51
|
Timmann S, Wu TH, Golz C, Alcarazo M. Reactivity of α-diazo sulfonium salts: rhodium-catalysed ring expansion of indenes to naphthalenes. Chem Sci 2024; 15:5938-5943. [PMID: 38665534 PMCID: PMC11040645 DOI: 10.1039/d4sc01138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the presence of catalytic amounts of the paddlewheel dirhodium complex Rh2(esp)2, α-diazo dibenzothiophenium salts generate highly electrophilic Rh-coordinated carbenes, which evolve differently depending on their substitution pattern. Keto-moieties directly attached to the azomethinic carbon promote carbene insertion into one of the adjacent C-S bonds, giving rise to highly electrophilic dibenzothiopyrilium salts. This intramolecular pathway is not operative when the carbene carbon bears ester or trifluoromethyl substituents; in fact, these species react with olefins delivering easy to handle cyclopropyl-substituted sulfonium salts. When indenes are the olefins of choice, the initially formed cyclopropyl rings smoothly open with concomitant departure of dibenzothiophene, enabling access to a series of 2-functionalized naphthalenes.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Tun-Hui Wu
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
52
|
Niu C, Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective Ring-Opening Amination of Isochromans and Tetrahydroisoquinolines. Angew Chem Int Ed Engl 2024; 63:e202401318. [PMID: 38459760 DOI: 10.1002/anie.202401318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The molecular structure-editing through selective C-C bond cleavage allows for the precise modification of molecular structures and opens up new possibilities in chemical synthesis. By strategically cleaving C-C bonds and editing the molecular structure, more efficient and versatile pathways for the synthesis of complex compounds could be designed, which brings significant implications for drug development and materials science. o-Aminophenethyl alcohols and amines are the essential key motifs in bioactive and functional material molecules. The traditional synthesis of these compounds usually requires multiple steps which could generate inseparable isomers and induce low efficiencies. By leveraging a molecular editing strategy, we herein reported a selective ring-opening amination of isochromans and tetrahydroisoquinolines for the efficient synthesis of o-aminophenethyl alcohols and amines. This innovative chemistry allows for the precise cleavage of C-C bonds under mild transition metal-free conditions. Notably, further synthetic application demonstrated that our method could provide an efficient approach to essential components of diverse bioactive molecules.
Collapse
Affiliation(s)
- Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zheng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Qi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| |
Collapse
|
53
|
Qi Q, Tian G, Ma L. Enhancing the thermopower of single-molecule junctions by edge substitution effects. Phys Chem Chem Phys 2024; 26:11340-11346. [PMID: 38564269 DOI: 10.1039/d3cp06176k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Heteroatom substitution and anchoring groups have an important impact on the thermoelectric properties of single-molecule junctions. Herein, thermoelectric properties of several anthracene derivative based single-molecule junctions are studied by means of first-principles calculations. In particular, we pay great attention to the edge substitution effects and find that edge substitution with nitrogen can induce a transmission peak near the Fermi energy, leading to large transmission coefficients and electrical conductance at the Fermi energy. Additionally, the steep shape of the transmission function gives rise to a high Seebeck coefficient. Therefore, an enhanced power factor can be expected. The robustness of this edge substitution effect has been examined by altering the electrode distance and introducing heteroatoms at different positions. The enhancement of the power factor due to edge substitution makes the studied single-molecule junction a promising candidate for efficient thermoelectric devices.
