51
|
Li X, Zhang J, Li D, He C, He K, Xue T, Wan L, Zhang C, Liu Q. Astrocytic ApoE reprograms neuronal cholesterol metabolism and histone-acetylation-mediated memory. Neuron 2021; 109:957-970.e8. [DOI: 10.1016/j.neuron.2021.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 10/10/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
|
52
|
Vinarskaya AK, Balaban PM, Roshchin MV, Zuzina AB. Sodium butyrate as a selective cognitive enhancer for weak or impaired memory. Neurobiol Learn Mem 2021; 180:107414. [PMID: 33610771 DOI: 10.1016/j.nlm.2021.107414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 01/09/2023]
Abstract
Several recent studies showed that memory can be modulated by manipulating chromatin modifications using histone deacetylase (HDAC) inhibitors during memory formation, consolidation, and reconsolidation. We used a context fear conditioning paradigm with minimal non-painful current as a reinforcement, what elicited alertness to the context and freezing during tests in rats. Such paradigm resulted in a relatively weak memory in significant part of the rats. Here, we demonstrate that intraperitoneal administration of the HDAC inhibitor sodium butyrate immediately following memory reactivation, produced memory enhancement in rats with weak memory, however, not in rats with strong memory. Additionally, we investigated the ability of the HDAC inhibitor sodium butyrate to restore the contextual memory impaired due to the blockade of protein synthesis during memory reactivation. The results obtained evidence that the HDAC inhibitor sodium butyrate reinstated the impaired contextual memory. This enhancement effect is consistent with other studies demonstrating a role for HDAC inhibitors in the facilitation of contextual fear.
Collapse
Affiliation(s)
- Aliya Kh Vinarskaya
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia.
| | - Pavel M Balaban
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| | - Matvey V Roshchin
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia
| | - Alena B Zuzina
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5A Butlerova St., Moscow 117485, Russia.
| |
Collapse
|
53
|
Rpd3/CoRest-mediated activity-dependent transcription regulates the flexibility in memory updating in Drosophila. Nat Commun 2021; 12:628. [PMID: 33504795 PMCID: PMC7840730 DOI: 10.1038/s41467-021-20898-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
Consolidated memory can be preserved or updated depending on the environmental change. Although such conflicting regulation may happen during memory updating, the flexibility of memory updating may have already been determined in the initial memory consolidation process. Here, we explored the gating mechanism for activity-dependent transcription in memory consolidation, which is unexpectedly linked to the later memory updating in Drosophila. Through proteomic analysis, we discovered that the compositional change in the transcriptional repressor, which contains the histone deacetylase Rpd3 and CoRest, acts as the gating mechanism that opens and closes the time window for activity-dependent transcription. Opening the gate through the compositional change in Rpd3/CoRest is required for memory consolidation, but closing the gate through Rpd3/CoRest is significant to limit future memory updating. Our data indicate that the flexibility of memory updating is determined through the initial activity-dependent transcription, providing a mechanism involved in defining memory state.
Collapse
|
54
|
Nuclear receptor corepressors in intellectual disability and autism. Mol Psychiatry 2020; 25:2220-2236. [PMID: 32034290 PMCID: PMC7842082 DOI: 10.1038/s41380-020-0667-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/24/2019] [Accepted: 01/28/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorder (ASD) is characterized by neurocognitive dysfunctions, such as impaired social interaction and language learning. Gene-environment interactions have a pivotal role in ASD pathogenesis. Nuclear receptor corepressors (NCORs) are transcription co-regulators physically associated with histone deacetylases (HDACs) and many known players in ASD etiology such as transducin β-like 1 X-linked receptor 1 and methyl-CpG binding protein 2. The epigenome-modifying NCOR complex is sensitive to many ASD risk factors, including HDAC inhibitor valproic acid and a variety of endocrine factors, xenobiotic chemicals, or metabolites that can directly bind to multiple nuclear receptors. Here, we review recent studies of NCORs in neurocognition using animal models and human genetics approaches. We discuss functional interplays between NCORs and other known players in ASD etiology. It is conceivable that the NCOR complex may bridge the in utero environmental risk factors of ASD with epigenetic remodeling and can serve as a converging point for many gene-environment interactions in the pathogenesis of ASD and intellectual disability.
Collapse
|
55
|
Design, synthesis and biological evaluation of dual-function inhibitors targeting NMDAR and HDAC for Alzheimer’s disease. Bioorg Chem 2020; 103:104109. [DOI: 10.1016/j.bioorg.2020.104109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
|
56
|
Borodinova AA, Balaban PM. Epigenetic Regulation as a Basis for Long-Term Changes in the Nervous System: In Search of Specificity Mechanisms. BIOCHEMISTRY (MOSCOW) 2020; 85:994-966. [DOI: 10.1134/s0006297920090023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Adaptive long-term changes in the functioning of nervous system (plasticity, memory) are not written in the genome, but are directly associated with the changes in expression of many genes comprising epigenetic regulation. Summarizing the known data regarding the role of epigenetics in regulation of plasticity and memory, we would like to highlight several key aspects. (i) Different chromatin remodeling complexes and DNA methyltransferases can be organized into high-order multiprotein repressor complexes that are cooperatively acting as the “molecular brake pads”, selectively restricting transcriptional activity of specific genes at rest. (ii) Relevant physiological stimuli induce a cascade of biochemical events in the activated neurons resulting in translocation of different signaling molecules (protein kinases, NO-containing complexes) to the nucleus. (iii) Stimulus-specific nitrosylation and phosphorylation of different epigenetic factors is linked to a decrease in their enzymatic activity or changes in intracellular localization that results in temporary destabilization of the repressor complexes. (iv) Removing “molecular brakes” opens a “critical time window” for global and local epigenetic changes, triggering specific transcriptional programs and modulation of synaptic connections efficiency. It can be assumed that the reversible post-translational histone modifications serve as the basis of plastic changes in the neural network. On the other hand, DNA methylation and methylation-dependent 3D chromatin organization can serve a stable molecular basis for long-term maintenance of plastic changes and memory.
Collapse
|
57
|
BET bromodomains as novel epigenetic targets for brain health and disease. Neuropharmacology 2020; 181:108306. [PMID: 32946883 DOI: 10.1016/j.neuropharm.2020.108306] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
Epigenetic pharmacotherapy for CNS-related diseases is a burgeoning area of research. In particular, members of the bromodomain and extra-terminal domain (BET) family of proteins have emerged as intriguing therapeutic targets due to their putative involvement in an array of brain diseases. With their ability to bind to acetylated histones and act as a scaffold for chromatin modifying complexes, BET proteins were originally thought of as passive epigenetic 'reader' proteins. However, new research depicts a more complex reality where BET proteins act as key nodes in lineage-specific and signal-dependent transcriptional mechanisms to influence disease-relevant functions. Amid a recent wave of drug development efforts from basic scientists and pharmaceutical companies, BET inhibitors are currently being studied in several CNS-related disease models, but safety and tolerability remain a concern. Here we review the progress in understanding the neurobiological mechanisms of BET proteins and the therapeutic potential of targeting BET proteins for brain health and disease.
