51
|
Pan XY, Zeng YY, Liu YM, Fei JF. Resolving vertebrate brain evolution through salamander brain development and regeneration. Zool Res 2023; 44:219-222. [PMID: 36594394 PMCID: PMC9841178 DOI: 10.24272/j.issn.2095-8137.2022.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Xiang-Yu Pan
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Yan-Yun Zeng
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
| | - Yan-Mei Liu
- Key Laboratory of Brain, Cognition and Education Science, Ministry of Education, China
- Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong 510631, China. E-mail:
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China. E-mail:
| |
Collapse
|
52
|
Cremisi F, Vignali R. Translational control in cortical development. Front Neuroanat 2023; 16:1087949. [PMID: 36699134 PMCID: PMC9868627 DOI: 10.3389/fnana.2022.1087949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Differentiation of specific neuronal types in the nervous system is worked out through a complex series of gene regulation events. Within the mammalian neocortex, the appropriate expression of key transcription factors allocates neurons to different cortical layers according to an inside-out model and endows them with specific properties. Precise timing is required to ensure the proper sequential appearance of key transcription factors that dictate the identity of neurons within the different cortical layers. Recent evidence suggests that aspects of this time-controlled regulation of gene products rely on post-transcriptional control, and point at micro-RNAs (miRs) and RNA-binding proteins as important players in cortical development. Being able to simultaneously target many different mRNAs, these players may be involved in controlling the global expression of gene products in progenitors and post-mitotic cells, in a gene expression framework where parallel to transcriptional gene regulation, a further level of control is provided to refine and coordinate the appearance of the final protein products. miRs and RNA-binding proteins (RBPs), by delaying protein appearance, may play heterochronic effects that have recently been shown to be relevant for the full differentiation of cortical neurons and for their projection abilities. Such heterochronies may be the base for evolutionary novelties that have enriched the spectrum of cortical cell types within the mammalian clade.
Collapse
Affiliation(s)
- Federico Cremisi
- Laboratory of Biology, Department of Sciences, Scuola Normale Superiore, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| | - Robert Vignali
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Robert Vignali Federico Cremisi
| |
Collapse
|
53
|
Deryckere A, Woych J, Jaeger ECB, Tosches MA. Molecular Diversity of Neuron Types in the Salamander Amygdala and Implications for Amygdalar Evolution. BRAIN, BEHAVIOR AND EVOLUTION 2022; 98:61-75. [PMID: 36574764 PMCID: PMC10096051 DOI: 10.1159/000527899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/21/2022] [Indexed: 12/28/2022]
Abstract
The amygdala is a complex brain structure in the vertebrate telencephalon, essential for regulating social behaviors, emotions, and (social) cognition. In contrast to the vast majority of neuron types described in the many nuclei of the mammalian amygdala, little is known about the neuronal diversity in non-mammals, making reconstruction of its evolution particularly difficult. Here, we characterize glutamatergic neuron types in the amygdala of the urodele amphibian Pleurodeles waltl. Our single-cell RNA sequencing data indicate the existence of at least ten distinct types and subtypes of glutamatergic neurons in the salamander amygdala. These neuron types are molecularly distinct from neurons in the ventral pallium (VP), suggesting that the pallial amygdala and the VP are two separate areas in the telencephalon. In situ hybridization for marker genes indicates that amygdalar glutamatergic neuron types are located in three major subdivisions: the lateral amygdala, the medial amygdala, and a newly defined area demarcated by high expression of the transcription factor Sim1. The gene expression profiles of these neuron types suggest similarities with specific neurons in the sauropsid and mammalian amygdala. In particular, we identify Sim1+ and Sim1+ Otp+ expressing neuron types, potentially homologous to the mammalian nucleus of the lateral olfactory tract (NLOT) and to hypothalamic-derived neurons of the medial amygdala, respectively. Taken together, our results reveal a surprising diversity of glutamatergic neuron types in the amygdala of salamanders, despite the anatomical simplicity of their brain. These results offer new insights on the cellular and anatomical complexity of the amygdala in tetrapod ancestors.
