51
|
Cheng ZH, Wu J, Liu JQ, Min D, Liu DF, Li WW, Yu HQ. Repurposing CRISPR RNA-guided integrases system for one-step, efficient genomic integration of ultra-long DNA sequences. Nucleic Acids Res 2022; 50:7739-7750. [PMID: 35776123 PMCID: PMC9303307 DOI: 10.1093/nar/gkac554] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/26/2023] Open
Abstract
Genomic integration techniques offer opportunities for generation of engineered microorganisms with improved or even entirely new functions but are currently limited by inability for efficient insertion of long genetic payloads due to multiplexing. Herein, using Shewanella oneidensis MR-1 as a model, we developed an optimized CRISPR-associated transposase from cyanobacteria Scytonema hofmanni (ShCAST system), which enables programmable, RNA-guided transposition of ultra-long DNA sequences (30 kb) onto bacterial chromosomes at ∼100% efficiency in a single orientation. In this system, a crRNA (CRISPR RNA) was used to target multicopy loci like insertion-sequence elements or combining I-SceI endonuclease, thereby allowing efficient single-step multiplexed or iterative DNA insertions. The engineered strain exhibited drastically improved substrate diversity and extracellular electron transfer ability, verifying the success of this system. Our work greatly expands the application range and flexibility of genetic engineering techniques and may be readily extended to other bacteria for better controlling various microbial processes.
Collapse
Affiliation(s)
- Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Wu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jia-Qi Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China.,Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
52
|
Wimmer F, Mougiakos I, Englert F, Beisel CL. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. Mol Cell 2022; 82:1210-1224.e6. [PMID: 35216669 DOI: 10.1016/j.molcel.2022.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
CRISPR-Cas biology and technologies have been largely shaped to date by the characterization and use of single-effector nucleases. By contrast, multi-subunit effectors dominate natural systems, represent emerging technologies, and were recently associated with RNA-guided DNA transposition. This disconnect stems from the challenge of working with multiple protein subunits in vitro and in vivo. Here, we apply cell-free transcription-translation (TXTL) systems to radically accelerate the characterization of multi-subunit CRISPR effectors and transposons. Numerous DNA constructs can be combined in one TXTL reaction, yielding defined biomolecular readouts in hours. Using TXTL, we mined phylogenetically diverse I-E effectors, interrogated extensively self-targeting I-C and I-F systems, and elucidated targeting rules for I-B and I-F CRISPR transposons using only DNA-binding components. We further recapitulated DNA transposition in TXTL, which helped reveal a distinct branch of I-B CRISPR transposons. These capabilities will facilitate the study and exploitation of the broad yet underexplored diversity of CRISPR-Cas systems and transposons.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Ioannis Mougiakos
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
53
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
54
|
Cargo Genes of Tn 7-Like Transposons Comprise an Enormous Diversity of Defense Systems, Mobile Genetic Elements, and Antibiotic Resistance Genes. mBio 2021; 12:e0293821. [PMID: 34872347 PMCID: PMC8649781 DOI: 10.1128/mbio.02938-21] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transposition is a major mechanism of horizontal gene mobility in prokaryotes. However, exploration of the genes mobilized by transposons (cargo) is hampered by the difficulty in delineating integrated transposons from their surrounding genetic context. Here, we present a computational approach that allowed us to identify the boundaries of 6,549 Tn7-like transposons. We found that 96% of these transposons carry at least one cargo gene. Delineation of distinct communities in a gene-sharing network demonstrates how transposons function as a conduit of genes between phylogenetically distant hosts. Comparative analysis of the cargo genes reveals significant enrichment of mobile genetic elements (MGEs) nested within Tn7-like transposons, such as insertion sequences and toxin-antitoxin modules, and of genes involved in recombination, anti-MGE defense, and antibiotic resistance. More unexpectedly, cargo also includes genes encoding central carbon metabolism enzymes. Twenty-two Tn7-like transposons carry both an anti-MGE defense system and antibiotic resistance genes, illustrating how bacteria can overcome these combined pressures upon acquisition of a single transposon. This work substantially expands the distribution of Tn7-like transposons, defines their evolutionary relationships, and provides a large-scale functional classification of prokaryotic genes mobilized by transposition.
Collapse
|
55
|
Rybarski JR, Hu K, Hill AM, Wilke CO, Finkelstein IJ. Metagenomic discovery of CRISPR-associated transposons. Proc Natl Acad Sci U S A 2021; 118:e2112279118. [PMID: 34845024 PMCID: PMC8670466 DOI: 10.1073/pnas.2112279118] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-associated Tn7 transposons (CASTs) co-opt cas genes for RNA-guided transposition. CASTs are exceedingly rare in genomic databases; recent surveys have reported Tn7-like transposons that co-opt Type I-F, I-B, and V-K CRISPR effectors. Here, we expand the diversity of reported CAST systems via a bioinformatic search of metagenomic databases. We discover architectures for all known CASTs, including arrangements of the Cascade effectors, target homing modalities, and minimal V-K systems. We also describe families of CASTs that have co-opted the Type I-C and Type IV CRISPR-Cas systems. Our search for non-Tn7 CASTs identifies putative candidates that include a nuclease dead Cas12. These systems shed light on how CRISPR systems have coevolved with transposases and expand the programmable gene-editing toolkit.
Collapse
Affiliation(s)
- James R Rybarski
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
| | - Kuang Hu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Alexis M Hill
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
| | - Claus O Wilke
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712;
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712;
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
56
|
Xiao R, Wang S, Han R, Li Z, Gabel C, Mukherjee IA, Chang L. Structural basis of target DNA recognition by CRISPR-Cas12k for RNA-guided DNA transposition. Mol Cell 2021; 81:4457-4466.e5. [PMID: 34450043 PMCID: PMC8571069 DOI: 10.1016/j.molcel.2021.07.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
The type V-K CRISPR-Cas system, featured by Cas12k effector with a naturally inactivated RuvC domain and associated with Tn7-like transposon for RNA-guided DNA transposition, is a promising tool for precise DNA insertion. To reveal the mechanism underlying target DNA recognition, we determined a cryoelectron microscopy (cryo-EM) structure of Cas12k from cyanobacteria Scytonema hofmanni in complex with a single guide RNA (sgRNA) and a double-stranded target DNA. Coupled with mutagenesis and in vitro DNA transposition assay, our results revealed mechanisms for the recognition of the GGTT protospacer adjacent motif (PAM) sequence and the structural elements of Cas12k critical for RNA-guided DNA transposition. These structural and mechanistic insights should aid in the development of type V-K CRISPR-transposon systems as tools for genome editing.
Collapse
Affiliation(s)
- Renjian Xiao
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Shukun Wang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Ruijie Han
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Zhuang Li
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Clinton Gabel
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Indranil Arun Mukherjee
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Leifu Chang
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
57
|
Querques I, Schmitz M, Oberli S, Chanez C, Jinek M. Target site selection and remodelling by type V CRISPR-transposon systems. Nature 2021; 599:497-502. [PMID: 34759315 PMCID: PMC7613401 DOI: 10.1038/s41586-021-04030-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022]
Abstract
Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements1. However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion2-7. Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ7, but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.
Collapse
Affiliation(s)
- Irma Querques
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Michael Schmitz
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Seraina Oberli
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Christelle Chanez
- Department of Biochemistry, University of Zurich, Zurich, 8057, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|