes and 56,936 differentially accessible regions with overall gene expression profiles analogous to human melanocytes and the pigmentation melanoma subtype. Combining the RNA- and ATAC-seq data surprisingly revealed that increased chromatin accessibility did not always correspond with increased gene expression, suggesting that though there is widespread dysregulation in chromatin accessibility in melanoma, there is a potentially more refined gene expression program driving cancerous melanoma. These data serve as a resource to identify candidate regulators of the normal vs. diseased states in a genetically controlled in vivo context.
Collapse
Affiliation(s)
- Eva T Kramer
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Paula M Godoy
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| | - Charles K Kaufman
- Division of Medical Oncology, Departments of Medicine and Developmental Biology, Washington University in Saint Louis, St Louis, MO 63110, USA
| |
Collapse
|
91
|
Genetic and epigenetic processes linked to cancer. Cancer 2022. [DOI: 10.1016/b978-0-323-91904-3.00013-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
92
|
Kunz M. Melanoma development: stage-dependent cancer competence of the melanocytic lineage. Signal Transduct Target Ther 2021; 6:433. [PMID: 34930891 PMCID: PMC8688496 DOI: 10.1038/s41392-021-00854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, 04155, Leipzig, Germany.
| |
Collapse
|
93
|
Cable J, Pei D, Reid LM, Wang XW, Bhatia S, Karras P, Melenhorst JJ, Grompe M, Lathia JD, Song E, Kuo CJ, Zhang N, White RM, Ma SK, Ma L, Chin YR, Shen MM, Ng IOL, Kaestner KH, Zhou L, Sikandar S, Schmitt CA, Guo W, Wong CCL, Ji J, Tang DG, Dubrovska A, Yang C, Wiedemeyer WR, Weissman IL. Cancer stem cells: advances in biology and clinical translation-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:142-163. [PMID: 34850398 PMCID: PMC9153245 DOI: 10.1111/nyas.14719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
The test for the cancer stem cell (CSC) hypothesis is to find a target expressed on all, and only CSCs in a patient tumor, then eliminate all cells with that target that eliminates the cancer. That test has not yet been achieved, but CSC diagnostics and targets found on CSCs and some other cells have resulted in a few clinically relevant therapies. However, it has become apparent that eliminating the subset of tumor cells characterized by self-renewal properties is essential for long-term tumor control. CSCs are able to regenerate and initiate tumor growth, recapitulating the heterogeneity present in the tumor before treatment. As great progress has been made in identifying and elucidating the biology of CSCs as well as their interactions with the tumor microenvironment, the time seems ripe for novel therapeutic strategies that target CSCs to find clinical applicability. On May 19-21, 2021, researchers in cancer stem cells met virtually for the Keystone eSymposium "Cancer Stem Cells: Advances in Biology and Clinical Translation" to discuss recent advances in the understanding of CSCs as well as clinical efforts to target these populations.
Collapse
Affiliation(s)
| | - Duanqing Pei
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou, China
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Lola M Reid
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonam Bhatia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology and Laboratory for Molecular Cancer Biology, Department of Oncology, Leuven, Belgium
| | - Jan Joseph Melenhorst
- Glioblastoma Translational Center of Excellence, The Abramson Cancer Center and Department of Pathology & Laboratory Medicine, Perelman School of Medicine and Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Markus Grompe
- Department of Molecular and Medical Genetics, Department of Pediatrics, and Oregon Stem Cell Center, Oregon Health & Science University, Portland, Oregon
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute and Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center and Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Bioland Laboratory; Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-Sen University; and Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Calvin J Kuo
- Division of Hematology, Department of Medicine, Stanford University, Stanford, California
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
| | - Richard M White
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Stephanie Ky Ma
- School of Biomedical Sciences and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lichun Ma
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Y Rebecca Chin
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Michael M Shen
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, New York
| | - Irene Oi Lin Ng
- Department of Pathology and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Hong Kong
| | - Shaheen Sikandar
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, Santa Cruz, California
| | - Clemens A Schmitt
- Charité - Universitätsmedizin Berlin, Hematology/Oncology, and Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany, and Johannes Kepler University, Kepler Universitätsklinikum, Hematology/Oncology, Linz, Austria
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carmen Chak-Lui Wong
- Department of Pathology and State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Junfang Ji
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, and Experimental Therapeutics (ET) Graduate Program, University at Buffalo, Buffalo, New York
| | - Anna Dubrovska
- OncoRay National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Heidelberg, Germany
| | - Chunzhang Yang
- Neuro-Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | | | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Ludwig Center for Cancer Stem Cell Research, Stanford University, Stanford, California
| |
Collapse
|
94
|
McNeal AS, Belote RL, Zeng H, Urquijo M, Barker K, Torres R, Curtin M, Shain AH, Andtbacka RHI, Holmen S, Lum DH, McCalmont TH, VanBrocklin MW, Grossman D, Wei ML, Lang UE, Judson-Torres RL. BRAF V600E induces reversible mitotic arrest in human melanocytes via microrna-mediated suppression of AURKB. eLife 2021; 10:e70385. [PMID: 34812139 PMCID: PMC8610417 DOI: 10.7554/elife.70385] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022] Open
Abstract
Benign melanocytic nevi frequently emerge when an acquired BRAFV600E mutation triggers unchecked proliferation and subsequent arrest in melanocytes. Recent observations have challenged the role of oncogene-induced senescence in melanocytic nevus formation, necessitating investigations into alternative mechanisms for the establishment and maintenance of proliferation arrest in nevi. We compared the transcriptomes of melanocytes from healthy human skin, nevi, and melanomas arising from nevi and identified a set of microRNAs as highly expressed nevus-enriched transcripts. Two of these microRNAs-MIR211-5p and MIR328-3p-induced mitotic failure, genome duplication, and proliferation arrest in human melanocytes through convergent targeting of AURKB. We demonstrate that BRAFV600E induces a similar proliferation arrest in primary human melanocytes that is both reversible and conditional. Specifically, BRAFV600E expression stimulates either arrest or proliferation depending on the differentiation state of the melanocyte. We report genome duplication in human melanocytic nevi, reciprocal expression of AURKB and microRNAs in nevi and melanomas, and rescue of arrested human nevus cells with AURKB expression. Taken together, our data describe an alternative molecular mechanism for melanocytic nevus formation that is congruent with both experimental and clinical observations.
Collapse
Affiliation(s)
- Andrew S McNeal
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Hanlin Zeng
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | | | - Rodrigo Torres
- University of California, San FranciscoSan FranciscoUnited States
| | | | - A Hunter Shain
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert HI Andtbacka
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Sheri Holmen
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - David H Lum
- Huntsman Cancer Inst.Salt Lake CityUnited States
| | | | - Matt W VanBrocklin
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Douglas Grossman
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| | - Maria L Wei
- University of California, San FranciscoSan FranciscoUnited States
| | - Ursula E Lang
- University of California, San FranciscoSan FranciscoUnited States
| | - Robert L Judson-Torres
- Huntsman Cancer Inst.Salt Lake CityUnited States
- University of UtahSalt Lake CityUnited States
| |
Collapse
|
95
|
Seton-Rogers S. Cell states can give tumorigenesis a head start. Nat Rev Cancer 2021; 21:685. [PMID: 34522022 DOI: 10.1038/s41568-021-00410-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
96
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- David W Vredevoogd
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, Netherlands
| | - Daniel S Peeper
- Division of Molecular Oncology and Immunology, Oncode Institute, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, Netherlands
| |
Collapse
|