51
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
52
|
Gao TT, Lu HX, Gao PC, Li BJ. Enantioselective synthesis of tertiary boronic esters through catalytic asymmetric reversed hydroboration. Nat Commun 2021; 12:3776. [PMID: 34145273 PMCID: PMC8213697 DOI: 10.1038/s41467-021-24012-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
Chiral tertiary boronic esters are important precursors to bioactive compounds and versatile synthetic intermediates to molecules containing quaternary stereocenters. The development of conjugate boryl addition to α,β-unsaturated amide has been hampered by the intrinsic low electrophilicity of the amide group. Here we show the catalytic asymmetric synthesis of enantioenriched tertiary boronic esters through hydroboration of β,β-disubstituted α,β-unsaturated amides. The Rh-catalyzed hydroboration occurs with previously unattainable selectivity to provide tertiary boronic esters in high enantioselectivity. This strategy opens a door for the hydroboration of inert Michael acceptors with high stereocontrol and may provide future applications in the synthesis of biologically active molecules.
Collapse
Affiliation(s)
- Tao-Tao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Hou-Xiang Lu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Peng-Chao Gao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, China.
| |
Collapse
|
53
|
Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. C–H activation. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00041-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
54
|
Zhu XQ, Hong P, Zheng YX, Zhen YY, Hong FL, Lu X, Ye LW. Copper-catalyzed asymmetric cyclization of alkenyl diynes: method development and new mechanistic insights. Chem Sci 2021; 12:9466-9474. [PMID: 34349921 PMCID: PMC8278876 DOI: 10.1039/d1sc02773e] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Metal carbenes have proven to be one of the most important and useful intermediates in organic synthesis, but catalytic asymmetric reactions involving metal carbenes are still scarce and remain a challenge. Particularly, the mechanistic pathway and chiral induction model in these asymmetric transformations are far from clear. Described herein is a copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization, which constitutes the first asymmetric vinylic C(sp2)–H functionalization through cyclopentannulation. Significantly, based on extensive mechanistic studies including control experiments and theoretical calculations, a revised mechanism involving a novel type of endocyclic copper carbene via remote-stereocontrol is proposed, thus providing new mechanistic insight into the copper-catalyzed asymmetric diyne cyclization and representing a new chiral control pattern in asymmetric catalysis based on remote-stereocontrol and vinyl cations. This method enables the practical and atom-economical construction of an array of valuable chiral polycyclic-pyrroles in high yields and enantioselectivities. A copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization is reported, enabling the construction of various valuable chiral polycyclic-pyrroles in high yields and enantioselectivities.![]()
Collapse
Affiliation(s)
- Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yan-Xin Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ying-Ying Zhen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Feng-Lin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
55
|
Song P, Hu L, Yu T, Jiao J, He Y, Xu L, Li P. Development of a Tunable Chiral Pyridine Ligand Unit for Enantioselective Iridium-Catalyzed C–H Borylation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01671] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Peidong Song
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Linlin Hu
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jiao Jiao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yangqing He
- Department of Applied Chemistry, Xi’an University of Technology, Xi’an 710048, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
56
|
Yang X, Jiang MX, Zhou T, Han YQ, Xu XT, Zhang K, Shi BF. Pd(II)-Catalyzed enantioselective arylation of unbiased methylene C(sp 3)-H bonds enabled by a 3,3'-F 2-BINOL ligand. Chem Commun (Camb) 2021; 57:5562-5565. [PMID: 33969855 DOI: 10.1039/d1cc01690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Palladium-catalyzed asymmetric functionalization of unbiased methylene C(sp3)-H bonds is a long-standing challenge. Here, we report a Pd(ii)-catalyzed highly enantioselective arylation of unbiased methylene C(sp3)-H bonds enabled by a strongly coordinating bidentate 2-pyridinylisopropyl (PIP) directing group and an easily accessible 3,3'-F2-BINOL chiral ligand. The use of aryl iodides with the combination of 3,3'-F2-BINOL was beneficial for high enantiocontrol. A range of aliphatic amides and aryl iodides were tolerated, providing the desired arylated products in high enantioselectivities (up to 96% ee). The PIP directing group could be removed under mild conditions without erosion of enantiopurity.