Collapse
Affiliation(s)
- Astrid Deryckere
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | - Jamie Woych
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | - Eliza C. B. Jaeger
- Department of Biological Sciences, Columbia University; New York, NY 10027, USA
| | | |
Collapse
|
54
|
Seki‐Omura R, Hayashi S, Oe S, Koike T, Nakano Y, Hirahara Y, Tanaka S, Kitada M. Establishment of neural stem cell culture from the central nervous system of the Iberian ribbed newt Pleurodeles waltl. Dev Growth Differ 2022; 64:494-500. [PMID: 36308507 PMCID: PMC11520975 DOI: 10.1111/dgd.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/31/2022]
Abstract
Urodele amphibians have exceptional regeneration ability in various organs. Among these, the Iberian ribbed newt (Pleurodeles waltl) has emerged as a useful model organism for investigating the mechanisms underlying regeneration. Neural stem cells (NSCs) are an important source of regeneration in the central nervous system (CNS) and their culture method in vitro has been well established. NSCs form spherical cell aggregates called neurospheres and their formation has been demonstrated in various vertebrates, including some urodele species, but not in P. waltl. In this study, we reported neurosphere formation in brain- and spinal cord-derived cells of post-metamorphic P. waltl. These neurospheres showed proliferative activity and similar expression of marker proteins. However, the surface morphology was found to vary according to their origin, implying that the characteristics of the neurospheres generated from the brain and spinal cord could be similar but not identical. Subsequent in vitro differentiation analysis demonstrated that spinal cord-derived neurospheres gave rise to neurons and glial cells. We also found that cells in neurospheres from P. waltl differentiated to oligodendrocytes, whereas those from axolotls were reported not to differentiate to this cell type under standard culture conditions. Based on our findings, implantation of genetically modified neurospheres together with associated technical advantages in P. waltl could reveal pivotal gene(s) and/or signaling pathway(s) essential for the complete spinal cord regeneration ability in the future.
Collapse
Affiliation(s)
- Ryohei Seki‐Omura
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityHirakataJapan
| | - Shinichi Hayashi
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityHirakataJapan
| | - Souichi Oe
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityHirakataJapan
| | - Taro Koike
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityHirakataJapan
| | - Yousuke Nakano
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityHirakataJapan
| | - Yukie Hirahara
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityHirakataJapan
- Present address:
Faculty of NursingKansai Medical UniversityHirakataJapan
| | - Susumu Tanaka
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityHirakataJapan
- Present address:
Faculty of Nursing and NutritionUniversity of NagasakiNagasakiJapan
| | - Masaaki Kitada
- Department of Anatomy, Faculty of MedicineKansai Medical UniversityHirakataJapan
| |
Collapse
|
55
|
Yin B, Li X, Lin G, Wang H. High-resolution single-cell analysis paves the cellular path for brain regeneration in salamanders. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:37. [PMID: 36258096 PMCID: PMC9579219 DOI: 10.1186/s13619-022-00144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salamanders are excellent models for studying vertebrate brain regeneration, with the promise of developing novel therapies for human brain lesions. Yet the molecular and cellular mechanism of salamander brain regeneration remains largely elusive. The insight into the evolution of complex brain structures that lead to advanced functions in the mammalian brain is also inadequate. With high-resolution single-cell RNA sequencing and spatial transcriptomics, three recent studies have reported the differentiation paths of cells in the salamander telencephalon in the journal Science, bringing both old and new cell types into the focus and shedding light on vertebrate brain evolution, development, and regeneration.
Collapse
Affiliation(s)
- Binxu Yin
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyun Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Heng Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
56
|
Mapping vertebrate brain evolution. Nat Rev Genet 2022; 23:647. [PMID: 36167907 DOI: 10.1038/s41576-022-00535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
57
|
Lust K, Maynard A, Gomes T, Fleck JS, Camp JG, Tanaka EM, Treutlein B. Single-cell analyses of axolotl telencephalon organization, neurogenesis, and regeneration. Science 2022; 377:eabp9262. [PMID: 36048956 DOI: 10.1126/science.abp9262] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Salamanders are tetrapod models to study brain organization and regeneration; however, the identity and evolutionary conservation of brain cell types are largely unknown. We delineated the cell populations in the axolotl telencephalon during homeostasis and regeneration using single-cell genomic profiling. We identified glutamatergic neurons with similarities to amniote neurons of hippocampus, dorsal and lateral cortex, and conserved γ-aminobutyric acid-releasing (GABAergic) neuron classes. We inferred transcriptional dynamics and gene regulatory relationships of postembryonic, region-specific neurogenesis and unraveled conserved differentiation signatures. After brain injury, ependymoglia activate an injury-specific state before reestablishing lost neuron populations and axonal connections. Together, our analyses yield insights into the organization, evolution, and regeneration of a tetrapod nervous system.
Collapse
Affiliation(s)
- Katharina Lust
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Ashley Maynard
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - Jonas Simon Fleck
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| | - J Gray Camp
- Roche Institute for Translational Bioengineering (ITB), Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Elly M Tanaka
- Research Institute of Molecular Pathology, Vienna Biocenter (VBC), Campus Vienna Biocenter, 1030 Vienna, Austria
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| |
Collapse
|