51
|
Abstract
Raf kinase inhibitory protein (RKIP) is a highly conserved regulator of many signaling networks whose loss or inactivation can lead to a variety of disease states. The multifaceted roles played by RKIP are enabled by an allosteric structure that is controlled through phosphorylation of RKIP and dynamics in the RKIP pocket loop. Perhaps the most striking feature of RKIP is that it can assume multiple functional states. Specifically, phosphorylation redirects RKIP from a state that binds and inhibits Raf-1 to a state that binds and inhibits GRK2. Recent evidence suggests the presence of a third functional state that facilitates RKIP phosphorylation. Here, we present a three-state model to explain the RKIP functional switch and discuss the role of the pocket loop in regulating RKIP activity.
Collapse
Affiliation(s)
- John J. Skinner
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Gordon Center for Integrative Sciences, Chicago, Illinois
- Address all correspondence to: Marsha R. Rosner, Ben May Department for Cancer Research, University of Chicago, Gordon Center for Integrative Sciences, 929 East 57th Street, Chicago, IL 60637;
| |
Collapse
|
52
|
Clarke M, Lohan AJ, Liu B, Lagkouvardos I, Roy S, Zafar N, Bertelli C, Schilde C, Kianianmomeni A, Bürglin TR, Frech C, Turcotte B, Kopec KO, Synnott JM, Choo C, Paponov I, Finkler A, Heng Tan CS, Hutchins AP, Weinmeier T, Rattei T, Chu JSC, Gimenez G, Irimia M, Rigden DJ, Fitzpatrick DA, Lorenzo-Morales J, Bateman A, Chiu CH, Tang P, Hegemann P, Fromm H, Raoult D, Greub G, Miranda-Saavedra D, Chen N, Nash P, Ginger ML, Horn M, Schaap P, Caler L, Loftus BJ. Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signaling. Genome Biol 2013; 14:R11. [PMID: 23375108 PMCID: PMC4053784 DOI: 10.1186/gb-2013-14-2-r11] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 02/01/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The Amoebozoa constitute one of the primary divisions of eukaryotes, encompassing taxa of both biomedical and evolutionary importance, yet its genomic diversity remains largely unsampled. Here we present an analysis of a whole genome assembly of Acanthamoeba castellanii (Ac) the first representative from a solitary free-living amoebozoan. RESULTS Ac encodes 15,455 compact intron-rich genes, a significant number of which are predicted to have arisen through inter-kingdom lateral gene transfer (LGT). A majority of the LGT candidates have undergone a substantial degree of intronization and Ac appears to have incorporated them into established transcriptional programs. Ac manifests a complex signaling and cell communication repertoire, including a complete tyrosine kinase signaling toolkit and a comparable diversity of predicted extracellular receptors to that found in the facultatively multicellular dictyostelids. An important environmental host of a diverse range of bacteria and viruses, Ac utilizes a diverse repertoire of predicted pattern recognition receptors, many with predicted orthologous functions in the innate immune systems of higher organisms. CONCLUSIONS Our analysis highlights the important role of LGT in the biology of Ac and in the diversification of microbial eukaryotes. The early evolution of a key signaling facility implicated in the evolution of metazoan multicellularity strongly argues for its emergence early in the Unikont lineage. Overall, the availability of an Ac genome should aid in deciphering the biology of the Amoebozoa and facilitate functional genomic studies in this important model organism and environmental host.