Collapse
|
58
|
Yu Z, Wang J, Zhang P, Wang J, Cui J, Wang H. Enriched environment improves sevoflurane-induced cognitive impairment during late-pregnancy via hippocampal histone acetylation. ACTA ACUST UNITED AC 2020; 53:e9861. [PMID: 32813852 PMCID: PMC7433840 DOI: 10.1590/1414-431x20209861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Fetal exposure to sevoflurane induces long-term cognitive impairment. Histone acetylation regulates the transcription of genes involved in memory formation. We investigated whether sevoflurane exposure during late-pregnancy induces neurocognitive impairment in offspring, and if this is related to histone acetylation dysfunction. We determined whether the effects could be reversed by an enriched environment (EE). Pregnant rats were exposed to 2.5% sevoflurane or control for 1, 3, or 6 h on gestational day 18 (G18). Sevoflurane reduced brain-derived neurotrophic factor (BDNF), acetyl histone H3 (Ac-H3), and Ac-H4 levels and increased histone deacetylases-2 (HDAC2) and HDAC3 levels in the hippocampus of the offspring on postnatal day 1 (P1) and P35. Long-term potentiation was inhibited, and spatial learning and memory were impaired in the 6-h sevoflurane group at P35. EE alleviated sevoflurane-induced cognitive dysfunction and increased hippocampal BDNF, Ac-H3, and Ac-H4. Exposure to 2.5% sevoflurane for 3 h during late-pregnancy decreased hippocampal BDNF, Ac-H3, and Ac-H4 in the offspring but had no effect on cognitive function. However, when the exposure time was 6 h, impaired spatial learning and memory were linked to reduced BDNF, Ac-H3, and Ac-H4, which could be reversed by EE.
Collapse
Affiliation(s)
- Zhiqiang Yu
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Jinxin Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Peijun Zhang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Jianbo Wang
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Jian Cui
- Department of Anesthesiology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin Third Central Hospital, Nankai University Affinity the Third Central Hospital, Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| |
Collapse
|
59
|
Abstract
It is now 30 years since the first report of a potent zinc-dependent histone deacetylase (HDAC) inhibitor appeared. Since then, five HDAC inhibitors have received regulatory approval for cancer chemotherapy while many others are in clinical development for oncology as well as other therapeutic indications. This Perspective reviews the biological and medicinal chemistry advances over the past 3 decades with an emphasis on the design of selective inhibitors that discriminate between the 11 human HDAC isoforms.
Collapse
Affiliation(s)
- Terence C S Ho
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Alex H Y Chan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - A Ganesan
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
60
|
Abstract
Neuroimaging with positron emission tomography (PET) is the most powerful tool for understanding pharmacology, neurochemistry, and pathology in the living human brain. This technology combines high-resolution scanners to measure radioactivity throughout the human body with specific, targeted radioactive molecules, which allow measurements of a myriad of biological processes in vivo. While PET brain imaging has been active for almost 40 years, the pace of development for neuroimaging tools, known as radiotracers, and for quantitative analytical techniques has increased dramatically over the past decade. Accordingly, the fundamental questions that can be addressed with PET have expanded in basic neurobiology, psychiatry, neurology, and related therapeutic development. In this review, we introduce the field of human PET neuroimaging, some of its conceptual underpinnings, and motivating questions. We highlight some of the more recent advances in radiotracer development, quantitative modeling, and applications of PET to the study of the human brain.
Collapse
Affiliation(s)
- Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA;
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|
61
|
Histone Deacetylases May Mediate Surgery-Induced Impairment of Learning, Memory, and Dendritic Development. Mol Neurobiol 2020; 57:3702-3711. [PMID: 32564283 DOI: 10.1007/s12035-020-01987-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Postoperative cognitive dysfunction (POCD) affects millions of patients each year in the USA and has been recognized as a significant complication after surgery. Epigenetic regulation of learning and memory has been shown. For example, an increase of histone deacetylases (HDACs), especially HDAC2, which epigenetically regulates gene expression, impairs learning and memory. However, the epigenetic contribution to the development of POCD is not known. Also, the effects of living situation on POCD have not been investigated. Here, we showed that mice that lived alone before the surgery and lived in a group after the surgery and mice that lived in a group before surgery and lived alone after surgery had impairment of learning and memory compared with the corresponding control mice without surgery. Surgery increased the activity of HDACs including HDAC2 but not HDAC1 and decreased brain-derived neurotrophic factor (BDNF), dendritic arborization, and spine density in the hippocampus. Suberanilohydroxamic acid (SAHA), a relatively specific inhibitor of HDAC2, attenuated these surgery effects. SAHA did not change BDNF expression, dendritic arborization, and spine density in mice without surgery. Surgery also reduced the activity of nuclear histone acetyltransferases (HATs). This effect was not affected by SAHA. Our results suggest that surgery activates HDACs, which then reduces BDNF and dendritic arborization to develop POCD. Thus, epigenetic change contributes to the occurrence of POCD.
Collapse
|
62
|
Zuzina AB, Vinarskaya AK, Balaban PM. Histone deacetylase inhibitors rescue the impaired memory in terrestrial snails. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:639-649. [PMID: 32409855 DOI: 10.1007/s00359-020-01422-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 01/17/2023]
Abstract
It is becoming increasingly clear that the long-term plasticity can be regulated via histone modifications. Many studies demonstrated the role of histone acetylation in acquisition, maintenance, and extinction of long-term memory. Nonetheless, the role of histone acetylation in memory reinstatement following its disruption by antimnemonic treatments was not studied in details. In terrestrial snails, we examined effects of the histone deacetylases inhibitors (HDACi) sodium butyrate (NaB) and trichostatin A (TSA) on reinstatement of the context fear memory impaired by antimnemonic agents such as protein synthesis blocker anisomycin (ANI) + reminding or a specific inhibitor of protein-kinase Mζ, zeta inhibitory peptide (ZIP). It was observed that both NaB and TSA applications restored the ANI-impaired context memory regardless of memory reactivation, while a combination of NaB or TSA plus memory reactivation (or additional training) was necessary for the effective reinstatement of the ZIP-impaired memory. Additionally, NaB injections significantly facilitated development of long-term memory in animals with weak memory, while no effect was observed in animals with strong memory. The data obtained confirmed the assumption that histone acetylation is a critical regulatory component of memory development and reinstatement.
Collapse
Affiliation(s)
- Alena B Zuzina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.
