51
|
Petrovich GD, Corradi GR, Adamo HP. The effect of metal ions on the Spf1p P5A-ATPase. High sensitivity to irreversible inhibition by zinc. Arch Biochem Biophys 2022; 732:109450. [DOI: 10.1016/j.abb.2022.109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022]
|
52
|
Salustros N, Grønberg C, Abeyrathna NS, Lyu P, Orädd F, Wang K, Andersson M, Meloni G, Gourdon P. Structural basis of ion uptake in copper-transporting P 1B-type ATPases. Nat Commun 2022; 13:5121. [PMID: 36045128 PMCID: PMC9433437 DOI: 10.1038/s41467-022-32751-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Copper is essential for living cells, yet toxic at elevated concentrations. Class 1B P-type (P1B-) ATPases are present in all kingdoms of life, facilitating cellular export of transition metals including copper. P-type ATPases follow an alternating access mechanism, with inward-facing E1 and outward-facing E2 conformations. Nevertheless, no structural information on E1 states is available for P1B-ATPases, hampering mechanistic understanding. Here, we present structures that reach 2.7 Å resolution of a copper-specific P1B-ATPase in an E1 conformation, with complementing data and analyses. Our efforts reveal a domain arrangement that generates space for interaction with ion donating chaperones, and suggest a direct Cu+ transfer to the transmembrane core. A methionine serves a key role by assisting the release of the chaperone-bound ion and forming a cargo entry site together with the cysteines of the CPC signature motif. Collectively, the findings provide insights into P1B-mediated transport, likely applicable also to human P1B-members.
Collapse
Affiliation(s)
- Nina Salustros
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark
| | - Christina Grønberg
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800W Campbell Rd., Richardson, TX, 75080, USA
| | - Pin Lyu
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Universitetsparken 13, DK-2100, Copenhagen, Denmark
| | - Fredrik Orädd
- Department of Chemistry, Umeå University, Linneaus Väg 10, SE-901 87, Umeå, Sweden
| | - Kaituo Wang
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark
| | - Magnus Andersson
- Department of Chemistry, Umeå University, Linneaus Väg 10, SE-901 87, Umeå, Sweden
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800W Campbell Rd., Richardson, TX, 75080, USA
| | - Pontus Gourdon
- Department of Biomedical Sciences, Copenhagen University, Maersk Tower 7-9, Nørre Allé 14, DK-2200, Copenhagen, Denmark.
- Department of Experimental Medical Science, Lund University, Sölvegatan 19, SE-221 84, Lund, Sweden.
| |
Collapse
|
53
|
Shin HW, Takatsu H. Regulatory Roles of N- and C-Terminal Cytoplasmic Regions of P4-ATPases. Chem Pharm Bull (Tokyo) 2022; 70:524-532. [DOI: 10.1248/cpb.c22-00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hye-Won Shin
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | |
Collapse
|
54
|
Sinning I, McDowell MA. Cryo-EM insights into tail-anchored membrane protein biogenesis in eukaryotes. Curr Opin Struct Biol 2022; 75:102428. [PMID: 35850079 DOI: 10.1016/j.sbi.2022.102428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Tail-anchored (TA) proteins are a biologically significant class of membrane proteins, which require specialised cellular pathways to insert their single C-terminal transmembrane domain into the correct membrane. Cryo-electron microscopy has recently provided new insights into the organelle-specific machineries for TA protein biogenesis. Structures of targeting and insertase complexes within the canonical guided entry of TA proteins (GET) pathway indicate how substrates are faithfully chaperoned into the endoplasmic reticulum (ER) membrane in metazoans. The core of the GET insertase is conserved within structures of the ER membrane protein complex (EMC), which acts in parallel to insert a different subset of TA proteins. Furthermore, structures of the dislocases Spf1 and Msp1 show how they remove mislocalised TA proteins from the ER and outer mitochondrial membranes respectively.
Collapse
Affiliation(s)
- Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany.
| | - Melanie A McDowell
- Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt Am Main, Germany.
| |
Collapse
|
55
|
Zhang F, Wu Z, Long F, Tan J, Gong N, Li X, Lin C. The Roles of ATP13A2 Gene Mutations Leading to Abnormal Aggregation of α-Synuclein in Parkinson’s Disease. Front Cell Neurosci 2022; 16:927682. [PMID: 35875356 PMCID: PMC9296842 DOI: 10.3389/fncel.2022.927682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PARK9 (also known as ATP13A2) is recognized as one of the key genes that cause PD, and a mutation in this gene was first discovered in a rare case of PD in an adolescent. Lewy bodies (LBs) formed by abnormal aggregation of α-synuclein, which is encoded by the SNCA gene, are one of the pathological diagnostic criteria for PD. LBs are also recognized as one of the most important features of PD pathogenesis. In this article, we first summarize the types of mutations in the ATP13A2 gene and their effects on ATP13A2 mRNA and protein structure; then, we discuss lysosomal autophagy inhibition and the molecular mechanism of abnormal α-synuclein accumulation caused by decreased levels and dysfunction of the ATP13A2 protein in lysosomes. Finally, this article provides a new direction for future research on the pathogenesis and therapeutic targets for ATP13A2 gene-related PD from the perspective of ATP13A2 gene mutations and abnormal aggregation of α-synuclein.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Molecular Precision Medicine of Hunan Province, Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Changwei Lin, orcid.org/0000-0003-1676-0912
| |
Collapse
|
56
|
Matsumoto S, Ono S, Shinoda S, Kakuta C, Okada S, Ito T, Numata T, Endo T. GET pathway mediates transfer of mislocalized tail-anchored proteins from mitochondria to the ER. J Cell Biol 2022; 221:213171. [PMID: 35442388 DOI: 10.1083/jcb.202104076] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/18/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Tail-anchored (TA) membrane proteins have a potential risk to be mistargeted to the mitochondrial outer membrane (OM). Such mislocalized TA proteins can be extracted by the mitochondrial AAA-ATPase Msp1 from the OM and transferred to the ER for ER protein quality control involving ubiquitination by the ER-resident Doa10 complex. Yet it remains unclear how the extracted TA proteins can move to the ER crossing the aqueous cytosol and whether this transfer to the ER is essential for the clearance of mislocalized TA proteins. Here we show by time-lapse microscopy that mislocalized TA proteins, including an authentic ER-TA protein, indeed move from mitochondria to the ER in a manner strictly dependent on Msp1 expression. The Msp1-dependent mitochondria-to-ER transfer of TA proteins is blocked by defects in the GET system, and this block is not due to impaired Doa10 functions. Thus, the GET pathway facilitates the transfer of mislocalized TA proteins from mitochondria to the ER.
Collapse
Affiliation(s)
- Shunsuke Matsumoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan.,Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Suzuka Ono
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| | - Saori Shinoda
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Chika Kakuta
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Satoshi Okada
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan.,Institute for Protein Dynamics, Kyoto Sangyo University, Kyoto, Japan
| |
Collapse
|
57
|
Roboti P, Lawless C, High S. Mitochondrial antiviral-signalling protein is a client of the BAG6 protein quality control complex. J Cell Sci 2022; 135:275354. [PMID: 35543156 PMCID: PMC9264363 DOI: 10.1242/jcs.259596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/01/2022] [Indexed: 11/20/2022] Open
Abstract
The heterotrimeric BAG6 complex coordinates the direct handover of newly synthesised tail-anchored (TA) membrane proteins from an SGTA-bound preloading complex to the endoplasmic reticulum (ER) delivery component TRC40. In contrast, defective precursors, including aberrant TA proteins, form a stable complex with this cytosolic protein quality control factor, enabling such clients to be either productively re-routed or selectively degraded. We identify the mitochondrial antiviral-signalling protein (MAVS) as an endogenous TA client of both SGTA and the BAG6 complex. Our data suggest that the BAG6 complex binds to a cytosolic pool of MAVS before its misinsertion into the ER membrane, from where it can subsequently be removed via ATP13A1-mediated dislocation. This BAG6-associated fraction of MAVS is dynamic and responds to the activation of an innate immune response, suggesting that BAG6 may modulate the pool of MAVS that is available for coordinating the cellular response to viral infection. Summary: Mitochondrial antiviral-signalling protein (MAVS) is a favoured client of the cytosolic BAG6 complex. We discuss how this dynamic interaction may modulate MAVS biogenesis at signalling membranes.