Collapse
|
53
|
Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 2012; 367:2556-73. [PMID: 22889907 DOI: 10.1098/rstb.2012.0107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Src homology 2 (SH2) domains mediate selective protein-protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
54
|
Jin J, Pawson T. Modular evolution of phosphorylation-based signalling systems. Philos Trans R Soc Lond B Biol Sci 2012; 367:2540-55. [PMID: 22889906 DOI: 10.1098/rstb.2012.0106] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphorylation sites are formed by protein kinases ('writers'), frequently exert their effects following recognition by phospho-binding proteins ('readers') and are removed by protein phosphatases ('erasers'). This writer-reader-eraser toolkit allows phosphorylation events to control a broad range of regulatory processes, and has been pivotal in the evolution of new functions required for the development of multi-cellular animals. The proteins that comprise this system of protein kinases, phospho-binding targets and phosphatases are typically modular in organization, in the sense that they are composed of multiple globular domains and smaller peptide motifs with binding or catalytic properties. The linkage of these binding and catalytic modules in new ways through genetic recombination, and the selection of particular domain combinations, has promoted the evolution of novel, biologically useful processes. Conversely, the joining of domains in aberrant combinations can subvert cell signalling and be causative in diseases such as cancer. Major inventions such as phosphotyrosine (pTyr)-mediated signalling that flourished in the first multi-cellular animals and their immediate predecessors resulted from stepwise evolutionary progression. This involved changes in the binding properties of interaction domains such as SH2 and their linkage to new domain types, and alterations in the catalytic specificities of kinases and phosphatases. This review will focus on the modular aspects of signalling networks and the mechanism by which they may have evolved.
Collapse
Affiliation(s)
- Jing Jin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada.
| | | |
Collapse
|
55
|
Kaneko T, Joshi R, Feller SM, Li SS. Phosphotyrosine recognition domains: the typical, the atypical and the versatile. Cell Commun Signal 2012; 10:32. [PMID: 23134684 PMCID: PMC3507883 DOI: 10.1186/1478-811x-10-32] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/09/2012] [Indexed: 12/21/2022] Open
Abstract
SH2 domains are long known prominent players in the field of phosphotyrosine recognition within signaling protein networks. However, over the years they have been joined by an increasing number of other protein domain families that can, at least with some of their members, also recognise pTyr residues in a sequence-specific context. This superfamily of pTyr recognition modules, which includes substantial fractions of the PTB domains, as well as much smaller, or even single member fractions like the HYB domain, the PKCδ and PKCθ C2 domains and RKIP, represents a fascinating, medically relevant and hence intensely studied part of the cellular signaling architecture of metazoans. Protein tyrosine phosphorylation clearly serves a plethora of functions and pTyr recognition domains are used in a similarly wide range of interaction modes, which encompass, for example, partner protein switching, tandem recognition functionalities and the interaction with catalytically active protein domains. If looked upon closely enough, virtually no pTyr recognition and regulation event is an exact mirror image of another one in the same cell. Thus, the more we learn about the biology and ultrastructural details of pTyr recognition domains, the more does it become apparent that nature cleverly combines and varies a few basic principles to generate a sheer endless number of sophisticated and highly effective recognition/regulation events that are, under normal conditions, elegantly orchestrated in time and space. This knowledge is also valuable when exploring pTyr reader domains as diagnostic tools, drug targets or therapeutic reagents to combat human diseases.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Biochemistry and the Siebens-Drake Medical Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | | | | | | |
Collapse
|
56
|
Theillet FX, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon MK, Kriwacki RW, Landrieu I, Lippens G, Selenko P. Cell signaling, post-translational protein modifications and NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 54:217-36. [PMID: 23011410 PMCID: PMC4939263 DOI: 10.1007/s10858-012-9674-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/07/2012] [Indexed: 05/13/2023]
Abstract
Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Caroline Smet-Nocca
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Stamatios Liokatis
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Rossukon Thongwichian
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Jonas Kosten
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Mi-Kyung Yoon
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Isabelle Landrieu
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Guy Lippens
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Philipp Selenko
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| |
Collapse
|
57
|
Abstract