| | - Alia Kh Vinarskaya
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
63
|
Liu XY, Yao B, Hao JR, Jin L, Gao Y, Yang X, Liu L, Sun XY, Sun N, Gao C. IQGAP1/ERK regulates fear memory formation via histone posttranslational modifications induced by HDAC2. Neurobiol Learn Mem 2020; 171:107210. [DOI: 10.1016/j.nlm.2020.107210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 02/11/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022]
|
64
|
Wu Z, Zhang Y, Zhang Y, Zhao P. Sirtuin 2 Inhibition Attenuates Sevoflurane-Induced Learning and Memory Deficits in Developing Rats via Modulating Microglial Activation. Cell Mol Neurobiol 2020; 40:437-446. [PMID: 31713761 PMCID: PMC11449016 DOI: 10.1007/s10571-019-00746-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Abstract
Sevoflurane is a widely used inhalational anesthetic in pediatric medicine that has been reported to have deleterious effects on the developing brain. Strategies to mitigate these detrimental effects are lacking. Sirtuin 2 (SIRT2) is a member of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases involved in a wide range of pathophysiological processes. SIRT2 inhibition has emerged as a promising treatment for an array of neurological disorders. However, the direct effects of SIRT2 on anesthesia-induced damage to the immature brain are unclear. Neonatal rats were exposed to 3% sevoflurane or 30% oxygen for 2 h daily with or without SIRT2 inhibitor AK7 pretreatment from postnatal day 7 (P7) to P9. One cohort of rats were euthanized 6, 12, and/or 24 h after the last gas exposure, and brain tissues were harvested for biochemical analysis and/or immunohistochemical examination. Cognitive functions were evaluated using the open field and Morris water maze tests on P25 and P28-32, respectively. SIRT2 was significantly up-regulated in neonatal rat hippocampus at 6 and 12 h post-anesthesia. Pretreatment with SIRT2 inhibitor AK7 reversed sevoflurane-induced hippocampus-dependent cognitive impairments. Furthermore, AK7 administration mitigated sevoflurane-induced neuroinflammation and microglial activation. Concomitantly, AK7 inhibited pro-inflammatory/M1-related markers and increased anti-inflammatory/M2-related markers in microglia. AK7 might prevent sevoflurane-induced neuroinflammation by switching microglia from the M1 to M2 phenotype. Downregulation of SIRT2 may be a novel therapeutic target for alleviating anesthesia-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yi Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yinong Zhang
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
65
|
Wong LW, Chong YS, Wong WLE, Sajikumar S. Inhibition of Histone Deacetylase Reinstates Hippocampus-Dependent Long-Term Synaptic Plasticity and Associative Memory in Sleep-Deprived Mice. Cereb Cortex 2020; 30:4169-4182. [PMID: 32188968 DOI: 10.1093/cercor/bhaa041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep plays an important role in the establishment of long-term memory; as such, lack of sleep severely impacts domains of our health including cognitive function. Epigenetic mechanisms regulate gene transcription and protein synthesis, playing a critical role in the modulation of long-term synaptic plasticity and memory. Recent evidences indicate that transcriptional dysregulation as a result of sleep deprivation (SD) may contribute to deficits in plasticity and memory function. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, a clinically approved drug for human use, has been shown to ameliorate cognitive deficits in several neurological disease models. To further explore the therapeutic effect of SAHA, we have examined its potential role in improving the SD-mediated impairments in long-term plasticity, associative plasticity, and associative memory. Here we show that SAHA preserves long-term plasticity, associative plasticity, and associative memory in SD hippocampus. Furthermore, we find that SAHA prevents SD-mediated epigenetic changes by upregulating histone acetylation, hence preserving the ERK-cAMP-responsive element-binding protein (CREB)/CREB-binding protein-brain-derived neurotrophic factor pathway in the hippocampus. These data demonstrate that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss. Thus, SAHA could be a potential therapeutic agent in improving SD-related memory deficits.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Yee Song Chong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Win Lee Edwin Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
66
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure engenders intergenerational downregulation and aberrant posttranslational modification of cardinal epigenetic factors in the frontal cortices, striata, and hippocampi of adolescent mice. Epigenetics Chromatin 2020; 13:13. [PMID: 32138755 PMCID: PMC7059320 DOI: 10.1186/s13072-020-00332-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maternal smoking of traditional or electronic cigarettes during pregnancy, which constitutes developmental nicotine exposure (DNE), heightens the risk of neurodevelopmental disorders including ADHD, autism, and schizophrenia in children. Modeling the intergenerationally transmissible impacts of smoking during pregnancy, we previously demonstrated that both the first- and second-generation adolescent offspring of nicotine-exposed female mice exhibit enhanced nicotine preference, hyperactivity and risk-taking behaviors, aberrant rhythmicity of home cage activity, nicotinic acetylcholine receptor and dopamine transporter dysfunction, impaired furin-mediated proBDNF proteolysis, hypocorticosteronemia-related glucocorticoid receptor hypoactivity, and global DNA hypomethylation in the frontal cortices and striata. This ensemble of multigenerational DNE-induced behavioral, neuropharmacological, neurotrophic, neuroendocrine, and DNA methylomic anomalies recapitulates the pathosymptomatology of neurodevelopmental disorders such as ADHD, autism, and schizophrenia. Further probing the epigenetic bases of DNE-induced multigenerational phenotypic aberrations, the present study examined the expression and phosphorylation of key epigenetic factors via an array of immunoblot experiments. RESULTS Data indicate that DNE confers intergenerational deficits in corticostriatal DNA methyltransferase 3A (DNMT3A) expression accompanied by downregulation of methyl-CpG-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2) in the frontal cortices and hippocampi, while the expression of ten-eleven translocase methylcytosine dioxygenase 2 (TET2) is unaltered. Moreover, DNE evokes multigenerational abnormalities in HDAC2 (Ser394) but not MeCP2 (Ser421) phosphorylation in the frontal cortices, striata, and hippocampi. CONCLUSIONS In light of the extensive gene regulatory roles of DNMT3A, MeCP2, and HDAC2, the findings of this study that DNE elicits downregulation and aberrant posttranslational modification of these factors in both first- and second-generation DNE mice suggest that epigenetic perturbations may constitute a mechanistic hub for the intergenerational transmission of DNE-induced neurodevelopmental disorder-like phenotypes.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, USA.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, USA
| |
Collapse
|
67
|
Poplawski SG, Garbett KA, McMahan RL, Kordasiewicz HB, Zhao H, Kennedy AJ, Goleva SB, Sanders TH, Motley ST, Swayze EE, Ecker DJ, Sweatt JD, Michael TP, Greer CB. An Antisense Oligonucleotide Leads to Suppressed Transcription of Hdac2 and Long-Term Memory Enhancement. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1399-1412. [PMID: 32160709 PMCID: PMC7047133 DOI: 10.1016/j.omtn.2020.01.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/27/2022]
Abstract
Knockout of the memory suppressor gene histone deacetylase 2 (Hdac2) in mice elicits cognitive enhancement, and drugs that block HDAC2 have potential as therapeutics for disorders affecting memory. Currently available HDAC2 catalytic activity inhibitors are not fully isoform specific and have short half-lives. Antisense oligonucleotides (ASOs) are drugs that elicit extremely long-lasting, specific inhibition through base pairing with RNA targets. We utilized an ASO to reduce Hdac2 messenger RNA (mRNA) in mice and determined its longevity, specificity, and mechanism of repression. A single injection of the Hdac2-targeted ASO in the central nervous system produced persistent reduction in HDAC2 protein and Hdac2 mRNA levels for 16 weeks. It enhanced object location memory for 8 weeks. RNA sequencing (RNA-seq) analysis of brain tissues revealed that the repression was specific to Hdac2 relative to related Hdac isoforms, and Hdac2 reduction caused alterations in the expression of genes involved in extracellular signal-regulated kinase (ERK) and memory-associated immune signaling pathways. Hdac2-targeted ASOs also suppress a nonpolyadenylated Hdac2 regulatory RNA and elicit direct transcriptional suppression of the Hdac2 gene through stalling RNA polymerase II. These findings identify transcriptional suppression of the target gene as a novel mechanism of action of ASOs.