Collapse
Affiliation(s)
- Xu Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Meng-Xue Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Tao Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Ye-Qiang Han
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China. and College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
57
|
Chen XY, Chen H, Đorđević L, Guo QH, Wu H, Wang Y, Zhang L, Jiao Y, Cai K, Chen H, Stern CL, Stupp SI, Snurr RQ, Shen D, Stoddart JF. Selective Photodimerization in a Cyclodextrin Metal-Organic Framework. J Am Chem Soc 2021; 143:9129-9139. [PMID: 34080831 DOI: 10.1021/jacs.1c03277] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
For the most part, enzymes contain one active site wherein they catalyze in a serial manner chemical reactions between substrates both efficiently and rapidly. Imagine if a situation could be created within a chiral porous crystal containing trillions of active sites where substrates can reside in vast numbers before being converted in parallel into products. Here, we report how it is possible to incorporate 1-anthracenecarboxylate (1-AC-) as a substrate into a γ-cyclodextrin-containing metal-organic framework (CD-MOF-1), where the metals are K+ cations, prior to carrying out [4+4] photodimerizations between pairs of substrate molecules, affording selectively one of four possible regioisomers. One of the high-yielding regioisomers exhibits optical activity as a result of the presence of an 8:1 ratio of the two enantiomers following separation by high-performance liquid chromatography. The solid-state superstructure of 1-anthracenecarboxylate potassium salt (1-ACK), which is co-crystallized with γ-cyclodextrin, reveals that pairs of substrate molecules are not only packed inside tunnels between spherical cavities present in CD-MOF-1, but also stabilized-in addition to hydrogen-bonding to the C-2 and C-3 hydroxyl groups on the d-glucopyranosyl residues present in the γ-cyclodextrin tori-by combinations of hydrophobic and electrostatic interactions between the carboxyl groups in 1-AC- and four K+ cations on the waistline between the two γ-cyclodextrin tori in the tunnels. These non-covalent bonding interactions result in preferred co-conformations that account for the highly regio- and enantioselective [4+4] cycloaddition during photoirradiation. Theoretical calculations, in conjunction with crystallography, support the regio- and stereochemical outcome of the photodimerization.
Collapse
Affiliation(s)
- Xiao-Yang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Luka Đorđević
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Qing-Hui Guo
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yu Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yang Jiao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kang Cai
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Hongliang Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Bio-inspired Energy Science, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 676 North St. Clair Street, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| | - Randall Q Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|
58
|
Wang X, Cui P, Xia C, Wu L. Catalytic Boration of Alkyl Halides with Borane without Hydrodehalogenation Enabled by Titanium Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penglei Cui
- College of Science Hebei Agricultural University Baoding 071001 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
59
|
Maeda S, Harabuchi Y. Exploring paths of chemical transformations in molecular and periodic systems: An approach utilizing force. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science Hokkaido University Sapporo Hokkaido Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Sapporo Hokkaido Japan
- National Institute for Materials Science (NIMS) Research and Services Division of Materials Data and Integrated System (MaDIS) Tsukuba Ibaraki Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI‐ICReDD), Hokkaido University Sapporo Hokkaido Japan
- Department of Chemistry, Faculty of Science Hokkaido University Sapporo Hokkaido Japan
- JST, ERATO Maeda Artificial Intelligence for Chemical Reaction Design and Discovery Project Sapporo Hokkaido Japan
| |
Collapse
|
60
|
Trouvé J, Zardi P, Al‐Shehimy S, Roisnel T, Gramage‐Doria R. Enzyme‐like Supramolecular Iridium Catalysis Enabling C−H Bond Borylation of Pyridines with