Modular protein interaction domains (PIDs) that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some PIDs such as SH2, 14-3-3, Chromo, and Bromo domains serve to recognize posttranslational modification (PTM) of amino acids (such as phosphorylation, acetylation, methylation, etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PSD-95/Discs-large/ZO-1 (PDZ) domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate-specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High-throughput (HTP) analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry, or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls associated with HTP analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of PIDs and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
58
|
Modified SH2 domain to phototrap and identify phosphotyrosine proteins from subcellular sites within cells. Proc Natl Acad Sci U S A 2012; 109:E2929-38. [PMID: 23027962 DOI: 10.1073/pnas.1207358109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spatial regulation of tyrosine phosphorylation is important for many aspects of cell biology. However, phosphotyrosine accounts for less than 1% of all phosphorylated substrates, and it is typically a very transient event in vivo. These factors complicate the identification of key tyrosine kinase substrates, especially in the context of their extraordinary spatial organization. Here, we describe an approach to identify tyrosine kinase substrates based on their subcellular distribution from within cells. This method uses an unnatural amino acid-modified Src homology 2 (SH2) domain that is expressed within cells and can covalently trap phosphotyrosine proteins on exposure to light. This SH2 domain-based photoprobe was targeted to cellular structures, such as the actin cytoskeleton, mitochondria, and cellular membranes, to capture tyrosine kinase substrates unique to each cellular region. We demonstrate that RhoA, one of the proteins associated with actin, can be phosphorylated on two tyrosine residues within the switch regions, suggesting that phosphorylation of these residues might modulate RhoA signaling to the actin cytoskeleton. We conclude that expression of SH2 domains within cellular compartments that are capable of covalent phototrapping can reveal the spatial organization of tyrosine kinase substrates that are likely to be important for the regulation of subcellular structures.
Collapse
|
59
|
Abstract
Interactions between short peptides within proteins and peptide-binding domains can trigger many important cell signaling processes, and their interactions are typically of modest affinity. A study showed that this modest affinity appears to be favored by evolution. They used phage display selection to discover "superbinder" Src Homology 2 (SH2) domains, which bound peptides with much stronger affinity than naturally occurring SH2 domains. These superbinder domains had strong biological effects, such as blocking cell signaling. Although the superbinders had higher affinity, this did not appear to reduce their specificity. In contrast, SH2-binding peptides from bacterial pathogens have evolved to exhibit promiscuity of binding to multiple SH2 domains, carried within effector proteins that subvert signaling upon entry into the mammalian cell. Because there are many potential peptide binders of the SH2 domain found in numerous human proteins, modest affinity not only may optimize transient signaling mediated by reversible interactions but also may minimize off-target deleterious binding effects. The stage is set for a more thorough evaluation of the specificity and off-target impact of both naturally occurring and artificial domains and peptides. This may help define both targets and reagents for therapeutic intervention in key signaling processes mediated by short peptides.
Collapse
Affiliation(s)
- Niall J Haslam
- UCD Complex and Adaptive Systems Laboratory, UCD School of Medicine and Medical Sciences, and UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
60
|
Kaneko T, Huang H, Cao X, Li X, Li C, Voss C, Sidhu SS, Li SSC. Superbinder SH2 Domains Act as Antagonists of Cell Signaling. Sci Signal 2012; 5:ra68. [DOI: 10.1126/scisignal.2003021] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
61
|
Capra EJ, Perchuk BS, Skerker JM, Laub MT. Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families. Cell 2012; 150:222-32. [PMID: 22770222 PMCID: PMC3415470 DOI: 10.1016/j.cell.2012.05.033] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/23/2012] [Accepted: 05/18/2012] [Indexed: 11/30/2022]
Abstract
Orthologous proteins often harbor numerous substitutions, but whether these differences result from neutral or adaptive processes is usually unclear. To tackle this challenge, we examined the divergent evolution of a model bacterial signaling pathway comprising the kinase PhoR and its cognate substrate PhoB. We show that the specificity-determining residues of these proteins are typically under purifying selection but have, in α-proteobacteria, undergone a burst of diversification followed by extended stasis. By reversing mutations that accumulated in an α-proteobacterial PhoR, we demonstrate that these substitutions were adaptive, enabling PhoR to avoid crosstalk with a paralogous pathway that arose specifically in α-proteobacteria. Our findings demonstrate that duplication and the subsequent need to avoid crosstalk strongly influence signaling protein evolution. These results provide a concrete example of how system-wide insulation can be achieved postduplication through a surprisingly limited number of mutations. Our work may help explain the apparent ease with which paralogous protein families expanded in all organisms.