Collapse
Affiliation(s)
- Shane G Poplawski
- J. Craig Venter Institute, La Jolla, CA, USA; Ibis Biosciences and Abbott Company, Carlsbad, CA, USA
| | | | - Rebekah L McMahan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | - Hien Zhao
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Slavina B Goleva
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Teresa H Sanders
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | | | | | - David J Ecker
- Ibis Biosciences and Abbott Company, Carlsbad, CA, USA
| | - J David Sweatt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Todd P Michael
- J. Craig Venter Institute, La Jolla, CA, USA; Ibis Biosciences and Abbott Company, Carlsbad, CA, USA.
| | - Celeste B Greer
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
68
|
Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 2020; 243:117278. [PMID: 31926248 DOI: 10.1016/j.lfs.2020.117278] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 02/06/2023]
Abstract
Reversal of aging symptoms and related disorders are the challenging task where epigenetic is a crucial player that includes DNA methylation, histone modification; chromatin remodeling and regulation that are linked to the progression of various neurodegenerative disorders (NDDs). Overexpression of various histone deacetylase (HDACs) can activate Glycogen synthase kinase 3 which promotes the hyperphosphorylation of tau and inhibits its degradation. While HDAC is important for maintaining the neuronal morphology and brain homeostasis, at the same time, these enzymes are promoting neurodegeneration, if it is deregulated. Different experimental models have also confirmed the neuroprotective effects caused by HDAC enzymes through the regulation of neuronal apoptosis, inflammatory response, DNA damage, cell cycle regulation, and metabolic dysfunction. Apart from transcriptional regulation, protein-protein interaction, histone post-translational modifications, deacetylation mechanism of non-histone protein and direct association with disease proteins have been linked to neuronal imbalance. Histone deacetylases inhibitors (HDACi) can be able to alter gene expression and shown its efficacy on experimental models, and in clinical trials for NDD's and found to be a very promising therapeutic agent with certain limitation, for instance, non-specific target effect, isoform-selectivity, specificity, and limited number of predicted biomarkers. Herein, we discussed (i) the catalytic mechanism of the deacetylation process of various HDAC's in in vivo and in vitro experimental models, (ii) how HDACs are participating in neuroprotection as well as in neurodegeneration, (iii) a comprehensive role of HDACi in maintaining neuronal homeostasis and (iv) therapeutic role of biomolecules to modulate HDACs.
Collapse
|
69
|
Cantacorps L, Alfonso-Loeches S, Guerri C, Valverde O. Long-term epigenetic changes in offspring mice exposed to alcohol during gestation and lactation. J Psychopharmacol 2019; 33:1562-1572. [PMID: 31210079 DOI: 10.1177/0269881119856001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcohol exposure impairs brain development and leads to a range of behavioural and cognitive dysfunctions, termed as foetal alcohol spectrum disorders. Although different mechanisms have been proposed to participate in foetal alcohol spectrum disorders, the molecular insights of such effects are still uncertain. Using a mouse model of foetal alcohol spectrum disorder, we have previously shown that maternal binge-like alcohol drinking causes persistent effects on motor, cognitive and emotional-related behaviours associated with neuroimmune dysfunctions. AIMS In this study, we sought to evaluate whether the long-term behavioural alterations found in offspring with early exposure to alcohol are associated with epigenetic changes in the hippocampus and prefrontal cortex. METHODS Pregnant C57BL/6 female mice underwent a model procedure for binge alcohol drinking throughout both the gestation and lactation periods. Subsequently, adult offspring were assessed for their cognitive function in a reversal learning task and brain areas were extracted for epigenetic analyses. RESULTS The results demonstrated that early binge alcohol exposure induces long-term behavioural effects along with alterations in histone acetylation (histone H4 lysine 5 and histone H4 lysine 12) in the hippocampus and prefrontal cortex. The epigenetic effects were linked with an imbalance in histone acetyltransferase activity that was found to be increased in the prefrontal cortex of mice exposed to alcohol. CONCLUSIONS In conclusion, our results reveal that maternal binge-like alcohol consumption induces persistent epigenetic modifications, effects that might be associated with the long-term cognitive and behavioural impairments observed in foetal alcohol spectrum disorder models.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Alfonso-Loeches
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Centre, Valencia, Spain
| | - Consuelo Guerri
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Centre, Valencia, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
70
|
Kumar V, Joshi T, Vatsa N, Singh BK, Jana NR. Simvastatin Restores HDAC1/2 Activity and Improves Behavioral Deficits in Angelman Syndrome Model Mouse. Front Mol Neurosci 2019; 12:289. [PMID: 31849603 PMCID: PMC6901934 DOI: 10.3389/fnmol.2019.00289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/12/2019] [Indexed: 01/25/2023] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder categorized by severe disability in intellectual functions and affected by the loss of function of maternally inherited UBE3A gene. Mice deficient for the maternal Ube3a recapitulates many distinguishing behavioral features of the AS and is used as a typical model system to understand the disease pathogenic mechanism. Here, we first show a significant increase in HDAC1 and HDAC2 activities in AS mice brain from as early as embryonic day 16(E16). In depth study further reveals that the deficiency of Ube3a leads to transcriptional up-regulation of both HDAC1 and HDAC2. Restoration of HDAC1 and HDAC2 activities (as evident from the increased acetylation of histones H3 and H4) using simvastatin significantly improves the cognitive deficit and social interaction behavior in AS mice. Simvastatin treatment also restores the reduced level of BDNF in AS mice brain. Finally, we demonstrate that the treatment of simvastatin to primary cortical neuronal culture prepared from AS mice embryo also rescues altered acetylation of histones H3 and H4 and the level of BDNF. These results suggest that simvastatin could be a promising drug for the treatment of AS.
Collapse
Affiliation(s)
- Vipendra Kumar
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India
| | - Tripti Joshi
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India
| | - Naman Vatsa
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India
| | - Brijesh Kumar Singh
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Gurgaon, India.,School of Bioscience, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
71
|
3D cellular reconstruction of cortical glia and parenchymal morphometric analysis from Serial Block-Face Electron Microscopy of juvenile rat. Prog Neurobiol 2019; 183:101696. [PMID: 31550514 DOI: 10.1016/j.pneurobio.2019.101696] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/04/2023]
Abstract
With the rapid evolution in the automation of serial electron microscopy in life sciences, the acquisition of terabyte-sized datasets is becoming increasingly common. High resolution serial block-face imaging (SBEM) of biological tissues offers the opportunity to segment and reconstruct nanoscale structures to reveal spatial features previously inaccessible with simple, single section, two-dimensional images. In particular, we focussed here on glial cells, whose reconstruction efforts in literature are still limited, compared to neurons. We imaged a 750,000 cubic micron volume of the somatosensory cortex from a juvenile P14 rat, with 20 nm accuracy. We recognized a total of 186 cells using their nuclei, and classified them as neuronal or glial based on features of the soma and the processes. We reconstructed for the first time 4 almost complete astrocytes and neurons, 4 complete microglia and 4 complete pericytes, including their intracellular mitochondria, 186 nuclei and 213 myelinated axons. We then performed quantitative analysis on the three-dimensional models. Out of the data that we generated, we observed that neurons have larger nuclei, which correlated with their lesser density, and that astrocytes and pericytes have a higher surface to volume ratio, compared to other cell types. All reconstructed morphologies represent an important resource for computational neuroscientists, as morphological quantitative information can be inferred, to tune simulations that take into account the spatial compartmentalization of the different cell types.
Collapse
|
72
|
Wu Y, Xing Y, Zou D. Study of the relationship between how ethanol affects learning and memory and the expression of p21 WAF1/CIP1 in the female mouse hippocampus. Neurosci Lett 2019; 708:134354. [PMID: 31254559 DOI: 10.1016/j.neulet.2019.134354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/27/2023]
Abstract
The purpose of this study was to investigate the effects of different concentrations of ethanol on learning and memory in female mice and the corresponding interaction with histone deacetylase 1(HDAC1), estrogen receptor α(ERα) and p21 WAF1/CIP1. Data from the Morris water maze test showed that mice in the 50% ethanol group might experience cognitive impairment, while mice in the 2% ethanol group might experience enhanced cognitive capabilities. The number of damaged neurons in the hippocampal CA1 area in the 50% ethanol group was higher than the numbers observed in other groups. The expression of HDAC1 and ERα proteins was lower in the 50% ethanol group than they were in the control group, while p21 WAF1/CIP1 expression was increased. The expression of these proteins in the 2% ethanol group was completely reversed when compared to the 50% ethanol group. p21 WAF1/CIP1 was involved in the cognitive change induced by ethanol. The f2 (-400 bp to -800 bp) and f7 (-2400 bp to -2800 bp) fragments in the p21 WAF1/CIP1 promoter region were functionally active regions that experienced binding relating to HDAC1 and ERα.