Collapse
Affiliation(s)
- Peristera Roboti
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
58
|
Avendaño-Monsalve MC, Mendoza-Martínez AE, Ponce-Rojas JC, Poot-Hernández AC, Rincón-Heredia R, Funes S. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins αβ'-NAC and Sam37. J Biol Chem 2022; 298:101984. [PMID: 35487246 PMCID: PMC9136113 DOI: 10.1016/j.jbc.2022.101984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022] Open
Abstract
A major challenge in eukaryotic cells is the proper distribution of nuclear-encoded proteins to the correct organelles. For a subset of mitochondrial proteins, a signal sequence at the N terminus (matrix-targeting sequence [MTS]) is recognized by protein complexes to ensure their proper translocation into the organelle. However, the early steps of mitochondrial protein targeting remain undeciphered. The cytosolic chaperone nascent polypeptide–associated complex (NAC), which in yeast is represented as the two different heterodimers αβ-NAC and αβ′-NAC, has been proposed to be involved during the early steps of mitochondrial protein targeting. We have previously described that the mitochondrial outer membrane protein Sam37 interacts with αβ′-NAC and together promote the import of specific mitochondrial precursor proteins. In this work, we aimed to detect the region in the MTS of mitochondrial precursors relevant for their recognition by αβ′-NAC during their sorting to the mitochondria. We used targeting signals of different mitochondrial proteins (αβ′-NAC-dependent Oxa1 and αβ′-NAC-independent Mdm38) and fused them to GFP to study their intracellular localization by biochemical and microscopy methods, and in addition followed their import kinetics in vivo. Our results reveal the presence of a positively charged amino acid cluster in the MTS of select mitochondrial precursors, such as Oxa1 and Fum1, which are crucial for their recognition by αβ′-NAC. Furthermore, we explored the presence of this cluster at the N terminus of the mitochondrial proteome and propose a set of precursors whose proper localization depends on both αβ′-NAC and Sam37.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ariann E Mendoza-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Augusto César Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico.
| |
Collapse
|
59
|
Structural insights into the activation of autoinhibited human lipid flippase ATP8B1 upon substrate binding. Proc Natl Acad Sci U S A 2022; 119:e2118656119. [PMID: 35349344 PMCID: PMC9168909 DOI: 10.1073/pnas.2118656119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP8B1 is a P4 ATPase that maintains membrane asymmetry by transporting phospholipids across the cell membrane. Disturbance of lipid asymmetry will lead to the imbalance of the cell membrane and eventually, cell death. Thus, defects in ATP8B1 are usually associated with severe human diseases, such as intrahepatic cholestasis. The present structures of ATP8B1 complexed with its auxiliary noncatalytic partners CDC50A and CDC50B reveal an autoinhibited state of ATP8B1 that could be released upon substrate binding. Moreover, release of this autoinhibition could be facilitated by the bile acids, which are key factors that alter the membrane asymmetry of hepatocytes. This enabled us to figure out a feedback loop of bile acids and lipids across the cell membrane. The human P4 ATPase ATP8B1 in complex with the auxiliary noncatalytic protein CDC50A or CDC50B mediates the transport of cell-membrane lipids from the outer to the inner membrane leaflet, which is crucial to maintain the asymmetry of membrane lipids. Its dysfunction usually leads to an imbalance of bile-acid circulation and eventually causes intrahepatic cholestasis diseases. Here, we found that both ATP8B1–CDC50A and ATP8B1–CDC50B possess a higher ATPase activity in the presence of the most favored substrate phosphatidylserine (PS), and, moreover, that the PS-stimulated activity could be augmented upon the addition of bile acids. The 3.4-Å cryo-electron microscopy structures of ATP8B1–CDC50A and ATP8B1–CDC50B enabled us to capture a phosphorylated and autoinhibited state, with the N- and C-terminal tails separately inserted into the cytoplasmic interdomain clefts of ATP8B1. The PS-bound ATP8B1–CDC50A structure at 4.0-Å resolution indicated that the autoinhibited state could be released upon PS binding. Structural analysis combined with mutagenesis revealed the residues that determine the substrate specificity and a unique positively charged loop in the phosphorylated domain of ATP8B1 for the recruitment of bile acids. Together, we supplemented the Post–Albers transport cycle of P4 ATPases with an extra autoinhibited state of ATP8B1, which could be activated upon substrate binding. These findings not only provide structural insights into the ATP8B1-mediated restoration of human membrane lipid asymmetry during bile-acid circulation, but also advance our understanding of the molecular mechanism of P4 ATPases.
Collapse
|
60
|
Song J, Becker T. Fidelity of organellar protein targeting. Curr Opin Cell Biol 2022; 75:102071. [DOI: 10.1016/j.ceb.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
|
61
|
Christianson JC, Carvalho P. Order through destruction: how ER-associated protein degradation contributes to organelle homeostasis. EMBO J 2022; 41:e109845. [PMID: 35170763 PMCID: PMC8922271 DOI: 10.15252/embj.2021109845] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 12/24/2022] Open
Abstract
The endoplasmic reticulum (ER) is a large, dynamic, and multifunctional organelle. ER protein homeostasis is essential for the coordination of its diverse functions and depends on ER-associated protein degradation (ERAD). The latter process selects target proteins in the lumen and membrane of the ER, promotes their ubiquitination, and facilitates their delivery into the cytosol for degradation by the proteasome. Originally characterized for a role in the degradation of misfolded proteins and rate-limiting enzymes of sterol biosynthesis, the many branches of ERAD now appear to control the levels of a wider range of substrates and influence more broadly the organization and functions of the ER, as well as its interactions with adjacent organelles. Here, we discuss recent mechanistic advances in our understanding of ERAD and of its consequences for the regulation of ER functions.
Collapse
Affiliation(s)
- John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesBotnar Research CentreUniversity of OxfordOxfordUK
| | - Pedro Carvalho
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
62
|
Abstract
The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3-EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom;
| |
Collapse
|
63
|
Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman SM, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2022; 298:101542. [PMID: 34968463 PMCID: PMC8808182 DOI: 10.1016/j.jbc.2021.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included β2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.
Collapse
Affiliation(s)
- Corinna A Kulicke
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Erica De Zan
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Swapnil Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian M Nijman
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
64
|
Guirao-Abad JP, Weichert M, Askew DS. Cell death induction in Aspergillus fumigatus: accentuating drug toxicity through inhibition of the unfolded protein response (UPR). CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100119. [PMID: 35909601 PMCID: PMC9325865 DOI: 10.1016/j.crmicr.2022.100119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
The UPR is an adaptive stress response network that is tightly linked to the ability of Aspergillus fumigatus, and other pathogenic fungi, to sustain viability in the presence of adverse environmental conditions, including the stress of infection. In this review, we summarize the evidence that supports the concept of targeting the A. fumigatus UPR as a strategy to reduce the ability of the fungus to withstand stress.
One of the most potent opportunistic fungal pathogens of humans is Aspergillus fumigatus, an environmental mold that causes a life-threatening pneumonia with a high rate of morbidity and mortality. Despite advances in therapy, issues of drug toxicity and antifungal resistance remain an obstacle to effective therapy. This underscores the need for more information on fungal pathways that could be pharmacologically manipulated to either reduce the viability of the fungus during infection, or to unleash the fungicidal potential of current antifungal drugs. In this review, we summarize the emerging evidence that the ability of A. fumigatus to sustain viability during stress relies heavily on an adaptive signaling pathway known as the unfolded protein response (UPR), thereby exposing a vulnerability in this fungus that has strong potential for future therapeutic intervention.