meta
‐Selectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Paolo Zardi
- Univ Rennes CNRS, ISCR-UMR6226 35000 Rennes France
| | | | | | | |
Collapse
|
61
|
Wang X, Cui P, Xia C, Wu L. Catalytic Boration of Alkyl Halides with Borane without Hydrodehalogenation Enabled by Titanium Catalyst. Angew Chem Int Ed Engl 2021; 60:12298-12303. [DOI: 10.1002/anie.202100569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penglei Cui
- College of Science Hebei Agricultural University Baoding 071001 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
62
|
Zhou L, Wei S, Lei Z, Zhu G, Zhang Z. Transition-Metal-Free α Csp 3 -H Cyanation of Sulfonamides. Chemistry 2021; 27:7103-7107. [PMID: 33769613 DOI: 10.1002/chem.202100902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Indexed: 12/18/2022]
Abstract
This report describes the site-selective α-functionalization of sulfonylamide derivatives through the in-situ generation of imine intermediates. The N-F sulfonylamides, which could facilitate the elimination to generate imines, are coupled with TBACN to efficiently and mildly afford α-amino cyanides. Comparing with Strecker reaction, this transformation offers a complementary strategy to efficiently construct α-amino cyanides from direct α C-H functionalization of sulfonylamindes. The reaction is also characterized by broad substrate scope and flash chromatography column free workup. More importantly, the new two-electron pathway to generate imines through manipulation of the leaving group allows us to achieve excellent α site-selectivity.
Collapse
Affiliation(s)
- Liejin Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Siqi Wei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Ziran Lei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Zuxiao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
63
|
Zhang G, Li MY, Ye WB, He ZT, Feng CG, Lin GQ. Borylation of Unactivated C(sp 3)-H Bonds with Bromide as a Traceless Directing Group. Org Lett 2021; 23:2948-2953. [PMID: 33764787 DOI: 10.1021/acs.orglett.1c00617] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed alkyl C-H borylation with bromide as a traceless directing group is described, providing a convenient approach to access alkyl boronates bearing a β-all-carbon quaternary stereocenter. The protocol features a broad substrate scope, excellent site selectivity, and good functional group tolerance.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wen-Bo Ye
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Tao He
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen-Guo Feng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
64
|
Hoque ME, Hassan MMM, Chattopadhyay B. Remarkably Efficient Iridium Catalysts for Directed C(sp 2)-H and C(sp 3)-H Borylation of Diverse Classes of Substrates. J Am Chem Soc 2021; 143:5022-5037. [PMID: 33783196 DOI: 10.1021/jacs.0c13415] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we describe the discovery of a new class of C-H borylation catalysts and their use for regioselective C-H borylation of aromatic, heteroaromatic, and aliphatic systems. The new catalysts have Ir-C(thienyl) or Ir-C(furyl) anionic ligands instead of the diamine-type neutral chelating ligands used in the standard C-H borylation conditions. It is reported that the employment of these newly discovered catalysts show excellent reactivity and ortho-selectivity for diverse classes of aromatic substrates with high isolated yields. Moreover, the catalysts proved to be efficient for a wide number of aliphatic substrates for selective C(sp3)-H bond borylations. Heterocyclic molecules are selectively borylated using the inherently elevated reactivity of the C-H bonds. A number of late-stage C-H functionalization have been described using the same catalysts. Furthermore, we show that one of the catalysts could be used even in open air for the C(sp2)-H and C(sp3)-H borylations enabling the method more general. Preliminary mechanistic studies suggest that the active catalytic intermediate is the Ir(bis)boryl complex, and the attached ligand acts as bidentate ligand. Collectively, this study underlines the discovery of new class of C-H borylation catalysts that should find wide application in the context of C-H functionalization chemistry.