Collapse
Affiliation(s)
- Qiang Qi
- State Key Laboratory of Metastable Material Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Material Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Liang Ma
- State Key Laboratory of Metastable Material Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| |
Collapse
|
54
|
Zhang Y, Xue JY, Su XC, Xiao WJ, Lv JY, Shi WX, Zou Y, Yan M, Zhang XJ. Skeletal Editing of Benzene Motif: Photopromoted Transannulation for Synthesis of DNA-Encoded Seven-Membered Rings. Org Lett 2024; 26:2212-2217. [PMID: 38452132 DOI: 10.1021/acs.orglett.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In this report, we present a photopromoted, metal-free transannulation of phenyl azides for the synthesis of DNA-encoded seven-membered rings. The transformation is efficiently achieved through a skeletal editing strategy targeting the benzene motif coupled with a Reversible Adsorption to Solid Support (RASS) strategy. A variety of valuable DNA-encoded seven-membered ring compounds, including DNA-encoded 3H-azepines, azepinones, and unnatural amino acids, are now accessible. Crucially, this DNA-compatible protocol can also be applied for the introduction of complex molecules, as exemplified by Lorcaserin and Betahistine. The selective conversion of readily available phenyl rings into high-value seven-membered rings offers a promising avenue for the construction of diversified and drug-like DNA-encoded library.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ying Xue
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Jie Xiao
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yi Lv
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
55
|
Alexander BW, Bartfield NM, Gupta V, Mercado BQ, Del Campo M, Herzon SB. An oxidative photocyclization approach to the synthesis of Securiflustra securifrons alkaloids. Science 2024; 383:849-854. [PMID: 38386756 DOI: 10.1126/science.adl6163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Securines and securamines are cytotoxic alkaloids that contain reactive alkene and heterocyclic residues embedded in skeletons comprising four to six oxidized rings. This structural complexity imparts a rich chemistry to the isolates but has impeded synthetic access to the structures in the nearly three decades since their isolation. We present a flexible route to eight isolates that exemplify the three skeletal classes of metabolites. The route proceeds by the modular assembly of the advanced azides 38 and 49 (13 steps, 6 to 10% yield), sequential oxidative photocyclizations, and late-stage functional group manipulations. With this approach, the targets were obtained in 17 to 19 steps, 12 to 13 purifications, and 0.5 to 3.5% overall yield. The structure of an advanced intermediate was elucidated by microcrystal electron diffraction (MicroED) analysis. The route will support structure-function and target identification studies of the securamines.
Collapse
Affiliation(s)
| | - Noah M Bartfield
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Vaani Gupta
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Chemical and Biological Instrumentation Center, Yale University, New Haven, CT 06511, USA
| | - Mark Del Campo
- Rigaku Americas Corporation, The Woodlands, TX 77381, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
56
|
He Y, Wang J, Zhu T, Zheng Z, Wei H. Nitrogen atom insertion into arenols to access benzazepines. Chem Sci 2024; 15:2612-2617. [PMID: 38362409 PMCID: PMC10866339 DOI: 10.1039/d3sc05367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Advances in site-selective molecular editing have enabled structural modification on complex molecules. However, thus far, their applications have been restricted to C-H functionalization chemistry. The modification of the underlying molecular skeleton remains limited. Here, we describe a skeletal editing approach that provides access to benzazepine structures through direct nitrogen atom insertion into arenols. Using widely available arenols as benzazepine precursors, this alternative approach allowed the streamlined assembly of benzazepines with broad functional group tolerance. Experimental mechanistic studies support a reaction pathway involving dearomatizative azidation and then aryl migration. This study further highlights the potential for carbon-nitrogen transmutation sequences through combinations with oxidative carbon atom deletion, providing an alternative for the development of N-heteroarenes and demonstrating significant potential in materials chemistry.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of the Education, College of Chemistry & Materials Science, Northwest University Xi'an 710069 China
| | - Juanjuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of the Education, College of Chemistry & Materials Science, Northwest University Xi'an 710069 China
| | - Tongtong Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of the Education, College of Chemistry & Materials Science, Northwest University Xi'an 710069 China
| | - Zhaojing Zheng
- College of Food Science and Technology, Northwest University Xi'an 710069 China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of the Education, College of Chemistry & Materials Science, Northwest University Xi'an 710069 China
| |
Collapse
|
57
|
Kotwal N, Chauhan P. Accessing Pyridines via a Nitrene Internalization Process. Angew Chem Int Ed Engl 2024; 63:e202317228. [PMID: 38116832 DOI: 10.1002/anie.202317228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/21/2023]
Abstract
Pyridines are valuable pharmacophores, and their access via direct and selective transmutation of carbon atom with desired nitrogen could become crucial in drug discovery processes. However, only scarce examples can be found when it comes C-to-N-transmutation reactions of aromatics that could lead to the facile synthesis of pyridines or other azaarenes. In this context, Levin and co-workers recently disclosed a process leading to pyridines from the corresponding aryl azides via the regioselective nitrene internalization process. Notably, the transformation did not lead to any further modification of the rest of the aromatic skeleton. This innovative work enabled selectively accessing various pyridine derivatives through direct nitrogen scan operations on benzene derivatives, which were otherwise not feasible.