Collapse
|
65
|
Hegde RS, Keenan RJ. The mechanisms of integral membrane protein biogenesis. Nat Rev Mol Cell Biol 2022; 23:107-124. [PMID: 34556847 DOI: 10.1038/s41580-021-00413-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 02/08/2023]
Abstract
Roughly one quarter of all genes code for integral membrane proteins that are inserted into the plasma membrane of prokaryotes or the endoplasmic reticulum membrane of eukaryotes. Multiple pathways are used for the targeting and insertion of membrane proteins on the basis of their topological and biophysical characteristics. Multipass membrane proteins span the membrane multiple times and face the additional challenges of intramembrane folding. In many cases, integral membrane proteins require assembly with other proteins to form multi-subunit membrane protein complexes. Recent biochemical and structural analyses have provided considerable clarity regarding the molecular basis of membrane protein targeting and insertion, with tantalizing new insights into the poorly understood processes of multipass membrane protein biogenesis and multi-subunit protein complex assembly.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Gordon Center for Integrative Science, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
66
|
Bai L, Li H. Cryo-EM structures of the endoplasmic reticulum membrane complex. FEBS J 2022; 289:102-112. [PMID: 33629497 PMCID: PMC8382784 DOI: 10.1111/febs.15786] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 01/03/2023]
Abstract
The transmembrane α-helices of membrane proteins are in general highly hydrophobic, and they enter the lipid bilayer through a lateral gate in the Sec61 translocon. However, some transmembrane α-helices are less hydrophobic and form membrane channels or substrate-binding pockets. Insertion of these amphipathic transmembrane α-helices into the membrane requires the specific membrane-embedded insertase called the endoplasmic reticulum membrane complex (EMC), which is a multi-subunit chaperone distinct from the GET insertase complex. Four recent cryo-electron microscopy studies on the eukaryotic EMC have revealed their remarkable architectural conservation from yeast to humans; a general consensus on the substrate transmembrane helix-binding pocket; and the evolutionary link to the prokaryotic insertases of the tail-anchored membrane proteins. These structures provide a solid framework for future mechanistic investigation.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, China
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| |
Collapse
|
67
|
Hsieh HH, Shan SO. Fidelity of Cotranslational Protein Targeting to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:ijms23010281. [PMID: 35008707 PMCID: PMC8745203 DOI: 10.3390/ijms23010281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023] Open
Abstract
Fidelity of protein targeting is essential for the proper biogenesis and functioning of organelles. Unlike replication, transcription and translation processes, in which multiple mechanisms to recognize and reject noncognate substrates are established in energetic and molecular detail, the mechanisms by which cells achieve a high fidelity in protein localization remain incompletely understood. Signal recognition particle (SRP), a conserved pathway to mediate the localization of membrane and secretory proteins to the appropriate cellular membrane, provides a paradigm to understand the molecular basis of protein localization in the cell. In this chapter, we review recent progress in deciphering the molecular mechanisms and substrate selection of the mammalian SRP pathway, with an emphasis on the key role of the cotranslational chaperone NAC in preventing protein mistargeting to the ER and in ensuring the organelle specificity of protein localization.
Collapse
|
68
|
Tirincsi A, Sicking M, Hadzibeganovic D, Haßdenteufel S, Lang S. The Molecular Biodiversity of Protein Targeting and Protein Transport Related to the Endoplasmic Reticulum. Int J Mol Sci 2021; 23:143. [PMID: 35008565 PMCID: PMC8745461 DOI: 10.3390/ijms23010143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Looking at the variety of the thousands of different polypeptides that have been focused on in the research on the endoplasmic reticulum from the last five decades taught us one humble lesson: no one size fits all. Cells use an impressive array of components to enable the safe transport of protein cargo from the cytosolic ribosomes to the endoplasmic reticulum. Safety during the transit is warranted by the interplay of cytosolic chaperones, membrane receptors, and protein translocases that together form functional networks and serve as protein targeting and translocation routes. While two targeting routes to the endoplasmic reticulum, SRP (signal recognition particle) and GET (guided entry of tail-anchored proteins), prefer targeting determinants at the N- and C-terminus of the cargo polypeptide, respectively, the recently discovered SND (SRP-independent) route seems to preferentially cater for cargos with non-generic targeting signals that are less hydrophobic or more distant from the termini. With an emphasis on targeting routes and protein translocases, we will discuss those functional networks that drive efficient protein topogenesis and shed light on their redundant and dynamic nature in health and disease.
Collapse
Affiliation(s)
- Andrea Tirincsi
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Mark Sicking
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Drazena Hadzibeganovic
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| | - Sarah Haßdenteufel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Lang
- Department of Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (A.T.); (M.S.); (D.H.)
| |
Collapse
|
69
|
den Brave F, Gupta A, Becker T. Protein Quality Control at the Mitochondrial Surface. Front Cell Dev Biol 2021; 9:795685. [PMID: 34926473 PMCID: PMC8678412 DOI: 10.3389/fcell.2021.795685] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria contain two membranes, the outer and inner membrane. The outer membrane fulfills crucial functions for the communication of mitochondria with the cellular environment like exchange of lipids via organelle contact sites, the transport of metabolites and the formation of a signaling platform in apoptosis and innate immunity. The translocase of the outer membrane (TOM complex) forms the entry gate for the vast majority of precursor proteins that are produced on cytosolic ribosomes. Surveillance of the functionality of outer membrane proteins is critical for mitochondrial functions and biogenesis. Quality control mechanisms remove defective and mistargeted proteins from the outer membrane as well as precursor proteins that clog the TOM complex. Selective degradation of single proteins is also an important mode to regulate mitochondrial dynamics and initiation of mitophagy pathways. Whereas inner mitochondrial compartments are equipped with specific proteases, the ubiquitin-proteasome system is a central player in protein surveillance on the mitochondrial surface. In this review, we summarize our current knowledge about the molecular mechanisms that govern quality control of proteins at the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
70
|
Nakanishi H, Hayashida K, Nishizawa T, Oshima A, Abe K. Cryo-EM of the ATP11C flippase reconstituted in Nanodiscs shows a distended phospholipid bilayer inner membrane around transmembrane helix 2. J Biol Chem 2021; 298:101498. [PMID: 34922944 PMCID: PMC8733269 DOI: 10.1016/j.jbc.2021.101498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
ATP11C is a member of the P4-ATPase flippase family that mediates translocation of phosphatidylserine (PtdSer) across the lipid bilayer. In order to characterize the structure and function of ATP11C in a model natural lipid environment, we revisited and optimized a quick procedure for reconstituting ATP11C into Nanodiscs using methyl-β-cyclodextrin as a reagent for the detergent removal. ATP11C was efficiently reconstituted with the endogenous lipid, or the mixture of endogenous lipid and synthetic dioleoylphosphatidylcholine (DOPC)/dioleoylphosphatidylserine (DOPS), all of which retained the ATPase activity. We obtained 3.4 Å and 3.9 Å structures using single-particle cryo-electron microscopy (cryo-EM) of AlF- and BeF-stabilized ATP11C transport intermediates, respectively, in a bilayer containing DOPS. We show that the latter exhibited a distended inner membrane around ATP11C transmembrane helix 2, possibly reflecting the perturbation needed for phospholipid release to the lipid bilayer. Our structures of ATP11C in the lipid membrane indicate that the membrane boundary varies upon conformational changes of the enzyme and is no longer flat around the protein, a change that likely contributes to phospholipid translocation across the membrane leaflets.
Collapse
Affiliation(s)
- Hanayo Nakanishi
- Cellular and Structural Physiology Institute, Nagoya University, 464-8601, Japan
| | - Kenichi Hayashida
- Cellular and Structural Physiology Institute, Nagoya University, 464-8601, Japan
| | - Tomohiro Nishizawa
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi, Yokohama, 230-0045, Japan
| | - Atsunori Oshima
- Cellular and Structural Physiology Institute, Nagoya University, 464-8601, Japan; Graduate School of Pharmaceutical Sciences, Nagoya University, 464-8601, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazuhiro Abe
- Cellular and Structural Physiology Institute, Nagoya University, 464-8601, Japan; Graduate School of Pharmaceutical Sciences, Nagoya University, 464-8601, Japan.
| |
Collapse
|
71
|
Lewis AJO, Hegde RS. A unified evolutionary origin for the ubiquitous protein transporters SecY and YidC. BMC Biol 2021; 19:266. [PMID: 34911545 PMCID: PMC8675477 DOI: 10.1186/s12915-021-01171-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. RESULTS The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY's halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC's sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. CONCLUSIONS SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.