Collapse
Affiliation(s)
- Md Emdadul Hoque
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Mirja Md Mahamudul Hassan
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| |
Collapse
|
65
|
Zhang M, Wu H, Yang J, Huang G. A Computational Mechanistic Analysis of Iridium-Catalyzed C(sp3)–H Borylation Reveals a One-Stone–Two-Birds Strategy to Enhance Catalytic Activity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mei Zhang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Hongli Wu
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Jinjin Yang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
66
|
Wang J, Torigoe T, Kuninobu Y. Urea-accelerated Iridium-catalyzed 2-Position-selective C–H Borylation of Indole Derivatives. CHEM LETT 2021. [DOI: 10.1246/cl.200939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Wang
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
67
|
Nishibayashi Y. Development of Asymmetric Propargylic Substitution Reactions Using Transition Metal Catalysts. CHEM LETT 2021. [DOI: 10.1246/cl.210126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|
68
|
Wu LS, Ding Y, Han YQ, Shi BF. Asymmetric Synthesis of γ-Lactams Containing α,β-Contiguous Stereocenters via Pd(II)-Catalyzed Cascade Methylene C(sp3)–H Alkenylation/Aza-Wacker Cyclization. Org Lett 2021; 23:2048-2051. [DOI: 10.1021/acs.orglett.1c00204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Le-Song Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Ye-Qiang Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
69
|
Du R, Liu L, Xu S. Iridium‐Catalyzed Regio‐ and Enantioselective Borylation of Unbiased Methylene C(sp
3
)−H Bonds at the Position β to a Nitrogen Center. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rongrong Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Luhua Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
70
|
Du R, Liu L, Xu S. Iridium-Catalyzed Regio- and Enantioselective Borylation of Unbiased Methylene C(sp 3 )-H Bonds at the Position β to a Nitrogen Center. Angew Chem Int Ed Engl 2021; 60:5843-5847. [PMID: 33325578 DOI: 10.1002/anie.202016009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Indexed: 11/11/2022]
Abstract
Reported herein is the pyrazole-directed iridium-catalyzed enantioselective borylation of unbiased methylene C-H bonds at the position β to a nitrogen center. The combination of a chiral bidentate boryl ligand, iridium precursor, and pyrazole directing group was responsible for the high regio- and enantioselectivity observed. The method tolerated a vast array of functional groups to afford the corresponding C(sp3 )-H functionalization products with good to excellent enantioselectivity.
Collapse
Affiliation(s)
- Rongrong Du
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Luhua Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
71
|
Wang Y, Bai J, Yang Y, Zhao W, Liang Y, Wang D, Zhao Y, Shi Z. Rhodium-catalysed selective C-C bond activation and borylation of cyclopropanes. Chem Sci 2021; 12:3599-3607. [PMID: 34163633 PMCID: PMC8179453 DOI: 10.1039/d0sc06186g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 01/14/2021] [Indexed: 01/31/2023] Open
Abstract
Transition metal (TM)-catalysed directed hydroboration of aliphatic internal olefins which facilitates the construction of complex alkylboronates is an essential synthetic methodology. Here, an efficient method for the borylation of cyclopropanes involving TM-catalysed directed C-C activation has been developed. Upon exposure to neutral Rh(i)-catalyst systems, N-Piv-substituted cyclopropylamines (CPAs) undergo proximal-selective hydroboration with HBpin to provide valuable γ-amino boronates in one step which are otherwise difficult to synthesize by known methods. The enantioenriched substrates can deliver chiral products without erosion of the enantioselectivities. Versatile synthetic utility of the obtained γ-amino boronates is also demonstrated. Experimental and computational mechanistic studies showed the preferred pathway and the origin of this selectivity. This study will enable the further use of CPAs as valuable building blocks for the tunable generation of C-heteroatom or C-C bonds through selective C-C bond activation.