Collapse
Affiliation(s)
- Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|
58
|
Bartholomew GL, Kraus SL, Karas LJ, Carpaneto F, Bennett R, Sigman MS, Yeung CS, Sarpong R. 14N to 15N Isotopic Exchange of Nitrogen Heteroaromatics through Skeletal Editing. J Am Chem Soc 2024; 146:2950-2958. [PMID: 38286797 PMCID: PMC11646074 DOI: 10.1021/jacs.3c11515] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The selective modification of nitrogen heteroaromatics enables the development of new chemical tools and accelerates drug discovery. While methods that focus on expanding or contracting the skeletal structures of heteroaromatics are emerging, methods for the direct exchange of single core atoms remain limited. Here, we present a method for 14N → 15N isotopic exchange for several aromatic nitrogen heterocycles. This nitrogen isotope transmutation occurs through activation of the heteroaromatic substrate by triflylation of a nitrogen atom, followed by a ring-opening/ring-closure sequence mediated by 15N-aspartate to effect the isotopic exchange of the nitrogen atom. Key to the success of this transformation is the formation of an isolable 15N-succinyl intermediate, which undergoes elimination to give the isotopically labeled heterocycle. These transformations occur under mild conditions in high chemical and isotopic yields.
Collapse
Affiliation(s)
- G Logan Bartholomew
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Samantha L Kraus
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lucas J Karas
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Filippo Carpaneto
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Raffeal Bennett
- Discovery Analytical Research, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
59
|
Boudry E, Bourdreux F, Marrot J, Moreau X, Ghiazza C. Dearomatization of Pyridines: Photochemical Skeletal Enlargement for the Synthesis of 1,2-Diazepines. J Am Chem Soc 2024; 146:2845-2854. [PMID: 38235671 DOI: 10.1021/jacs.3c14467] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
In this report, we developed a unified and standardized one-pot sequence that converts pyridine derivatives into 1,2-diazepines by inserting a nitrogen atom. This skeletal transformation capitalizes on the in situ generation of 1-aminopyridinium ylides, which rearrange under UV light irradiation. A thorough evaluation of the key parameters (wavelength, reaction conditions, activating agent) allowed us to elaborate on a simple, mild, and user-friendly protocol. The model reaction was extrapolated to more than 40 examples, including drug derivatives, affording unique 7-membered structures. Mechanistic evidence supports the transient presence of a diazanorcaradiene species. Finally, pertinent transformations of the products, including ring contraction reactions to form pyrazoles, were conducted and paved the way to a broad application of the developed protocol.
Collapse
Affiliation(s)
- Elise Boudry
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Flavien Bourdreux
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Jérôme Marrot
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Xavier Moreau
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Clément Ghiazza
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180 Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| |
Collapse
|
60
|
Li B, Ruffoni A, Leonori D. A Photochemical Strategy for ortho-Aminophenol Synthesis via Dearomative-Rearomative Coupling Between Aryl Azides and Alcohols. Angew Chem Int Ed Engl 2023; 62:e202310540. [PMID: 37926921 DOI: 10.1002/anie.202310540] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
ortho-Aminophenols are aromatic derivatives featuring vicinal N- and O-based functionalities commonly found in the structures of many high-value materials. These molecules are generally prepared using multistep strategies that follow the rules of electrophilic aromatic substitution (SE Ar) chemistry. Despite their high fidelity, such approaches cannot target substrates featuring a "contra-SE Ar" arrangement of N- and O-groups. Here we report an alternative strategy for the preparation of such ortho-aminophenols using aryl azides as the precursors. The process utilizes low-energy photoexcitation to trigger the decomposition of aryl azides into singlet nitrenes that undergo a dearomative-rearomative sequence. This allows the incorporation of alcoholic nucleophiles into a seven-membered ring azepine intermediate via temporary disruption of aromaticity, followed by electrophile-induced re-aromatization. The net retrosynthetic logic is that the alcohol displaces the azide, which, in turn, moves to its ortho position and furthermore is converted into an amide. The synthetic value and complementarity of this strategy has been demonstrated by the coupling of aryl azides with complex, drug-like alcohols and phenols as well as amines, thiols and thiophenols, which provides a general platform for the fast and selective heterofunctionalization of aromatics.