Collapse
Affiliation(s)
- Yi Wu
- Department of Pathophysiology, Shenyang Medical College, 146 Huang He North Road, Shenyang Liaoning 110034, PR China.
| | - Yang Xing
- Zhengzhou Yihe Hospital Affiliated of Henan University, Zhengzhou, Henan, 450002, PR China.
| | - Dan Zou
- Department of Pathophysiology, Shenyang Medical College, 146 Huang He North Road, Shenyang Liaoning 110034, PR China.
| |
Collapse
|
73
|
Citraro R, Leo A, De Caro C, Nesci V, Gallo Cantafio ME, Amodio N, Mattace Raso G, Lama A, Russo R, Calignano A, Tallarico M, Russo E, De Sarro G. Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Mol Neurobiol 2019; 57:408-421. [PMID: 31368023 DOI: 10.1007/s12035-019-01712-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023]
Abstract
Epigenetic mechanisms, such as alterations in histone acetylation based on histone deacetylases (HDACs) activity, have been linked not only to normal brain function but also to several brain disorders including epilepsy and the epileptogenic process. In WAG/Rij rats, a genetic model of absence epilepsy, epileptogenesis and mild-depression comorbidity, we investigated the effects of two HDAC inhibitors (HDACi), namely sodium butyrate (NaB), valproic acid (VPA) and their co-administration, on the development of absence seizures and related psychiatric/neurologic comorbidities following two different experimental paradigms. Treatment effects have been evaluated by EEG recordings (EEG) and behavioural tests at different time points. Prolonged and daily VPA and NaB treatment, started before absence seizure onset (P30), significantly reduced the development of absence epilepsy showing antiepileptogenic effects. These effects were enhanced by NaB/VPA co-administration. Furthermore, early-chronic HDACi treatment improved depressive-like behaviour and cognitive performance 1 month after treatment withdrawal. WAG/Rij rats of 7 months of age showed reduced acetylated levels of histone H3 and H4, analysed by Western Blotting of homogenized brain, in comparison to WAG/Rij before seizure onset (P30). The brain histone acetylation increased significantly during treatment with NaB or VPA alone and more markedly during co-administration. We also observed decreased expression of both HDAC1 and 3 following HDACi treatment compared to control group. Our results suggest that histone modifications may have a crucial role in the development of epilepsy and early treatment with HDACi might be a possible strategy for preventing epileptogenesis also affecting behavioural comorbidities.
Collapse
Affiliation(s)
- Rita Citraro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Antonio Leo
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Carmen De Caro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Valentina Nesci
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| | - Maria E Gallo Cantafio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University and Translational Medical Oncology Unit, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | - Adriano Lama
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Calignano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Martina Tallarico
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.,Pharmacology Section, CNR, Institute of Neurological Sciences, Roccelletta di Borgia, Catanzaro, Italy
| | - Emilio Russo
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy.
| | - Giovambattista De Sarro
- Department of Health Science, School of Medicine, University of Catanzaro, Via T. Campanella, 115, 88100, Catanzaro, Italy
| |
Collapse
|
74
|
Zusso M, Barbierato M, Facci L, Skaper SD, Giusti P. Neuroepigenetics and Alzheimer's Disease: An Update. J Alzheimers Dis 2019; 64:671-688. [PMID: 29991138 DOI: 10.3233/jad-180259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of changes in gene expression which may be triggered by both genetic and environmental factors, and independent from changes to the underlying DNA sequence-a change in phenotype without a change in genotype-which in turn affects how cells read genes. Epigenetic changes represent a regular and natural occurrence but can be influenced also by factors such as age, environment, and disease state. Epigenetic modifications can manifest themselves not only as the manner in which cells terminally differentiate, but can have also deleterious effects, resulting in diseases such as cancer. At least three systems including DNA methylation, histone modification, and non-coding RNA (ncRNA)-associated gene silencing are thought to initiate and sustain epigenetic change. For example, in Alzheimer's disease (AD), both genetic and non-genetic factors contribute to disease etiopathology. While over 250 gene mutations have been related to familial AD, less than 5% of AD cases are explained by known disease genes. More than likely, non-genetic factors, probably triggered by environmental factors, are causative factors of late-onset AD. AD is associated with dysregulation of DNA methylation, histone modifications, and ncRNAs. Among the classes of ncRNA, microRNAs (miRNAs) have a well-established regulatory relevance. MicroRNAs are highly expressed in CNS neurons, where they play a major role in neuron differentiation, synaptogenesis, and plasticity. MicroRNAs impact higher cognitive functions, as their functional impairment is involved in the etiology of neurological diseases, including AD. Alterations in the miRNA network contribute to AD disease processes, e.g., in the regulation of amyloid peptides, tau, lipid metabolism, and neuroinflammation. MicroRNAs, both as biomarkers for AD and therapeutic targets, are in the early stages of exploration. In addition, emerging data suggest that altered transcription of long ncRNAs, endogenous, ncRNAs longer than 200 nucleotides, may be involved in an elevated risk for AD.
Collapse
Affiliation(s)
- Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Massimo Barbierato
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti, Padua, Italy
| |
Collapse
|
75
|
Demyanenko S, Berezhnaya E, Neginskaya M, Rodkin S, Dzreyan V, Pitinova M. Сlass II histone deacetylases in the post-stroke recovery period-expression, cellular, and subcellular localization-promising targets for neuroprotection. J Cell Biochem 2019; 120:19590-19609. [PMID: 31264264 DOI: 10.1002/jcb.29266] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Histone deacetylases (HDAC) inhibitors can protect nerve cells after a stroke, but it is unclear which HDAC isoform is involved in this effect. We studied cellular and intracellular rearrangement of class II HDACs at late periods after photothrombotic infarct (PTI) in the mouse sensorimotor cortex in the tissue surrounding the ischemia core and in the corresponding region of the contralateral hemisphere. We observed a decrease in HDAC4 in cortical neurons and an increase in its nuclear translocation. HDAC6 expression in neurons was also increased. Moreover, HDAC6-positive cells had elevated apoptosis. Tubostatin A (Tub A)-induced decrease in the activity of HDAC6 restored acetylation of α-tubulin during the early poststroke recovery period and reduced apoptosis of nerve cells thus protecting the brain tissue. Selective inhibition of HDAC6 elevated expression of growth-associated protein-43 (GAP43), which remained high up to 14 days after stroke and promoted axogenesis and recovery from the PTI-induced neurological deficit. Selective HDAC6 inhibitor Tub A markedly reduced neuronal death and increased acetylation of α-tubulin and the level of GAP43. Thus, HDAC6 inhibition could be a promising strategy for modulation of brain recovery as it can increase the intensity and reduce the duration of reparation processes in the brain after stroke.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Elena Berezhnaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Maria Neginskaya
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Stanislav Rodkin
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Valentina Dzreyan
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Maria Pitinova
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
76
|
Herre M, Korb E. The chromatin landscape of neuronal plasticity. Curr Opin Neurobiol 2019; 59:79-86. [PMID: 31174107 DOI: 10.1016/j.conb.2019.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/18/2019] [Indexed: 01/27/2023]
Abstract
Examining the links between neuronal activity, transcriptional output, and synaptic function offers unique insights into how neurons adapt to changing environments and form memories. Epigenetic markers, such as DNA methylation and histone modifications, have been implicated in the formation of not only cellular memories such as cell fate, but also memories of experience at the organismal level. Here, we review recent advances in chromatin regulation that contribute to synaptic plasticity and drive adaptive behaviors through dynamic and precise regulation of transcription output in neurons. We discuss chromatin-associated proteins, histone variant proteins, the contribution of cis-regulatory elements and their interaction with histone modifications, and how these mechanisms are integrated into distinct behavior and environmental response paradigms.