Collapse
Affiliation(s)
- Yandong Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jingyi Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Youqing Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Di Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|
72
|
Shen J, Zhang Y, Yu Y, Wang M. Metal-free visible-light-induced photoredox-catalyzed intermolecular pyridylation/phosphinoylation of alkenes. Org Chem Front 2021. [DOI: 10.1039/d0qo01218a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced and photoredox-catalyzed intermolecular pyridylation/phosphinoylation of alkenes using 4-cyanopyridine and diphenylphosphine oxide under mild metal-free conditions has been reported.
Collapse
Affiliation(s)
- Jiaxuan Shen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering Henan Normal University
- Xinxiang
| | - Yipin Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering Henan Normal University
- Xinxiang
| | - Yanjiang Yu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering Henan Normal University
- Xinxiang
| | - Manman Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering Henan Normal University
- Xinxiang
| |
Collapse
|
73
|
Pandit S, Maiti S, Maiti D. Noncovalent interactions in Ir-catalyzed remote C–H borylation: a recent update. Org Chem Front 2021. [DOI: 10.1039/d1qo00452b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This highlight provides a recent update on noncovalent interaction enabled Ir-catalyzed remote C–H borylation, with a special emphasis on the corresponding enantioselective variant.
Collapse
Affiliation(s)
- Saikat Pandit
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Sudip Maiti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| | - Debabrata Maiti
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai-400076
- India
| |
Collapse
|
74
|
Trouvé J, Gramage-Doria R. Beyond hydrogen bonding: recent trends of outer sphere interactions in transition metal catalysis. Chem Soc Rev 2021; 50:3565-3584. [DOI: 10.1039/d0cs01339k] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The implementation of interactions beyond hydrogen bonding in the 2nd coordination sphere of transition metal catalysts is rare. However, it has already shown great promise in last 5 years, providing new tools to control the activity and selectivity as here reviewed.
Collapse
|
75
|
Liu J, Gong H, Zhu S. Nickel-Catalyzed, Regio- and Enantioselective Benzylic Alkenylation of Olefins with Alkenyl Bromide. Angew Chem Int Ed Engl 2020; 60:4060-4064. [PMID: 33171012 DOI: 10.1002/anie.202012614] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/01/2020] [Indexed: 12/20/2022]
Abstract
A NiH-catalyzed migratory hydroalkenylation reaction of olefins with alkenyl bromides has been developed, affording benzylic alkenylation products with high yields and excellent chemoselectivity. The mild conditions of the reaction preclude olefinic products from undergoing further isomerization or subsequent alkenylation. Catalytic enantioselective hydroalkenylation of styrenes was achieved by using a chiral bisoxazoline ligand.
Collapse
Affiliation(s)
- Jiandong Liu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
76
|
Liu J, Gong H, Zhu S. Nickel‐Catalyzed, Regio‐ and Enantioselective Benzylic Alkenylation of Olefins with Alkenyl Bromide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiandong Liu
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Hegui Gong
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
77
|
Zhang Z, Liu W, Zhang Y, Bai J, Liu J. Bioinspired Atomic Manganese Site Accelerates Oxo-Dehydrogenation of N-Heterocycles over a Conjugated Tri-s-Triazine Framework. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhou Zhang
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Wengang Liu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Yuanyuan Zhang
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Jingwen Bai
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| | - Jian Liu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People’s Republic of China
| |
Collapse
|
78
|
Han YQ, Zhang Q, Yang X, Jiang MX, Ding Y, Shi BF. Pd(II)-Catalyzed Enantioselective Intramolecular Arylation of Unbiased C(sp3)–H Bonds to Construct Chiral Benzo-ring Compounds. Org Lett 2020; 23:97-101. [DOI: 10.1021/acs.orglett.0c03775] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ye-Qiang Han
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xu Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Meng-Xue Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Yi Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
79
|