Collapse
Affiliation(s)
- Bo Li
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Alessandro Ruffoni
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| | - Daniele Leonori
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52056, Aachen, Germany
| |
Collapse
|
61
|
Guo H, Qiu S, Xu P. One-Carbon Ring Expansion of Indoles and Pyrroles: A Straightforward Access to 3-Fluorinated Quinolines and Pyridines. Angew Chem Int Ed Engl 2023:e202317104. [PMID: 38079290 DOI: 10.1002/anie.202317104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Indexed: 12/22/2023]
Abstract
3-Fluorinated quinolines and pyridines are prevalent pharmacophores, yet their synthesis is often challenging. Herein, we demonstrate that dibromofluoromethane as bromofluorocarbene source enables the one-carbon ring expansion of readily available indoles and pyrroles to structurally diverse 3-fluorinated quinolines and pyridines. This straightforward protocol requires only a short reaction time of ten minutes and can be performed under air atmosphere. Preliminary investigations reveal that this strategy can also be applied to the synthesis of other valuable azines by using different 1,1-dibromoalkanes as bromocarbene sources.
Collapse
Affiliation(s)
- Huaixuan Guo
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Shiqin Qiu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| | - Peng Xu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, 200444, Shanghai, P. R. China
| |
Collapse
|
62
|
Ficarra F, Silvi M. Atom-swap chemistry could aid drug discovery. Nature 2023; 623:36-37. [PMID: 37914944 DOI: 10.1038/d41586-023-03297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
|
63
|
Chugunova E, Gazizov AS, Islamov D, Matveeva V, Burilov A, Akylbekov N, Dobrynin A, Zhapparbergenov R, Appazov N, Chabuka BK, Christopher K, Tonkoglazova DI, Alabugin IV. An Unusual Rearrangement of Pyrazole Nitrene and Coarctate Ring-Opening/Recyclization Cascade: Formal CH-Acetoxylation and Azide/Amine Conversion without External Oxidants and Reductants. Molecules 2023; 28:7335. [PMID: 37959754 PMCID: PMC10648078 DOI: 10.3390/molecules28217335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
We report an unusual transformation where the transient formation of a nitrene moiety initiates a sequence of steps leading to remote oxidative C-H functionalization (R-CH3 to R-CH2OC(O)R') and the concomitant reduction of the nitrene into an amino group. No external oxidants or reductants are needed for this formal molecular comproportionation. Detected and isolated intermediates and computational analysis suggest that the process occurs with pyrazole ring opening and recyclization.
Collapse
Affiliation(s)
- Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Almir S. Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Daut Islamov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Victoria Matveeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan; (N.A.); (R.Z.)
| | - Alexey Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
| | - Rakhmetulla Zhapparbergenov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan; (N.A.); (R.Z.)
| | - Nurbol Appazov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aitekebie Str. 29A, Kyzylorda 120014, Kazakhstan; (N.A.); (R.Z.)
- Zhakhaev Kazakh Scientific Research Institute of Rice Growing, Abay Av. 25B, Kyzylorda 120008, Kazakhstan
| | - Beauty K. Chabuka
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.K.C.); (K.C.); (D.I.T.)
| | - Kimberley Christopher
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.K.C.); (K.C.); (D.I.T.)
| | - Daria I. Tonkoglazova
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.K.C.); (K.C.); (D.I.T.)
| | - Igor V. Alabugin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Akad. Arbuzov St. 8, Kazan 420088, Russia; (A.S.G.); (D.I.); (V.M.); (A.B.); (A.D.); (I.V.A.)
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-3290, USA; (B.K.C.); (K.C.); (D.I.T.)
| |
Collapse
|