Collapse
Affiliation(s)
- Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Erica Korb
- Department of Genetics, Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
77
|
Gadecka A, Bielak-Zmijewska A. Slowing Down Ageing: The Role of Nutrients and Microbiota in Modulation of the Epigenome. Nutrients 2019; 11:nu11061251. [PMID: 31159371 PMCID: PMC6628342 DOI: 10.3390/nu11061251] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The human population is getting ageing. Both ageing and age-related diseases are correlated with an increased number of senescent cells in the organism. Senescent cells do not divide but are metabolically active and influence their environment by secreting many proteins due to a phenomenon known as senescence associated secretory phenotype (SASP). Senescent cells differ from young cells by several features. They possess more damaged DNA, more impaired mitochondria and an increased level of free radicals that cause the oxidation of macromolecules. However, not only biochemical and structural changes are related to senescence. Senescent cells have an altered chromatin structure, and in consequence, altered gene expression. With age, the level of heterochromatin decreases, and less condensed chromatin is more prone to DNA damage. On the one hand, some gene promoters are easily available for the transcriptional machinery; on the other hand, some genes are more protected (locally increased level of heterochromatin). The structure of chromatin is precisely regulated by the epigenetic modification of DNA and posttranslational modification of histones. The methylation of DNA inhibits transcription, histone methylation mostly leads to a more condensed chromatin structure (with some exceptions) and acetylation plays an opposing role. The modification of both DNA and histones is regulated by factors present in the diet. This means that compounds contained in daily food can alter gene expression and protect cells from senescence, and therefore protect the organism from ageing. An opinion prevailed for some time that compounds from the diet do not act through direct regulation of the processes in the organism but through modification of the physiology of the microbiome. In this review we try to explain the role of some food compounds, which by acting on the epigenetic level might protect the organism from age-related diseases and slow down ageing. We also try to shed some light on the role of microbiome in this process.
Collapse
Affiliation(s)
- Agnieszka Gadecka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| | - Anna Bielak-Zmijewska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw, Poland.
| |
Collapse
|
78
|
Siddiqui SA, Singh S, Ugale R, Ranjan V, Kanojia R, Saha S, Tripathy S, Kumar S, Mehrotra S, Modi DR, Prakash A. Regulation of HDAC1 and HDAC2 during consolidation and extinction of fear memory. Brain Res Bull 2019; 150:86-101. [PMID: 31108155 DOI: 10.1016/j.brainresbull.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/02/2019] [Accepted: 05/15/2019] [Indexed: 01/03/2023]
Abstract
Histone deacetylases (HDACs) regulate gene expression epigenetically through synchronized removal of acetyl groups from histones required towards memory consolidation. Moreover, dysregulated epigenetic machinery during fear or extinction learning may result in altered expression of some of these genes and result in Post Traumatic Stress Disorder (PTSD). In the present study, region-specific expression of Histone deacetylase 1 (HDAC1) and Histone deacetylase 2 (HDAC2) was correlated to the acetylation of histones H3 and H4 and the resultant conditioned response, in rats undergone fear and extinction learning. The neuronal activation, histone acetylation at H3/H4 and expression of HDAC1/HDAC2 in centrolateral amygdala (CeL) and centromedial amygdala (CeM) of central Amygdala (CeA) and prelimbic (PL) and infralimbic (IL) of Prefrontal cortex (PFC) were found to be associated in a differential manner following fear and extinction learning. Moreover in CeM, the main output of the fear circuitry, the level of HDAC1 was down-regulated following conditioning and up-regulated following extinction as opposed to which HDAC2 was down-regulated in CeM following conditioning but not following extinction. Furthermore, in CeL the HDAC1 was upregulated and HDAC2 was downregulated following conditioning and extinction. This has important implications in speculating of the role of HDACs in fear memory consolidation and its extinction.
Collapse
Affiliation(s)
| | - Sanjay Singh
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rajesh Ugale
- Department of Pharmaceutical Sciences, RTM Nagpur University, Nagpur, India
| | - Vandana Ranjan
- Department of Biochemistry, RML University, Faizabad, India
| | - Rohit Kanojia
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sudipta Saha
- Department of Pharmaceutical Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sukanya Tripathy
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shiv Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Sudhir Mehrotra
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Dinesh Raj Modi
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India; Department of Biotech, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
79
|
Epigenetic Modulation on Tau Phosphorylation in Alzheimer's Disease. Neural Plast 2019; 2019:6856327. [PMID: 31093272 PMCID: PMC6481020 DOI: 10.1155/2019/6856327] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Tau hyperphosphorylation is a typical pathological change in Alzheimer's disease (AD) and is involved in the early onset and progression of AD. Epigenetic modification refers to heritable alterations in gene expression that are not caused by direct changes in the DNA sequence of the gene. Epigenetic modifications, such as noncoding RNA regulation, DNA methylation, and histone modification, can directly or indirectly affect the regulation of tau phosphorylation, thereby participating in AD development and progression. This review summarizes the current research progress on the mechanisms of epigenetic modification associated with tau phosphorylation.
Collapse
|
80
|
Occelli F, Hasselmann F, Bourien J, Eybalin M, Puel J, Desvignes N, Wiszniowski B, Edeline JM, Gourévitch B. Age-related Changes in Auditory Cortex Without Detectable Peripheral Alterations: A Multi-level Study in Sprague–Dawley Rats. Neuroscience 2019; 404:184-204. [DOI: 10.1016/j.neuroscience.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 01/31/2023]
|
81
|
Histone deacetylase inhibitors restore normal hippocampal synaptic plasticity and seizure threshold in a mouse model of Tuberous Sclerosis Complex. Sci Rep 2019; 9:5266. [PMID: 30918308 PMCID: PMC6437206 DOI: 10.1038/s41598-019-41744-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/15/2019] [Indexed: 01/02/2023] Open
Abstract
Abnormal synaptic plasticity has been implicated in several neurological disorders including epilepsy, dementia and Autism Spectrum Disorder (ASD). Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disorder that manifests with seizures, autism, and cognitive deficits. The abnormal intracellular signaling underlying TSC has been the focus of many studies. However, nothing is known about the role of histone modifications in contributing to the neurological manifestations in TSC. Dynamic regulation of chromatin structure via post translational modification of histone tails has been implicated in learning, memory and synaptic plasticity. Histone acetylation and associated gene activation plays a key role in plasticity and so we asked whether histone acetylation might be dysregulated in TSC. In this study, we report a general reduction in hippocampal histone H3 acetylation levels in a mouse model of TSC2. Pharmacological inhibition of Histone Deacetylase (HDAC) activity restores histone H3 acetylation levels and ameliorates the aberrant plasticity in TSC2+/− mice. We describe a novel seizure phenotype in TSC2+/− mice that is also normalized with HDAC inhibitors (HDACis). The results from this study suggest an unanticipated role for chromatin modification in TSC and may inform novel therapeutic strategies for TSC patients.