Yang Y, Chen L, Xu S. Iridium‐Catalyzed Enantioselective Unbiased Methylene C(sp
3
)–H Borylation of Acyclic Amides. Angew Chem Int Ed Engl 2020; 60:3524-3528. [DOI: 10.1002/anie.202013568] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
80
|
Yang Y, Chen L, Xu S. Iridium‐Catalyzed Enantioselective Unbiased Methylene C(sp
3
)–H Borylation of Acyclic Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Center for Excellence in Molecular Synthesis Suzhou Research Institute Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 311121 China
| |
Collapse
|
81
|
Zhang Q, Shi BF. Site-selective functionalization of remote aliphatic C-H bonds via C-H metallation. Chem Sci 2020; 12:841-852. [PMID: 34163851 PMCID: PMC8179183 DOI: 10.1039/d0sc05944g] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Directing group assistance provided a paradigm for controlling site-selectivity in transition metal-catalyzed C-H functionalization reactions. However, the kinetically and thermodynamically favored formation of 5-membered metallacycles has greatly hampered the selective activation of remote C(sp3)-H bonds via larger-membered metallacycles. Recent development to achieve remote C(sp3)-H functionalization via the C-H metallation process largely relies on employing specific substrates without accessible proximal C-H bonds. Encouragingly, recent advances in this field have enabled the selective functionalization of remote aliphatic C-H bonds in the presence of equally accessible proximal ones by taking advantage of the switch of the regiodetermining step, ring strain of metallacycles, multiple non-covalent interactions, and favourable reductive elimination from larger-membered metallacycles. In this review, we summarize these advancements according to the strategies used, hoping to facilitate further efforts to achieve site- and even enantioselective functionalization of remote C(sp3)-H bonds.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
- College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
82
|
Shu X, Huan L, Huang Q, Huo H. Direct Enantioselective C(sp 3)-H Acylation for the Synthesis of α-Amino Ketones. J Am Chem Soc 2020; 142:19058-19064. [PMID: 33125845 DOI: 10.1021/jacs.0c10471] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A direct enantioselective acylation of α-amino C(sp3)-H bonds with carboxylic acids has been achieved via the merger of transition metal and photoredox catalysis. This straightforward protocol enables cross-coupling of a wide range of carboxylic acids, one class of feedstock chemicals, with readily available N-alkyl benzamides to produce highly valuable α-amino ketones in high enantioselectivities under mild conditions. The synthetic utility of this method is further demonstrated by gram scale synthesis and application to late-stage functionalization. This method provides an unprecedented solution to address the challenging stereocontrol in metallaphotoredox catalysis and C(sp3)-H functionalization. Mechanistic studies suggest the α-C(sp3)-H bond of the benzamide coupling partner is cleavage by photocatalytically generated bromine radicals to form α-amino alkyl radicals, which subsequently engages in nickel-catalyzed asymmetric acylation.
Collapse
Affiliation(s)
- Xiaomin Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Leitao Huan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Qian Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Haohua Huo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
83
|
Zak IL, Gadekar SC, Milo A. Designing the Secondary Coordination Sphere in Small-Molecule Catalysis. Synlett 2020. [DOI: 10.1055/s-0040-1707326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe application of secondary-sphere interactions in catalysis was inspired by the hierarchical arrangement of the microenvironment of metalloprotein active sites and has been adopted mainly in organometallic catalysis. The study of such interactions has enabled the deliberate orientation of reaction components, leading to control over reactivity and selectivity by design. Although not as common, such interaction can play a decisive role in organocatalysis. Herein, we present several examples of small-molecule organometallic- and organocatalysis, highlighting the advantages offered by carefully designing the secondary sphere.1 Introduction2 Secondary-Sphere Design in Organometallic Catalysis3 Secondary-Sphere Modification in Organocatalysis4 Using Statistical Analysis to Systematically Tune and Probe Secondary-Sphere Interactions5 Conclusion
Collapse
Affiliation(s)
| | | | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev
| |
Collapse
|