51
|
Vaid S, Heikinheimo O, Namba T. Embryonic mouse medial neocortex as a model system for studying the radial glial scaffold in fetal human neocortex. J Neural Transm (Vienna) 2023; 130:185-194. [PMID: 36450874 PMCID: PMC10033555 DOI: 10.1007/s00702-022-02570-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
Neocortex is the evolutionarily newest region in the brain, and is a structure with diversified size and morphology among mammalian species. Humans have the biggest neocortex compared to the body size, and their neocortex has many foldings, that is, gyri and sulci. Despite the recent methodological advances in in vitro models such as cerebral organoids, mice have been continuously used as a model system for studying human neocortical development because of the accessibility and practicality of in vivo gene manipulation. The commonly studied neocortical region, the lateral neocortex, generally recapitulates the developmental process of the human neocortex, however, there are several important factors missing in the lateral neocortex. First, basal (outer) radial glia (bRG), which are the main cell type providing the radial scaffold to the migrating neurons in the fetal human neocortex, are very few in the mouse lateral neocortex, thus the radial glial scaffold is different from the fetal human neocortex. Second, as a consequence of the difference in the radial glial scaffold, migrating neurons might exhibit different migratory behavior and thus distribution. To overcome those problems, we propose the mouse medial neocortex, where we have earlier revealed an abundance of bRG similar to the fetal human neocortex, as an alternative model system. We found that similar to the fetal human neocortex, the radial glial scaffold, neuronal migration and neuronal distribution are tangentially scattered in the mouse medial neocortex. Taken together, the embryonic mouse medial neocortex could be a suitable and accessible in vivo model system to study human neocortical development and its pathogenesis.
Collapse
Affiliation(s)
- Samir Vaid
- Department of Basic Neurosciences, University of Geneva, 1211, Geneva, Switzerland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, P.O. 140, 00029, Helsinki, Finland
| | - Takashi Namba
- Neuroscience Center, HiLIFE - Helsinki Institute of Life Science, University of Helsinki, P.O. 63, 00014, Helsinki, Finland.
| |
Collapse
|
52
|
Ganapathee DS, Gunz P. Insights into brain evolution through the genotype-phenotype connection. PROGRESS IN BRAIN RESEARCH 2023; 275:73-92. [PMID: 36841571 DOI: 10.1016/bs.pbr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.
Collapse
Affiliation(s)
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
53
|
A Systematic Review of the Human Accelerated Regions in Schizophrenia and Related Disorders: Where the Evolutionary and Neurodevelopmental Hypotheses Converge. Int J Mol Sci 2023; 24:ijms24043597. [PMID: 36835010 PMCID: PMC9962562 DOI: 10.3390/ijms24043597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that results from genetic and environmental factors interacting and disrupting neurodevelopmental trajectories. Human Accelerated Regions (HARs) are evolutionarily conserved genomic regions that have accumulated human-specific sequence changes. Thus, studies on the impact of HARs in the context of neurodevelopment, as well as with respect to adult brain phenotypes, have increased considerably in the last few years. Through a systematic approach, we aim to offer a comprehensive review of HARs' role in terms of human brain development, configuration, and cognitive abilities, as well as whether HARs modulate the susceptibility to neurodevelopmental psychiatric disorders such as schizophrenia. First, the evidence in this review highlights HARs' molecular functions in the context of the neurodevelopmental regulatory genetic machinery. Second, brain phenotypic analyses indicate that HAR genes' expression spatially correlates with the regions that suffered human-specific cortical expansion, as well as with the regional interactions for synergistic information processing. Lastly, studies based on candidate HAR genes and the global "HARome" variability describe the involvement of these regions in the genetic background of schizophrenia, but also in other neurodevelopmental psychiatric disorders. Overall, the data considered in this review emphasise the crucial role of HARs in human-specific neurodevelopment processes and encourage future research on this evolutionary marker for a better understanding of the genetic basis of schizophrenia and other neurodevelopmental-related psychiatric disorders. Accordingly, HARs emerge as interesting genomic regions that require further study in order to bridge the neurodevelopmental and evolutionary hypotheses in schizophrenia and other related disorders and phenotypes.
Collapse
|
54
|
Boeckx C. What made us "hunter-gatherers of words". Front Neurosci 2023; 17:1080861. [PMID: 36845441 PMCID: PMC9947416 DOI: 10.3389/fnins.2023.1080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
This paper makes three interconnected claims: (i) the "human condition" cannot be captured by evolutionary narratives that reduce it to a recent 'cognitive modernity', nor by narratives that eliminates all cognitive differences between us and out closest extinct relatives, (ii) signals from paleogenomics, especially coming from deserts of introgression but also from signatures of positive selection, point to the importance of mutations that impact neurodevelopment, plausibly leading to temperamental differences, which may impact cultural evolutionary trajectories in specific ways, and (iii) these trajectories are expected to affect the language phenotypes, modifying what is being learned and how it is put to use. In particular, I hypothesize that these different trajectories influence the development of symbolic systems, the flexible ways in which symbols combine, and the size and configurations of the communities in which these systems are put to use.