Collapse
Affiliation(s)
- Aaron J O Lewis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
72
|
Tomita A, Daiho T, Kusakizako T, Yamashita K, Ogasawara S, Murata T, Nishizawa T, Nureki O. Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2. Mol Cell 2021; 81:4799-4809.e5. [PMID: 34798056 DOI: 10.1016/j.molcel.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 01/11/2023]
Abstract
The cytoplasmic polyamine maintains cellular homeostasis by chelating toxic metal cations, regulating transcriptional activity, and protecting DNA. ATP13A2 was identified as a lysosomal polyamine exporter responsible for polyamine release into the cytosol, and its dysfunction is associated with Alzheimer's disease and other neural degradation diseases. ATP13A2 belongs to the P5 subfamily of the P-type ATPase family, but its mechanisms remain unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ATP13A2 under four different conditions, revealing the structural coupling between the polyamine binding and the dephosphorylation. Polyamine is bound at the luminal tunnel and recognized through numerous electrostatic and π-cation interactions, explaining its broad specificity. The unique N-terminal domain is anchored to the lipid membrane to stabilize the E2P conformation, thereby accelerating the E1P-to-E2P transition. These findings reveal the distinct mechanism of P5B ATPases, thereby paving the way for neuroprotective therapy by activating ATP13A2.
Collapse
Affiliation(s)
- Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Daiho
- Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
73
|
Keszei AF, Yip MC, Hsieh TC, Shao S. Structural insights into metazoan pretargeting GET complexes. Nat Struct Mol Biol 2021; 28:1029-1037. [PMID: 34887561 PMCID: PMC9477564 DOI: 10.1038/s41594-021-00690-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Close coordination between chaperones is essential for protein biosynthesis, including the delivery of tail-anchored (TA) proteins containing a single C-terminal transmembrane domain to the endoplasmic reticulum (ER) by the conserved GET pathway. For successful targeting, nascent TA proteins must be promptly chaperoned and loaded onto the cytosolic ATPase Get3 through a transfer reaction involving the chaperone SGTA and bridging factors Get4, Ubl4a and Bag6. Here, we report cryo-electron microscopy structures of metazoan pretargeting GET complexes at 3.3-3.6 Å. The structures reveal that Get3 helix 8 and the Get4 C terminus form a composite lid over the Get3 substrate-binding chamber that is opened by SGTA. Another interaction with Get4 prevents formation of Get3 helix 4, which links the substrate chamber and ATPase domain. Both interactions facilitate TA protein transfer from SGTA to Get3. Our findings show how the pretargeting complex primes Get3 for coordinated client loading and ER targeting.
Collapse
Affiliation(s)
- Alexander F.A. Keszei
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115
| | - Matthew C.J. Yip
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115
| | - Ta-Chien Hsieh
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, 240 Longwood Ave., Boston, MA 02115,Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Ave., Boston, MA 02115
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, MA, USA.
| |
Collapse
|
74
|
Tillinghast J, Drury S, Bowser D, Benn A, Lee KPK. Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2. Mol Cell 2021; 81:4650-4662.e4. [PMID: 34715014 DOI: 10.1016/j.molcel.2021.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022]
Abstract
Mutations in ATP13A2, also known as PARK9, cause a rare monogenic form of juvenile-onset Parkinson's disease named Kufor-Rakeb syndrome and other neurodegenerative diseases. ATP13A2 encodes a neuroprotective P5B P-type ATPase highly enriched in the brain that mediates selective import of spermine ions from lysosomes into the cytosol via an unknown mechanism. Here we present three structures of human ATP13A2 bound to an ATP analog or to spermine in the presence of phosphomimetics determined by cryoelectron microscopy. ATP13A2 autophosphorylation opens a lysosome luminal gate to reveal a narrow lumen access channel that holds a spermine ion in its entrance. ATP13A2's architecture suggests physical principles underlying selective polyamine transport and anticipates a "pump-channel" intermediate that could function as a counter-cation conduit to facilitate lysosome acidification. Our findings establish a firm foundation to understand ATP13A2 mutations associated with disease and bring us closer to realizing ATP13A2's potential in neuroprotective therapy.
Collapse
Affiliation(s)
- Jordan Tillinghast
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Sydney Drury
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Darren Bowser
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Alana Benn
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Kenneth Pak Kin Lee
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
75
|
Sim SI, von Bülow S, Hummer G, Park E. Structural basis of polyamine transport by human ATP13A2 (PARK9). Mol Cell 2021; 81:4635-4649.e8. [PMID: 34715013 DOI: 10.1016/j.molcel.2021.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/17/2021] [Accepted: 08/11/2021] [Indexed: 02/03/2023]
Abstract
Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.
Collapse
Affiliation(s)
- Sue Im Sim
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Sören von Bülow
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
76
|
Abstract
The maturation of chemical synthesis during the 20th century has elevated the discipline from a largely empirical into a rational science. This ability to purposefully craft matter at the molecular level has put chemists in a privileged position to contribute to progress in neighboring natural sciences. Recently, we have witnessed another major advance in the field in which chemists use chemical and biological "synthetic" methods together to alter the structures and properties of biological macromolecules in ways heretofore unimagined. This interdisciplinary approach to synthesis has even allowed us to expand upon the defining characteristics of living organisms at the molecular level. In this perspective, we present a case study for the successful addition of new chemistries to the fundamental processes of the central dogma of molecular biology, exemplified by the expansion of the genetic code.
Collapse
Affiliation(s)
- Christian S. Diercks
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- These authors contributed equally
| | - David A. Dik
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- These authors contributed equally
| | - Peter G. Schultz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Lead contact
| |
Collapse
|
77
|
Mateeva T, Klähn M, Rosta E. Structural Dynamics and Catalytic Mechanism of ATP13A2 (PARK9) from Simulations. J Phys Chem B 2021; 125:11835-11847. [PMID: 34676749 DOI: 10.1021/acs.jpcb.1c05337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ATP13A2 is a gene encoding a protein of the P5B subfamily of ATPases and is a PARK gene. Molecular defects of the gene are mainly associated with variations of Parkinson's disease (PD). Despite the established importance of the protein in regulating neuronal integrity, the three-dimensional structure of the protein currently remains unresolved crystallographically. We have modeled the structure and reactivity of the full-length protein in its E1-ATP state. Using molecular dynamics (MD), quantum cluster, and quantum mechanical/molecular mechanical (QM/MM) methods, we aimed at describing the main catalytic reaction, leading to the phosphorylation of Asp513. Our MD simulations suggest that two positively charged Mg2+ cations are present at the active site during the catalytic reaction, stabilizing a specific triphosphate binding mode. Using QM/MM calculations, we subsequently calculated the reaction profiles for the phosphoryl transfer step in the presence of one and two Mg2+ cations. The calculated barrier heights in both cases are found to be ∼12.5 and 7.5 kcal mol-1, respectively. We elucidated details of the catalytically competent ATP conformation and the binding mode of the second Mg2+ cofactor. We also examined the role of the conserved Arg686 and Lys859 catalytic residues. We observed that by significantly lowering the barrier height of the ATP cleavage reaction, Arg686 had major effect on the reaction. The removal of Arg686 increased the barrier height for the ATP cleavage by more than 5.0 kcal mol-1 while the removal of key electrostatic interactions created by Lys859 to the γ-phosphate and Asp513 destabilizes the reactant state. When missense mutations occur in close proximity to an active site residue, they can interfere with the barrier height of the reaction, which can halt the normal enzymatic rate of the protein. We also found large binding pockets in the full-length structure, including a transmembrane domain pocket, which is likely where the ATP13A2 cargo binds.