Collapse
Affiliation(s)
- Emily J Capra
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
62
|
SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun Signal 2012; 10:27. [PMID: 22974441 PMCID: PMC3514216 DOI: 10.1186/1478-811x-10-27] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/01/2012] [Indexed: 12/31/2022] Open
Abstract
Specific peptide ligand recognition by modular interaction domains is essential for the fidelity of information flow through the signal transduction networks that control cell behavior in response to extrinsic and intrinsic stimuli. Src homology 2 (SH2) domains recognize distinct phosphotyrosine peptide motifs, but the specific sites that are phosphorylated and the complement of available SH2 domains varies considerably in individual cell types. Such differences are the basis for a wide range of available protein interaction microstates from which signaling can evolve in highly divergent ways. This underlying complexity suggests the need to broadly map the signaling potential of systems as a prerequisite for understanding signaling in specific cell types as well as various pathologies that involve signal transduction such as cancer, developmental defects and metabolic disorders. This report describes interactions between SH2 domains and potential binding partners that comprise initial signaling downstream of activated fibroblast growth factor (FGF), insulin (Ins), and insulin-like growth factor-1 (IGF-1) receptors. A panel of 50 SH2 domains screened against a set of 192 phosphotyrosine peptides defines an extensive potential interactome while demonstrating the selectivity of individual SH2 domains. The interactions described confirm virtually all previously reported associations while describing a large set of potential novel interactions that imply additional complexity in the signaling networks initiated from activated receptors. This study of pTyr ligand binding by SH2 domains provides valuable insight into the selectivity that underpins complex signaling networks that are assembled using modular protein interaction domains.
Collapse
|
63
|
Edimo WE, Janssens V, Waelkens E, Erneux C. Reversible Ser/Thr SHIP phosphorylation: a new paradigm in phosphoinositide signalling?: Targeting of SHIP1/2 phosphatases may be controlled by phosphorylation on Ser and Thr residues. Bioessays 2012; 34:634-42. [PMID: 22641604 DOI: 10.1002/bies.201100195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphoinositide (PI) phosphatases such as the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.
Collapse
Affiliation(s)
- William's Elong Edimo
- Institut de Recherche Interdisciplinaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | | | | | | |
Collapse
|
64
|
Haura EB. From modules to medicine: How modular domains and their associated networks can enable personalized medicine. FEBS Lett 2012; 586:2580-5. [PMID: 22575759 DOI: 10.1016/j.febslet.2012.04.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 01/09/2023]
Abstract
Unveiling of cancer genomes is unleashing new therapeutic strategies for cancer. With cancer parts lists in hand, new approaches to personalized medicine can be developed by understanding the assembly of cancer machines using modular domains in proteins and their associated networks. Using the Src-homology-2 (SH2) domain as an example, new profiling approaches can discern global patterns of tyrosine phosphorylation in cancer cells that can enable molecular cancer medicine. Identifying and quantifying protein-protein interactions also has the potential to subtype tumors and guide clinical decision making. These approaches should extend the impact of genomics through viewing the architecture of cancer systems and improve predictions of patient outcome and therapeutic response, as well as guide combination therapy approaches that attack cancer systems.