Collapse
Affiliation(s)
- Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
55
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
56
|
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
57
|
Hublin JJ, Changeux JP. Paleoanthropology of cognition: an overview on Hominins brain evolution. C R Biol 2022; 345:57-75. [PMID: 36847465 DOI: 10.5802/crbiol.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Recent advances in neurobiology, paleontology, and paleogenetics allow us to associate changes in brain size and organization with three main "moments" of increased behavioral complexity and, more speculatively, language development. First, Australopiths display a significant increase in brain size relative to the great apes and an incipient extension of postnatal brain development. However, their cortical organization remains essentially similar to that of apes. Second, over the last 2 My, with two notable exceptions, brain size increases dramatically, partly in relation to changes in body size. Differential enlargements and reorganizations of cortical areas lay the foundation for the "language-ready" brain and cumulative culture of later Homo species. Third, in Homo sapiens, brain size remains fairly stable over the last 300,000 years but an important cerebral reorganization takes place. It affects the frontal and temporal lobes, the parietal areas and the cerebellum and resulted in a more globular shape of the brain. These changes are associated, among others, with an increased development of long-distance-horizontal-connections. A few regulatory genetic events took place in the course of this hominization process with, in particular, enhanced neuronal proliferation and global brain connectivity.
Collapse
|
58
|
Wood KA, Goriely A. The impact of paternal age on new mutations and disease in the next generation. Fertil Steril 2022; 118:1001-1012. [PMID: 36351856 PMCID: PMC10909733 DOI: 10.1016/j.fertnstert.2022.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Advanced paternal age is associated with an increased risk of fathering children with genetic disorders and other adverse reproductive consequences. However, the mechanisms underlying this phenomenon remain largely unexplored. In this review, we focus on the impact of paternal age on de novo mutations that are an important contributor to genetic disease and can be studied both indirectly through large-scale sequencing studies and directly in the tissue in which they predominantly arise-the aging testis. We discuss the recent data that have helped establish the origins and frequency of de novo mutations, and highlight experimental evidence about the close link between new mutations, parental age, and genetic disease. We then focus on a small group of rare genetic conditions, the so-called "paternal age effect" disorders that show a strong association between paternal age and disease prevalence, and discuss the underlying mechanism ("selfish selection") and implications of this process in more detail. More broadly, understanding the causes and consequences of paternal age on genetic risk has important implications both for individual couples and for public health advice given that the average age of fatherhood is steadily increasing in many developed nations.
Collapse
Affiliation(s)
- Katherine A Wood
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Anne Goriely
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom; National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom.
| |
Collapse
|
59
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
60
|
Damianidou E, Mouratidou L, Kyrousi C. Research models of neurodevelopmental disorders: The right model in the right place. Front Neurosci 2022; 16:1031075. [PMID: 36340790 PMCID: PMC9630472 DOI: 10.3389/fnins.2022.1031075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous group of impairments that affect the development of the central nervous system leading to abnormal brain function. NDDs affect a great percentage of the population worldwide, imposing a high societal and economic burden and thus, interest in this field has widely grown in recent years. Nevertheless, the complexity of human brain development and function as well as the limitations regarding human tissue usage make their modeling challenging. Animal models play a central role in the investigation of the implicated molecular and cellular mechanisms, however many of them display key differences regarding human phenotype and in many cases, they partially or completely fail to recapitulate them. Although in vitro two-dimensional (2D) human-specific models have been highly used to address some of these limitations, they lack crucial features such as complexity and heterogeneity. In this review, we will discuss the advantages, limitations and future applications of in vivo and in vitro models that are used today to model NDDs. Additionally, we will describe the recent development of 3-dimensional brain (3D) organoids which offer a promising approach as human-specific in vitro models to decipher these complex disorders.
Collapse
Affiliation(s)
- Eleni Damianidou
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Lidia Mouratidou
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
- First Department of Psychiatry, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kyrousi
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
- First Department of Psychiatry, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Christina Kyrousi,
| |
Collapse
|
61
|
Callaway E. From Neanderthal genome to Nobel prize: meet geneticist Svante Pääbo. Nature 2022:10.1038/d41586-022-03191-9. [PMID: 36207518 DOI: 10.1038/d41586-022-03191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
62
|
Geneticist who unmasked lives of ancient humans wins medicine Nobel. Nature 2022; 610:16-17. [PMID: 36192444 DOI: 10.1038/d41586-022-03086-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
A modern take on neocortical neurogenesis. Nat Rev Neurosci 2022; 23:643. [PMID: 36175498 DOI: 10.1038/s41583-022-00645-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
64
|
Did this gene give modern human brains their edge? Nature 2022; 609:665-666. [PMID: 36076025 DOI: 10.1038/d41586-022-02895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|