Collapse
Affiliation(s)
- Teodora Mateeva
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London SE1 1DB, U.K
| | - Marco Klähn
- Department of Materials Science and Chemistry, Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138 632, Singapore
| | - Edina Rosta
- Department of Chemistry, Faculty of Natural & Mathematical Sciences, King's College London, London SE1 1DB, U.K.,Department of Physics and Astronomy, Faculty of Maths & Physical Sciences, University College London, London WC1E 6BT, U.K
| |
Collapse
|
78
|
Chen X, Zhou M, Zhang S, Yin J, Zhang P, Xuan X, Wang P, Liu Z, Zhou B, Yang M. Cryo-EM structures and transport mechanism of human P5B type ATPase ATP13A2. Cell Discov 2021; 7:106. [PMID: 34728622 PMCID: PMC8564547 DOI: 10.1038/s41421-021-00334-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
Polyamines are important polycations that play critical roles in mammalian cells. ATP13A2 belongs to the orphan P5B adenosine triphosphatases (ATPase) family and has been established as a lysosomal polyamine exporter to maintain the normal function of lysosomes and mitochondria. Previous studies have reported that several human neurodegenerative disorders are related to mutations in the ATP13A2 gene. However, the transport mechanism of ATP13A2 in the lysosome remains unclear. Here, we report the cryo-electron microscopy (cryo-EM) structures of three distinct intermediates of the human ATP13A2, revealing key insights into the spermine (SPM) transport cycle in the lysosome. The transmembrane domain serves as a substrate binding site and the C-terminal domain is essential for protein stability and may play a regulatory role. These findings advance our understanding of the polyamine transport mechanism, the lipid-associated regulation, and the disease-associated mutants of ATP13A2.
Collapse
Affiliation(s)
- Xudong Chen
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Mingze Zhou
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jian Yin
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xujun Xuan
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, ShenZhen, Guangdong, China
| | - Peiyi Wang
- Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, Guangdong, China.
| | - Zhiqiang Liu
- Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Cryo-EM Facility Center, Southern University of Science & Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
79
|
Li T, Yang X, Feng Z, Nie W, Fang Z, Zou Y. P5A ATPase controls ER translocation of Wnt in neuronal migration. Cell Rep 2021; 37:109901. [PMID: 34706230 DOI: 10.1016/j.celrep.2021.109901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/09/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022] Open
Abstract
The Wnt family contains conserved secretory proteins required for developmental patterning and tissue homeostasis. However, how Wnt is targeted to the endoplasmic reticulum (ER) for processing and secretion remains poorly understood. Here, we report that CATP-8/P5A ATPase directs neuronal migration non-cell autonomously in Caenorhabditis elegans by regulating EGL-20/Wnt biogenesis. CATP-8 likely functions as a translocase to translocate nascent EGL-20/Wnt polypeptide into the ER by interacting with the highly hydrophobic core region of EGL-20 signal sequence. Such regulation of Wnt biogenesis by P5A ATPase is common in C. elegans and conserved in human cells. These findings describe the physiological roles of P5A ATPase in neural development and identify Wnt proteins as direct substrates of P5A ATPase for ER translocation.
Collapse
Affiliation(s)
- Tingting Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhigang Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wang Nie
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyu Fang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Zou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
80
|
Pleiotropic Effects of the P5-Type ATPase SpfA on Stress Response Networks Contribute to Virulence in the Pathogenic Mold Aspergillus fumigatus. mBio 2021; 12:e0273521. [PMID: 34663092 PMCID: PMC8524344 DOI: 10.1128/mbio.02735-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus fumigatus is a human-pathogenic mold that extracts nutrients from the environment or from host tissues by secreting hydrolytic enzymes. The ability of A. fumigatus to adjust secretion levels in proportion to demand relies on the assistance of the unfolded protein response (UPR), an adaptive stress response pathway that regulates the unique protein-folding environment of the endoplasmic reticulum (ER). The P5-type ATPase Spf1 has recently been implicated in a novel mechanism of ER homeostasis that involves correcting errors in ER-membrane protein targeting. However, the contribution of this protein to the biology of A. fumigatus is unknown. Here, we employed a gene knockout and RNA sequencing strategy to determine the functional role of the A. fumigatus gene coding for the orthologous P5 ATPase SpfA. The data reveal that the spfA gene is induced by ER stress in a UPR-dependent manner. In the absence of spfA, the A. fumigatus transcriptome shifts toward a profile of altered redox and lipid balance, in addition to a signature of ER stress that includes srcA, encoding a second P-type ATPase in the ER. A ΔspfA deletion mutant showed increased sensitivity to ER stress, oxidative stress, and antifungal drugs that target the cell wall or plasma membrane. The combined loss of spfA and srcA exacerbated these phenotypes and attenuated virulence in two animal infection models. These findings demonstrate that the ER-resident ATPases SpfA and SrcA act jointly to support diverse adaptive functions of the ER that are necessary for fitness in the host environment. IMPORTANCE The fungal UPR is an adaptive signaling pathway in the ER that buffers fluctuations in ER stress but also serves as a virulence regulatory hub in species of pathogenic fungi that rely on secretory pathway homeostasis for pathogenicity. This study demonstrates that the gene encoding the ER-localized P5-type ATPase SpfA is a downstream target of the UPR in the pathogenic mold A. fumigatus and that it works together with a second ER-localized P-type ATPase, SrcA, to support ER homeostasis, oxidative stress resistance, susceptibility to antifungal drugs, and virulence of A. fumigatus.
Collapse
|
81
|
Bai L, Jain BK, You Q, Duan HD, Takar M, Graham TR, Li H. Structural basis of the P4B ATPase lipid flippase activity. Nat Commun 2021; 12:5963. [PMID: 34645814 PMCID: PMC8514546 DOI: 10.1038/s41467-021-26273-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
P4 ATPases are lipid flippases that are phylogenetically grouped into P4A, P4B and P4C clades. The P4A ATPases are heterodimers composed of a catalytic α-subunit and accessory β-subunit, and the structures of several heterodimeric flippases have been reported. The S. cerevisiae Neo1 and its orthologs represent the P4B ATPases, which function as monomeric flippases without a β-subunit. It has been unclear whether monomeric flippases retain the architecture and transport mechanism of the dimeric flippases. Here we report the structure of a P4B ATPase, Neo1, in its E1-ATP, E2P-transition, and E2P states. The structure reveals a conserved architecture as well as highly similar functional intermediate states relative to dimeric flippases. Consistently, structure-guided mutagenesis of residues in the proposed substrate translocation path disrupted Neo1’s ability to establish membrane asymmetry. These observations indicate that evolutionarily distant P4 ATPases use a structurally conserved mechanism for substrate transport. The P4 ATPase lipid flippases play a crucial role in membrane biogenesis. Here the authors report the structure of the monomeric P4B ATPase Neo1 in several states, clarifying the mechanism of substrate transport.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China.
| | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Qinglong You
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - H Diessel Duan
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Mehmet Takar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
82
|
Koch C, Schuldiner M, Herrmann JM. ER-SURF: Riding the Endoplasmic Reticulum Surface to Mitochondria. Int J Mol Sci 2021; 22:9655. [PMID: 34502567 PMCID: PMC8432098 DOI: 10.3390/ijms22179655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023] Open
Abstract
Most mitochondrial proteins are synthesized in the cytosol and targeted to the mitochondrial surface in a post-translational manner. The surface of the endoplasmic reticulum (ER) plays an active role in this targeting reaction. ER-associated chaperones interact with certain mitochondrial membrane protein precursors and transfer them onto receptor proteins of the mitochondrial surface in a process termed ER-SURF. ATP-driven proteins in the membranes of mitochondria (Msp1, ATAD1) and the ER (Spf1, P5A-ATPase) serve as extractors for the removal of mislocalized proteins. If the re-routing to mitochondria fails, precursors can be degraded by ER or mitochondria-associated degradation (ERAD or MAD respectively) in a proteasome-mediated reaction. This review summarizes the current knowledge about the cooperation of the ER and mitochondria in the targeting and quality control of mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | | |
Collapse
|
83
|
Lamy A, Macarini-Bruzaferro E, Dieudonné T, Perálvarez-Marín A, Lenoir G, Montigny C, le Maire M, Vázquez-Ibar JL. ATP2, The essential P4-ATPase of malaria parasites, catalyzes lipid-stimulated ATP hydrolysis in complex with a Cdc50 β-subunit. Emerg Microbes Infect 2021; 10:132-147. [PMID: 33372863 PMCID: PMC7832587 DOI: 10.1080/22221751.2020.1870413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gene targeting approaches have demonstrated the essential role for the malaria parasite of membrane transport proteins involved in lipid transport and in the maintenance of membrane lipid asymmetry, representing emerging oportunites for therapeutical intervention. This is the case of ATP2, a Plasmodium-encoded 4 P-type ATPase (P4-ATPase or lipid flippase), whose activity is completely irreplaceable during the asexual stages of the parasite. Moreover, a recent chemogenomic study has situated ATP2 as the possible target of two antimalarial drug candidates. In eukaryotes, P4-ATPases assure the asymmetric phospholipid distribution in membranes by translocating phospholipids from the outer to the inner leaflet. In this work, we have used a recombinantly-produced P. chabaudi ATP2 (PcATP2), to gain insights into the function and structural organization of this essential transporter. Our work demonstrates that PcATP2 associates with two of the three Plasmodium-encoded Cdc50 proteins: PcCdc50B and PcCdc50A. Purified PcATP2/PcCdc50B complex displays ATPase activity in the presence of either phosphatidylserine or phosphatidylethanolamine. In addition, this activity is upregulated by phosphatidylinositol 4-phosphate. Overall, our work describes the first biochemical characterization of a Plasmodium lipid flippase, a first step towards the understanding of the essential physiological role of this transporter and towards its validation as a potential antimalarial drug target.
Collapse
Affiliation(s)
- Anaïs Lamy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Ewerton Macarini-Bruzaferro
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,Department of Clinical Medicine (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Thibaud Dieudonné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.,DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Alex Perálvarez-Marín
- Biophysics Unit, Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Cédric Montigny
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marc le Maire
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - José Luis Vázquez-Ibar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
84
|
Phillips BP, Miller EA. Membrane protein folding and quality control. Curr Opin Struct Biol 2021; 69:50-54. [PMID: 33857720 PMCID: PMC8422161 DOI: 10.1016/j.sbi.2021.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins account for a quarter of cellular proteins, and most are synthesised at the endoplasmic reticulum (ER). Insertion and folding of polypeptides in the membrane environment is prone to error, necessitating diverse quality control systems. Recent discoveries have demonstrated how forces act on the nascent chain during insertion, and revealed new translocon components and accessories that facilitate the correct biogenesis of substrates. Our understanding of one of the best studied quality control systems-ER-associated degradation-has been advanced through new structural and functional studies of the core Hrd1 complex, and through the discovery of a new branch of this degradative pathway. New data also reveal how cells resolve clogged translocons, which would otherwise be unable to function. Finally, new work elucidates how mitochondrial tail-anchored proteins that have been mistargeted to the ER are identified and destroyed. Overall, we describe an emerging picture of an increasingly complex quality control network.
Collapse
Affiliation(s)
- Ben P Phillips
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Elizabeth A Miller
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
85
|
Farkas Á, Bohnsack KE. Capture and delivery of tail-anchored proteins to the endoplasmic reticulum. J Cell Biol 2021; 220:212470. [PMID: 34264263 PMCID: PMC8287540 DOI: 10.1083/jcb.202105004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Tail-anchored (TA) proteins fulfill diverse cellular functions within different organellar membranes. Their characteristic C-terminal transmembrane segment renders TA proteins inherently prone to aggregation and necessitates their posttranslational targeting. The guided entry of TA proteins (GET in yeast)/transmembrane recognition complex (TRC in humans) pathway represents a major route for TA proteins to the endoplasmic reticulum (ER). Here, we review important new insights into the capture of nascent TA proteins at the ribosome by the GET pathway pretargeting complex and the mechanism of their delivery into the ER membrane by the GET receptor insertase. Interestingly, several alternative routes by which TA proteins can be targeted to the ER have emerged, raising intriguing questions about how selectivity is achieved during TA protein capture. Furthermore, mistargeting of TA proteins is a fundamental cellular problem, and we discuss the recently discovered quality control machineries in the ER and outer mitochondrial membrane for displacing mislocalized TA proteins.
Collapse
Affiliation(s)
- Ákos Farkas
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
86
|
Tang LTH, Trivedi M, Freund J, Salazar CJ, Rahman M, Ramirez-Suarez NJ, Lee G, Wang Y, Grant BD, Bülow HE. The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genet 2021; 17:e1009475. [PMID: 34197450 PMCID: PMC8279360 DOI: 10.1371/journal.pgen.1009475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022] Open
Abstract
The assembly of neuronal circuits involves the migrations of neurons from their place of birth to their final location in the nervous system, as well as the coordinated growth and patterning of axons and dendrites. In screens for genes required for patterning of the nervous system, we identified the catp-8/P5A-ATPase as an important regulator of neural patterning. P5A-ATPases are part of the P-type ATPases, a family of proteins known to serve a conserved function as transporters of ions, lipids and polyamines in unicellular eukaryotes, plants, and humans. While the function of many P-type ATPases is relatively well understood, the function of P5A-ATPases in metazoans remained elusive. We show here, that the Caenorhabditis elegans ortholog catp-8/P5A-ATPase is required for defined aspects of nervous system development. Specifically, the catp-8/P5A-ATPase serves functions in shaping the elaborately sculpted dendritic trees of somatosensory PVD neurons. Moreover, catp-8/P5A-ATPase is required for axonal guidance and repulsion at the midline, as well as embryonic and postembryonic neuronal migrations. Interestingly, not all axons at the midline require catp-8/P5A-ATPase, although the axons run in the same fascicles and navigate the same space. Similarly, not all neuronal migrations require catp-8/P5A-ATPase. A CATP-8/P5A-ATPase reporter is localized to the ER in most, if not all, tissues and catp-8/P5A-ATPase can function both cell-autonomously and non-autonomously to regulate neuronal development. Genetic analyses establish that catp-8/P5A-ATPase can function in multiple pathways, including the Menorin pathway, previously shown to control dendritic patterning in PVD, and Wnt signaling, which functions to control neuronal migrations. Lastly, we show that catp-8/P5A-ATPase is required for localizing select transmembrane proteins necessary for dendrite morphogenesis. Collectively, our studies suggest that catp-8/P5A-ATPase serves diverse, yet specific, roles in different genetic pathways and may be involved in the regulation or localization of transmembrane and secreted proteins to specific subcellular compartments.