Collapse
|
82
|
Kozikowski AP, Shen S, Pardo M, Tavares MT, Szarics D, Benoy V, Zimprich CA, Kutil Z, Zhang G, Bařinka C, Robers MB, Van Den Bosch L, Eubanks JH, Jope RS. Brain Penetrable Histone Deacetylase 6 Inhibitor SW-100 Ameliorates Memory and Learning Impairments in a Mouse Model of Fragile X Syndrome. ACS Chem Neurosci 2019; 10:1679-1695. [PMID: 30511829 DOI: 10.1021/acschemneuro.8b00600] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Disease-modifying therapies are needed for Fragile X Syndrome (FXS), as at present there are no effective treatments or cures. Herein, we report on a tetrahydroquinoline-based selective histone deacetylase 6 (HDAC6) inhibitor SW-100, its pharmacological and ADMET properties, and its ability to improve upon memory performance in a mouse model of FXS, Fmr1-/- mice. This small molecule demonstrates good brain penetrance, low-nanomolar potency for the inhibition of HDAC6 (IC50 = 2.3 nM), with at least a thousand-fold selectivity over all other class I, II, and IV HDAC isoforms. Moreover, through its inhibition of the α-tubulin deacetylase domain of HDAC6 (CD2), in cells SW-100 upregulates α-tubulin acetylation with no effect on histone acetylation and selectively restores the impaired acetylated α-tubulin levels in the hippocampus of Fmr1-/- mice. Lastly, SW-100 ameliorates several memory and learning impairments in Fmr1-/- mice, thus modeling the intellectual deficiencies associated with FXS, and hence providing a strong rationale for pursuing HDAC6-based therapies for the treatment of this rare disease.
Collapse
Affiliation(s)
| | - Sida Shen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Marta Pardo
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Maurício T. Tavares
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Dora Szarics
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Veronick Benoy
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | | | - Zsófia Kutil
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Guiping Zhang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Czech Republic
| | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Center for Brain & Disease (VIB) and Leuven Brain Institute (LBI), KU Leuven, B-3000 Leuven, Belgium
| | - James H. Eubanks
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Richard S. Jope
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
83
|
Fuller NO, Pirone A, Lynch BA, Hewitt MC, Quinton MS, McKee TD, Ivarsson M. CoREST Complex-Selective Histone Deacetylase Inhibitors Show Prosynaptic Effects and an Improved Safety Profile To Enable Treatment of Synaptopathies. ACS Chem Neurosci 2019; 10:1729-1743. [PMID: 30496686 PMCID: PMC6429430 DOI: 10.1021/acschemneuro.8b00620] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
![]()
Synaptic
dysfunction is a pathological feature in many neurodegenerative
disorders, including Alzheimer’s disease, and synaptic loss
correlates closely with cognitive decline. Histone deacetylases (HDACs)
are involved in chromatin remodeling and gene expression and have
been shown to regulate synaptogenesis and synaptic plasticity, thus
providing an attractive drug discovery target for promoting synaptic
growth and function. To date, HDAC inhibitor compounds with prosynaptic
effects are plagued by known HDAC dose-limiting hematological toxicities,
precluding their application to treating chronic neurologic conditions.
We have identified a series of novel HDAC inhibitor compounds that
selectively inhibit the HDAC–co-repressor of repressor element-1
silencing transcription factor (CoREST) complex while minimizing hematological
side effects. HDAC1 and HDAC2 associate with multiple co-repressor
complexes including CoREST, which regulates neuronal gene expression.
We show that selectively targeting the CoREST co-repressor complex
with the representative compound Rodin-A results in increased spine
density and synaptic proteins, and improved long-term potentiation
in a mouse model at doses that provide a substantial safety margin
that would enable chronic treatment. The CoREST-selective HDAC inhibitor
Rodin-A thus represents a promising therapeutic strategy in targeting
synaptic pathology involved in neurologic disorders.
Collapse
Affiliation(s)
- Nathan O. Fuller
- Rodin Therapeutics, 300 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Antonella Pirone
- Rodin Therapeutics, 300 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Berkley A. Lynch
- Rodin Therapeutics, 300 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Michael C. Hewitt
- Rodin Therapeutics, 300 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Maria S. Quinton
- Rodin Therapeutics, 300 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Timothy D. McKee
- Rodin Therapeutics, 300 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Magnus Ivarsson
- Rodin Therapeutics, 300 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
84
|
Tang T, Zhang Y, Wang Y, Cai Z, Lu Z, Li L, Huang R, Hagelkruys A, Matthias P, Zhang H, Seiser C, Xie Y. HDAC1 and HDAC2 Regulate Intermediate Progenitor Positioning to Safeguard Neocortical Development. Neuron 2019; 101:1117-1133.e5. [PMID: 30709655 DOI: 10.1016/j.neuron.2019.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 11/23/2018] [Accepted: 12/31/2018] [Indexed: 01/28/2023]
Abstract
Neural progenitors with distinct potential to generate progeny are associated with a spatially distinct microenvironment. Neocortical intermediate progenitors (IPs) in the subventricular zone (SVZ) of the developing brain generate neurons for all cortical layers and are essential for cortical expansion. Here, we show that spatial control of IP positioning is essential for neocortical development. We demonstrate that HDAC1 and HDAC2 regulate the spatial positioning of IPs to form the SVZ. Developmental stage-specific depletion of both HDAC1 and HDAC2 in radial glial progenitors results in mispositioning of IPs at the ventricular surface, where they divide and differentiate into neurons, thereby leading to the cortical malformation. We further identified the proneural gene Neurogenin2 as a key target of HDAC1 and HDAC2 for regulating IP positioning. Our results demonstrate the importance of the spatial positioning of neural progenitors in cortical development and reveal a mechanism underlying the establishment of the SVZ microenvironment.
Collapse
Affiliation(s)
- Tianxiang Tang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yandong Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yafei Wang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zheping Cai
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zhiheng Lu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Leiting Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Ru Huang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Astrid Hagelkruys
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4031 Basel, Switzerland
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Road, Shanghai 201602, China
| | - Christian Seiser
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria; Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Yunli Xie
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
85
|
Lactate Mediates the Effects of Exercise on Learning and Memory through SIRT1-Dependent Activation of Hippocampal Brain-Derived Neurotrophic Factor (BDNF). J Neurosci 2019; 39:2369-2382. [PMID: 30692222 DOI: 10.1523/jneurosci.1661-18.2019] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/14/2018] [Accepted: 01/13/2019] [Indexed: 01/12/2023] Open
Abstract
Exercise promotes learning and memory formation. These effects depend on increases in hippocampal BDNF, a growth factor associated with cognitive improvement and the alleviation of depression symptoms. Identifying molecules that are produced during exercise and that mediate hippocampal Bdnf expression will allow us to harness the therapeutic potential of exercise. Here, we report that an endogenous molecule produced during exercise in male mice induces the Mus musculus Bdnf gene and promotes learning and memory formation. The metabolite lactate, which is released during exercise by the muscles, crosses the blood-brain barrier and induces Bdnf expression and TRKB signaling in the hippocampus. Indeed, we find that lactate-dependent increases in BDNF are associated with improved spatial learning and memory retention. The action of lactate is dependent on the activation of the Sirtuin1 deacetylase. SIRT1 increases the levels of the transcriptional coactivator PGC1a and the secreted molecule FNDC5, known to mediate Bdnf expression. These results reveal an endogenous mechanism to explain how physical exercise leads to the induction of BDNF, and identify lactate as a potential endogenous molecule that may have therapeutic value for CNS diseases in which BDNF signaling is disrupted.SIGNIFICANCE STATEMENT It is established that exercise promotes learning and memory formation and alleviates the symptoms of depression. These effects are mediated through inducing Bdnf expression and signaling in the hippocampus. Understanding how exercise induces Bdnf and identifying the molecules that mediate this induction will allow us to design therapeutic strategies that can mimic the effects of exercise on the brain, especially for patients with CNS disorders characterized by a decrease in Bdnf expression and who cannot exercise because of their conditions. We identify lactate as an endogenous metabolite that is produced during exercise, crosses the blood-brain barrier and promotes hippocampal dependent learning and memory in a BDNF-dependent manner. Our work identifies lactate as a component of the "exercise pill."