Collapse
Affiliation(s)
- Eric B Haura
- Department of Thoracic Oncology Program and Experimental Therapeutics Program, The H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
65
|
Liu BA, Engelmann BW, Nash PD. The language of SH2 domain interactions defines phosphotyrosine-mediated signal transduction. FEBS Lett 2012; 586:2597-605. [PMID: 22569091 DOI: 10.1016/j.febslet.2012.04.054] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Natural languages arise in an unpremeditated fashion resulting in words and syntax as individual units of information content that combine in a manner that is both complex and contextual, yet intuitive to a native reader. In an analogous manner, protein interaction domains such as the Src Homology 2 (SH2) domain recognize and "read" the information contained within their cognate peptide ligands to determine highly selective protein-protein interactions that underpin much of cellular signal transduction. Herein, we discuss how contextual sequence information, which combines the use of permissive and non-permissive residues within a parent motif, is a defining feature of selective interactions across SH2 domains. Within a system that reads phosphotyrosine modifications this provides crucial information to distinguish preferred interactions. This review provides a structural and biochemical overview of SH2 domain binding to phosphotyrosine-containing peptide motifs and discusses how the diverse set of SH2 domains is able to differentiate phosphotyrosine ligands.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario, Canada M5G 1X5
| | | | | |
Collapse
|
66
|
Nash PD. Why modules matter. FEBS Lett 2012; 586:2572-4. [PMID: 22710154 DOI: 10.1016/j.febslet.2012.04.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 04/23/2012] [Accepted: 04/24/2012] [Indexed: 11/29/2022]
Abstract
The serendipitous discovery of the SH2 domain unleashed a sea-change in our conceptual molecular understanding of protein function. The reductionist approaches that followed from the recognition of modular protein interaction domains transformed our understanding of cellular signal transduction systems, how they evolve and how they may be manipulated. We now recognize thousands of conserved protein modules - many of which have been described in structure and function, implicated in disease, or underlie targeted therapeutics. The reductionist study of isolated protein modules has enabled the reconstruction of the protein interaction networks that underlie cellular signalling. Protein modules themselves are becoming tools to probe cellular activation states and identify key interactions hubs in both normal and diseased cells and the concept of protein modularity is central to the field of synthetic biology. This brief word of introduction serves to highlight the historical impact of the very powerful idea of protein modules and sets the stage for the exciting on-going discoveries discussed in this issue.
Collapse
Affiliation(s)
- Piers D Nash
- Ben May Department for Cancer Research and the Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
67
|
Lewitzky M, Simister PC, Feller SM. Beyond 'furballs' and 'dumpling soups' - towards a molecular architecture of signaling complexes and networks. FEBS Lett 2012; 586:2740-50. [PMID: 22710161 DOI: 10.1016/j.febslet.2012.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 04/16/2012] [Indexed: 12/14/2022]
Abstract
The molecular architectures of intracellular signaling networks are largely unknown. Understanding their design principles and mechanisms of processing information is essential to grasp the molecular basis of virtually all biological processes. This is particularly challenging for human pathologies like cancers, as essentially each tumor is a unique disease with vastly deranged signaling networks. However, even in normal cells we know almost nothing. A few 'signalosomes', like the COP9 and the TCR signaling complexes have been described, but detailed structural information on their architectures is largely lacking. Similarly, many growth factor receptors, for example EGF receptor, insulin receptor and c-Met, signal via huge protein complexes built on large platform proteins (Gab, Irs/Dok, p130Cas[BCAR1], Frs families etc.), which are structurally not well understood. Subsequent higher order processing events remain even more enigmatic. We discuss here methods that can be employed to study signaling architectures, and the importance of too often neglected features like macromolecular crowding, intrinsic disorder in proteins and the sophisticated cellular infrastructures, which need to be carefully considered in order to develop a more mature understanding of cellular signal processing.
Collapse
Affiliation(s)
- Marc Lewitzky
- Biological Systems Architecture Group, Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, Oxford OX3 9DS, United Kingdom.
| | | | | |
Collapse
|
68
|
Gfeller D. Uncovering new aspects of protein interactions through analysis of specificity landscapes in peptide recognition domains. FEBS Lett 2012; 586:2764-72. [PMID: 22710167 DOI: 10.1016/j.febslet.2012.03.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 12/20/2022]
Abstract
Protein interactions underlie all biological processes. An important class of protein interactions, often observed in signaling pathways, consists of peptide recognition domains binding short protein segments on the surface of their target proteins. Recent developments in experimental techniques have uncovered many such interactions and shed new lights on their specificity. To analyze these data, novel computational methods have been introduced that can accurately describe the specificity landscape of peptide recognition domains and predict new interactions. Combining large-scale analysis of binding specificity data with structure-based modeling can further reveal new biological insights into the molecular recognition events underlying signaling pathways.