Collapse
Affiliation(s)
- Leo T. H. Tang
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meera Trivedi
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jenna Freund
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Christopher J. Salazar
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Maisha Rahman
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nelson J. Ramirez-Suarez
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Garrett Lee
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yu Wang
- Department of Molecular Biology & Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barth D. Grant
- Department of Molecular Biology & Biochemistry, Rutgers Center for Lipid Research, Rutgers University, Piscataway, New Jersey, United States of America
| | - Hannes E. Bülow
- Department of Genetics Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
87
|
Abstract
In human cells, P5B-ATPases execute the active export of physiologically important polyamines such as spermine from lysosomes to the cytosol, a function linked to a palette of disorders. Yet, the overall shape of P5B-ATPases and the mechanisms of polyamine recognition, uptake and transport remain elusive. Here we describe a series of cryo-electron microscopy structures of a yeast homolog of human ATP13A2-5, Ypk9, determined at resolutions reaching 3.4 Å, and depicting three separate transport cycle intermediates, including spermine-bound conformations. Surprisingly, in the absence of cargo, Ypk9 rests in a phosphorylated conformation auto-inhibited by the N-terminus. Spermine uptake is accomplished through an electronegative cleft lined by transmembrane segments 2, 4 and 6. Despite the dramatically different nature of the transported cargo, these findings pinpoint shared principles of transport and regulation among the evolutionary related P4-, P5A- and P5B-ATPases. The data also provide a framework for analysis of associated maladies, such as Parkinson’s disease. In human cells, P5B‐ATPases execute export of spermine from lysosomes to the cytosol, but the mechanisms of spermine recognition, uptake and transport remain elusive. Here the authors present cryo‐EM structures of a yeast homolog of human ATP13A2‐5, Ypk9, which depict three separate transport cycle intermediates, including spermine‐bound conformations
Collapse
|
88
|
Dederer V, Lemberg MK. Transmembrane dislocases: a second chance for protein targeting. Trends Cell Biol 2021; 31:898-911. [PMID: 34147299 DOI: 10.1016/j.tcb.2021.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022]
Abstract
Precise distribution of proteins is essential to sustain the viability of cells. A complex network of protein synthesis and targeting factors cooperate with protein quality control systems to ensure protein homeostasis. Defective proteins are inevitably degraded by the ubiquitin-proteasome system and lysosomes. However, due to overlapping targeting information and limited targeting fidelity, certain proteins become mislocalized. In this review, we present the idea that transmembrane dislocases recognize and remove mislocalized membrane proteins from cellular organelles. This enables other targeting attempts and prevents degradation of mislocalized but otherwise functional proteins. These transmembrane dislocases can be found in the outer mitochondrial membrane (OMM) and endoplasmic reticulum (ER). We highlight common principles regarding client recognition and outline open questions in our understanding of transmembrane dislocases.
Collapse
Affiliation(s)
- Verena Dederer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Current address: Institute for Pharmaceutical Biology and Buchmann Institute for Molecular Life Science, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
89
|
Lemberg MK, Strisovsky K. Maintenance of organellar protein homeostasis by ER-associated degradation and related mechanisms. Mol Cell 2021; 81:2507-2519. [PMID: 34107306 DOI: 10.1016/j.molcel.2021.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Protein homeostasis mechanisms are fundamentally important to match cellular needs and to counteract stress conditions. A fundamental challenge is to understand how defective proteins are recognized and extracted from cellular organelles to be degraded in the cytoplasm. The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway is the best-understood organellar protein quality control system. Here, we review new insights into the mechanism of recognition and retrotranslocation of client proteins in ERAD. In addition to the membrane-integral ERAD E3 ubiquitin ligases, we highlight one protein family that is remarkably often involved in various aspects of membrane protein quality control and protein dislocation: the rhomboid superfamily, which includes derlins and intramembrane serine proteases. Rhomboid-like proteins have been found to control protein homeostasis in the ER, but also in other eukaryotic organelles and in bacteria, pointing toward conserved principles of membrane protein quality control across organelles and evolution.
Collapse
Affiliation(s)
- Marius K Lemberg
- Center for Molecular Biology of Heidelberg University (ZMBH), Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany.
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czechia.
| |
Collapse
|
90
|
Grenon P, Corradi GR, Petrovich GD, Mazzitelli LR, Adamo HP. The Spf1p P5A-ATPase "arm-like" domain is not essential for ATP hydrolysis but its deletion impairs autophosphorylation. Biochem Biophys Res Commun 2021; 563:113-118. [PMID: 34087682 DOI: 10.1016/j.bbrc.2021.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The yeast Spf1p P5A-ATPase actively translocates membrane spanning peptides of mislocalized proteins from the endoplasmic reticulum. Loss of Spf1p function causes a pleiotropic ER stress-phenotype associated with alterations of homeostasis of metal ions, lipids, protein folding, glycosylation, and membrane insertion. A unique characteristic of P5A-ATPases is the presence of an extended insertion which was called the "arm-like" domain connecting the phosphorylation domain (P) with transmembrane segment M5 near the peptidyl-substrate binding pocket. Here we have constructed and characterized a Δarm mutant of Spf1p lacking a segment of 117 amino acids of the "arm-like" domain. The Δarm mutant was capable of hydrolyzing ATP at maximal rates of 50% of that of the wild type enzyme. With the non-nucleotide substrate analog pNPP, the hydrolytic activity of the mutant dropped to 10%. The mutant showed an apparent affinity for ATP similar to the wild type. When incubated with ATP the Δarm mutant produced a lower level of the catalytic phosphoenzyme in amounts proportionate to the ATPase activity. These results indicate that the "arm-like" domain is not essential for hydrolytic activity and suggest that it is needed for the stabilization of Spf1p in a phosphorylation-ready conformation.
Collapse
Affiliation(s)
- Paula Grenon
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Gerardo R Corradi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Guido D Petrovich
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Luciana R Mazzitelli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Hugo P Adamo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
91
|
Structural Basis of Substrate-Independent Phosphorylation in a P4-ATPase Lipid Flippase. J Mol Biol 2021; 433:167062. [PMID: 34023399 DOI: 10.1016/j.jmb.2021.167062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022]
Abstract
P4-ATPases define a eukaryotic subfamily of the P-type ATPases, and are responsible for the transverse flip of specific lipids from the extracellular or luminal leaflet to the cytosolic leaflet of cell membranes. The enzymatic cycle of P-type ATPases is divided into autophosphorylation and dephosphorylation half-reactions. Unlike most other P-type ATPases, P4-ATPases transport their substrate during dephosphorylation only, i.e. the phosphorylation half-reaction is not associated with transport. To study the structural basis of the distinct mechanisms of P4-ATPases, we have determined cryo-EM structures of Drs2p-Cdc50p from Saccharomyces cerevisiae covering multiple intermediates of the cycle. We identify several structural motifs specific to Drs2p and P4-ATPases in general that decrease movements and flexibility of domains as compared to other P-type ATPases such as Na+/K+-ATPase or Ca2+-ATPase. These motifs include the linkers that connect the transmembrane region to the actuator (A) domain, which is responsible for dephosphorylation. Additionally, mutation of Tyr380, which interacts with conserved Asp340 of the distinct DGET dephosphorylation loop of P4-ATPases, highlights a functional role of these P4-ATPase specific motifs in the A-domain. Finally, the transmembrane (TM) domain, responsible for transport, also undergoes less extensive conformational changes, which is ensured both by a longer segment connecting TM helix 4 with the phosphorylation site, and possible stabilization by the auxiliary subunit Cdc50p. Collectively these adaptions in P4-ATPases are responsible for phosphorylation becoming transport-independent.
Collapse
|
92
|
López-Marqués RL, Davis JA, Harper JF, Palmgren M. Dynamic membranes: the multiple roles of P4 and P5 ATPases. PLANT PHYSIOLOGY 2021; 185:619-631. [PMID: 33822217 PMCID: PMC8133672 DOI: 10.1093/plphys/kiaa065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/24/2020] [Indexed: 05/31/2023]
Abstract
The lipid bilayer of biological membranes has a complex composition, including high chemical heterogeneity, the presence of nanodomains of specific lipids, and asymmetry with respect to lipid composition between the two membrane leaflets. In membrane trafficking, membrane vesicles constantly bud off from one membrane compartment and fuse with another, and both budding and fusion events have been proposed to require membrane lipid asymmetry. One mechanism for generating asymmetry in lipid bilayers involves the action of the P4 ATPase family of lipid flippases; these are biological pumps that use ATP as an energy source to flip lipids from one leaflet to the other. The model plant Arabidopsis (Arabidopsis thaliana) contains 12 P4 ATPases (AMINOPHOSPHOLIPID ATPASE1-12; ALA1-12), many of which are functionally redundant. Studies of P4 ATPase mutants have confirmed the essential physiological functions of these pumps and pleiotropic mutant phenotypes have been observed, as expected when genes required for basal cellular functions are disrupted. For instance, phenotypes associated with ala3 (dwarfism, pollen defects, sensitivity to pathogens and cold, and reduced polar cell growth) can be related to membrane trafficking problems. P5 ATPases are evolutionarily related to P4 ATPases, and may be the counterpart of P4 ATPases in the endoplasmic reticulum. The absence of P4 and P5 ATPases from prokaryotes and their ubiquitous presence in eukaryotes make these biological pumps a defining feature of eukaryotic cells. Here, we review recent advances in the field of plant P4 and P5 ATPases.