Collapse
Affiliation(s)
- David Gfeller
- Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
69
|
Miller WT. Tyrosine kinase signaling and the emergence of multicellularity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1053-7. [PMID: 22480439 DOI: 10.1016/j.bbamcr.2012.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/30/2022]
Abstract
Tyrosine phosphorylation is an essential element of signal transduction in multicellular animals. Although tyrosine kinases were originally regarded as specific to the metazoan lineage, it is now clear that they evolved prior to the split between unicellular and multicellular eukaryotes (≈600million years ago). Genome analyses of choanoflagellates and other protists show an abundance of tyrosine kinases that rivals the most complex animals. Some of these kinases are orthologs of metazoan enzymes (e.g., Src), but others display unique domain compositions not seen in any metazoan. Biochemical experiments have highlighted similarities and differences between the unicellular and multicellular tyrosine kinases. In particular, it appears that the complex systems of kinase autoregulation may have evolved later in the metazoan lineage.
Collapse
Affiliation(s)
- W Todd Miller
- Department of Physiology and Biophysics, School of Medcine, Stony Brook University, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
70
|
Huculeci R, Buts L, Lenaerts T, van Nuland NAJ, Garcia-Pino A. Purification, crystallization and preliminary X-ray diffraction analysis of the Fyn SH2 domain and its complex with a phosphotyrosine peptide. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:359-64. [PMID: 22442244 PMCID: PMC3310552 DOI: 10.1107/s1744309112004186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/31/2012] [Indexed: 11/10/2022]
Abstract
SH2 domains are widespread protein-binding modules that recognize phosphotyrosines and play central roles in intracellular signalling pathways. The SH2 domain of the human protein tyrosine kinase Fyn has been expressed, purified and crystallized in the unbound state and in complex with a high-affinity phosphotyrosine peptide. X-ray data were collected to a resolution of 2.00 Å for the unbound form and 1.40 Å for the protein in complex with the phosphotyrosine peptide.
Collapse
Affiliation(s)
- Radu Huculeci
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Lieven Buts
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Tom Lenaerts
- MLG, Département d’Informatique, Université Libre de Bruxelles, Boulevard du Triomphe CP212, B-1050 Brussels, Belgium
- AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Nico A. J. van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Abel Garcia-Pino
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
71
|
Huang R, Fang P, Kay BK. Isolation of monobodies that bind specifically to the SH3 domain of the Fyn tyrosine protein kinase. N Biotechnol 2011; 29:526-33. [PMID: 22155429 DOI: 10.1016/j.nbt.2011.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/24/2011] [Accepted: 11/27/2011] [Indexed: 11/15/2022]
Abstract
Fyn is a nonreceptor protein tyrosine kinase that belongs to a highly conserved kinase family, Src family kinases. Fyn plays an important role in inflammatory processes and neuronal functions. To generate a synthetic affinity reagent that can be used to probe Fyn, a phage-display library of fibronectin type III monobodies was affinity selected with the Src Homology 3 (SH3) domain of Fyn and three binders were isolated. One of the three binders, G9, is specific in binding to the SH3 domain of Fyn, but not to the other members of the Src family (i.e. Blk, Fgr, Hck, Lck, Lyn, Src and Yes), even though they share 51-81% amino acid identity. The other two bind principally to the Fyn SH3 domain, with some cross-reactivity to the Yes SH3 domain. The G9 binder has a dissociation constant of 166±6nM, as measured by isothermal titration calorimetry, and binds only to the Fyn SH3 domain out of 150 human SH3 domains examined in an array. Interestingly, although the G9 monobody lacks proline in its randomized BC and FG loops, it binds at the same site on the SH3 domain as proline-rich ligands, as revealed by competition assays. The G9 monobody, identified in this study, may be used as a highly selective probe for detecting and purifying cellular Fyn kinase.
Collapse
Affiliation(s)
- Renhua Huang
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St., 3240 SES - MC 066, Chicago, IL 60607-7060, USA
| | | | | |
Collapse
|