Collapse
Affiliation(s)
- Rosa L López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - James A Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
93
|
Laborenz J, Bykov YS, Knöringer K, Räschle M, Filker S, Prescianotto-Baschong C, Spang A, Tatsuta T, Langer T, Storchová Z, Schuldiner M, Herrmann JM. The ER protein Ema19 facilitates the degradation of nonimported mitochondrial precursor proteins. Mol Biol Cell 2021; 32:664-674. [PMID: 33596095 PMCID: PMC8108515 DOI: 10.1091/mbc.e20-11-0748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
For the biogenesis of mitochondria, hundreds of proteins need to be targeted from the cytosol into the various compartments of this organelle. The intramitochondrial targeting routes these proteins take to reach their respective location in the organelle are well understood. However, the early targeting processes, from cytosolic ribosomes to the membrane of the organelle, are still largely unknown. In this study, we present evidence that an integral membrane protein of the endoplasmic reticulum (ER), Ema19, plays a role in this process. Mutants lacking Ema19 show an increased stability of mitochondrial precursor proteins, indicating that Ema19 promotes the proteolytic degradation of nonproductive precursors. The deletion of Ema19 improves the growth of respiration-deficient cells, suggesting that Ema19-mediated degradation can compete with productive protein import into mitochondria. Ema19 is the yeast representative of a conserved protein family. The human Ema19 homologue is known as sigma 2 receptor or TMEM97. Though its molecular function is not known, previous studies suggested a role of the sigma 2 receptor as a quality control factor in the ER, compatible with our observations about Ema19. More globally, our data provide an additional demonstration of the important role of the ER in mitochondrial protein targeting.
Collapse
Affiliation(s)
- Janina Laborenz
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Yury S Bykov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sabine Filker
- Molecular Ecology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | | |
Collapse
|
94
|
Petrovich GD, Corradi GR, Pavan CH, Noli Truant S, Adamo HP. Highly exposed segment of the Spf1p P5A-ATPase near transmembrane M5 detected by limited proteolysis. PLoS One 2021; 16:e0245679. [PMID: 33507968 PMCID: PMC7842927 DOI: 10.1371/journal.pone.0245679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022] Open
Abstract
The yeast Spf1p protein is a primary transporter that belongs to group 5 of the large family of P-ATPases. Loss of Spf1p function produces ER stress with alterations of metal ion and sterol homeostasis and protein folding, glycosylation and membrane insertion. The amino acid sequence of Spf1p shows the characteristic P-ATPase domains A, N, and P and the transmembrane segments M1-M10. In addition, Spf1p exhibits unique structures at its N-terminus (N-T region), including two putative additional transmembrane domains, and a large insertion connecting the P domain with transmembrane segment M5 (D region). Here we used limited proteolysis to examine the structure of Spf1p. A short exposure of Spf1p to trypsin or proteinase K resulted in the cleavage at the N and C terminal regions of the protein and abrogated the formation of the catalytic phosphoenzyme and the ATPase activity. In contrast, limited proteolysis of Spf1p with chymotrypsin generated a large N-terminal fragment containing most of the M4-M5 cytosolic loop, and a minor fragment containing the C-terminal region. If lipids were present during chymotryptic proteolysis, phosphoenzyme formation and ATPase activity were preserved. ATP slowed Spf1p proteolysis without detectable changes of the generated fragments. The analysis of the proteolytic peptides by mass spectrometry and Edman degradation indicated that the preferential chymotryptic site was localized near the cytosolic end of M5. The susceptibility to proteolysis suggests an unexpected exposure of this region of Spf1p that may be an intrinsic feature of P5A-ATPases.
Collapse
Affiliation(s)
- Guido D. Petrovich
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo R. Corradi
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos H. Pavan
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia Noli Truant
- Facultad de Farmacia y Bioquímica, Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral Prof. Dr. Ricardo A. Margni (IDEHU), UBA-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hugo P. Adamo
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
95
|
Dabravolski SA, Isayenkov SV. Evolution of Plant Na +-P-Type ATPases: From Saline Environments to Land Colonization. PLANTS 2021; 10:plants10020221. [PMID: 33498844 PMCID: PMC7911474 DOI: 10.3390/plants10020221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/17/2022]
Abstract
Soil salinity is one of the major factors obstructing the growth and development of agricultural crops. Eukaryotes have two main transport systems involved in active Na+ removal: cation/H+ antiporters and Na+-P-type ATPases. Key transport proteins, Na+/K+-P-ATPases, are widely distributed among the different taxa families of pumps which are responsible for keeping cytosolic Na+ concentrations below toxic levels. Na+/K+-P-ATPases are considered to be absent in flowering plants. The data presented here are a complete inventory of P-type Na+/K+-P-ATPases in the major branches of the plant kingdom. We also attempt to elucidate the evolution of these important membrane pumps in plants in comparison with other organisms. We were able to observe the gradual replacement of the Na+-binding site to the Ca2+-binding site, starting with cyanobacteria and moving to modern land plants. Our results show that the α-subunit likely evolved from one common ancestor to bacteria, fungi, plants, and mammals, whereas the β-subunit did not evolve in green algae. In conclusion, our results strongly suggest the significant differences in the domain architecture and subunit composition of plant Na+/K+-P-ATPases depending on plant taxa and the salinity of the environment. The obtained data clarified and broadened the current views on the evolution of Na+/K+-P-ATPases. The results of this work would be helpful for further research on P-type ATPase functionality and physiological roles.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 21002 Vitebsk, Belarus;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, 04123 Kyiv, Ukraine
- Correspondence: author:
| |
Collapse
|
96
|
Xiao T, Shakya VP, Hughes AL. ER targeting of non-imported mitochondrial carrier proteins is dependent on the GET pathway. Life Sci Alliance 2021; 4:4/3/e202000918. [PMID: 33479049 PMCID: PMC7898604 DOI: 10.26508/lsa.202000918] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 12/24/2022] Open
Abstract
The GET pathway is required to target non-imported mitochondrial carrier proteins to the endoplasmic reticulum, which prevents their deposition into Hsp42-dependent protein foci. Deficiencies in mitochondrial import cause the toxic accumulation of non-imported mitochondrial precursor proteins. Numerous fates for non-imported mitochondrial precursors have been identified in budding yeast, including proteasomal destruction, deposition into protein aggregates, and mistargeting to other organelles. Amongst organelles, the ER has emerged as a key destination for a subset of non-imported mitochondrial proteins. However, how ER targeting of various types of mitochondrial proteins is achieved remains incompletely understood. Here, we show that the ER delivery of endogenous mitochondrial transmembrane proteins, especially those belonging to the SLC25A mitochondrial carrier family, is dependent on the guided entry of tail-anchored proteins (GET) complex. Without a functional GET pathway, non-imported mitochondrial proteins destined for the ER are alternatively sequestered into Hsp42-dependent protein foci. Loss of the GET pathway is detrimental to yeast cells experiencing mitochondrial import failure and prevents re-import of mitochondrial proteins from the ER via the ER-SURF pathway. Overall, this study outlines an important role for the GET complex in ER targeting of non-imported mitochondrial carrier proteins.
Collapse
Affiliation(s)
- Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Viplendra Ps Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
97
|
Qin Q, Zhao T, Zou W, Shen K, Wang X. An Endoplasmic Reticulum ATPase Safeguards Endoplasmic Reticulum Identity by Removing Ectopically Localized Mitochondrial Proteins. Cell Rep 2020; 33:108363. [DOI: 10.1016/j.celrep.2020.108363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/05/2020] [Accepted: 10/19/2020] [Indexed: 11/29/2022] Open
|