Collapse
|
86
|
Yu L, Liu Y, Jin Y, Cao X, Chen J, Jin J, Gu Y, Bao X, Ren Z, Xu Y, Zhu X. Lentivirus-Mediated HDAC3 Inhibition Attenuates Oxidative Stress in APPswe/PS1dE9 Mice. J Alzheimers Dis 2019; 61:1411-1424. [PMID: 29376873 DOI: 10.3233/jad-170844] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Amyloid-β (Aβ) induces a burst of oxidative stress and plays a critical role in the pathogenesis of Alzheimer's disease (AD). Our previous results have shown that histone deacetylase 3 (HDAC3) inhibition ameliorates spatial memory deficits and decreases the Aβ burden in the brains of 9-month-old APPswe/PS1dE9 (APP/PS1) mice. In this study, we investigated the role of HDAC3 inhibition in oxidative stress in vivo and in vitro models of AD. HDAC3 was detected mainly in the neurons, and HDAC3 inhibition significantly decreased reactive oxygen species generation and improved primary cortical neuron viability. In addition, HDAC3 inhibition attenuated spatial memory dysfunction in 6-month-old APP/PS1 mice, and decreased the apoptotic rate in the hippocampi as demonstrated by TUNEL staining. HDAC3 inhibition also reduced markers of lipid peroxidation, protein oxidation, and DNA/RNA oxidation in the hippocampi of APP/PS1 mice. Moreover, HDAC3 inhibition inactivated the c-Abl/MST1/YAP signaling pathway in the hippocampi of APP/PS1 mice. In conclusion, our data show that HDAC3 inhibition can attenuate spatial memory deficits and inhibit oxidative stress in APP/PS1 mice; these results indicate a potential strategy for AD treatment.
Collapse
Affiliation(s)
- Linjie Yu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Jian Chen
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China.,Department of Neurology, Drum Tower Hospital of Nanjing Medical University, Nanjing, China
| | - Jiali Jin
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xinyu Bao
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Zhuoying Ren
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.,Nanjing, Jiangsu Key Laboratory for Molecular Medicine, Nanjing, China
| |
Collapse
|
87
|
Zhang X, Yu Y, Sun P, Fan Z, Zhang W, Feng C. Royal jelly peptides: potential inhibitors of β-secretase in N2a/APP695swe cells. Sci Rep 2019; 9:168. [PMID: 30655564 PMCID: PMC6336779 DOI: 10.1038/s41598-018-35801-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Royal jelly (RJ) is a type of natural health product with a long history of use. Royal jelly peptides (RJPs) obtained from RJ have numerous bioactivities. To study the neuroprotective effect of RJPs, major royal jelly proteins were digested into crude RJPs and subsequently purified by RP-HPLC. Purified RJP fractions were evaluated in N2a/APP695swe cells. Our results indicated that purified royal jelly peptides (RJPs) (1–9 μg/mL) could inhibit external beta-amyloid 40 (Aβ1-40) and beta-amyloid 42 (Aβ1-42) production through the down-regulation of β-secretase (BACE1) in N2a/APP695 cells. The modulation of BACE1 may be related to histone acetylation modification. Our results demonstrated a neuroprotective function of RJPs, which indicates that RJPs may serve as potential β-secretase inhibitors in ameliorating Aβ-related pathology in Alzheimer’s Disease.
Collapse
Affiliation(s)
- Xueqing Zhang
- Beijing Key Laboratory of Protection and Utilization of Chinese Medicine, Beijing Normal University, Beijing, People's Republic of China
| | - Yi Yu
- Beijing Key Laboratory of Protection and Utilization of Chinese Medicine, Beijing Normal University, Beijing, People's Republic of China
| | - Ping Sun
- Beijing Key Laboratory of Protection and Utilization of Chinese Medicine, Beijing Normal University, Beijing, People's Republic of China
| | - Zhen Fan
- Beijing Key Laboratory of Protection and Utilization of Chinese Medicine, Beijing Normal University, Beijing, People's Republic of China
| | - Wensheng Zhang
- Beijing Key Laboratory of Protection and Utilization of Chinese Medicine, Beijing Normal University, Beijing, People's Republic of China
| | - Chengqiang Feng
- Beijing Key Laboratory of Protection and Utilization of Chinese Medicine, Beijing Normal University, Beijing, People's Republic of China.
| |
Collapse
|
88
|
Hitchcock LN, Raybuck JD, Wood MA, Lattal KM. Effects of a histone deacetylase 3 inhibitor on extinction and reinstatement of cocaine self-administration in rats. Psychopharmacology (Berl) 2019; 236:517-529. [PMID: 30488346 PMCID: PMC6459190 DOI: 10.1007/s00213-018-5122-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
RATIONALE A challenge in treating substance use disorder is that successful treatment often does not persist, resulting in relapse and continued drug seeking. One approach to persistently weaken drug-seeking behaviors is to pair exposure to drug-associated cues or behaviors with delivery of a compound that may strengthen the inhibition of the association between drug cues and behavior. OBJECTIVES We evaluated whether a selective histone deacetylase 3 (HDAC3) inhibitor could promote extinction and weaken contextual control of operant drug seeking after intravenous cocaine self-administration. METHODS Male Long-Evans rats received a systemic injection of the HDAC3 inhibitor RGFP966 either before or immediately after the first extinction session. Persistence of extinction was tested over subsequent extinction sessions, as well as tests of reinstatement that included cue-induced reinstatement, contextual renewal, and cocaine-primed reinstatement. Additional extinction sessions occurred between each reinstatement test. We also evaluated effects of RGFP966 on performance and motivation during stable fixed ratio operant responding for cocaine and during a progressive ratio of reinforcement. RESULTS RGFP966 administered before the first extinction session led to significantly less responding during subsequent extinction and reinstatement tests compared to vehicle-injected rats. Follow-up studies found that these effects were not likely due to a performance deficit or a change in motivation to self-administer cocaine, as injections of RGFP966 had no effect on stable responding during a fixed or progressive ratio schedule. In addition, RGFP966 administered just after the first extinction session had no effect during early extinction and reinstatement tests, but weakened long-term responding during later extinction sessions. CONCLUSIONS These results suggest that a systemic injection of a selective HDAC3 inhibitor can enhance extinction and suppress reinstatement after cocaine self-administration. The finding that behavioral and pharmacological manipulations can be combined to decrease drug seeking provides further potential for treatment by epigenetic modulation.
Collapse
Affiliation(s)
- Leah N. Hitchcock
- Department of Behavioral Neuroscience, Oregon Health & Science University
| | | | - Marcelo A. Wood
- Department of Neurobiology and Behavior, University of California, Irvine
| | - K. Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University
| |
Collapse
|
89
|
Gilbert TM, Zürcher NR, Wu CJ, Bhanot A, Hightower BG, Kim M, Albrecht DS, Wey HY, Schroeder FA, Rodriguez-Thompson A, Morin TM, Hart KL, Pellegrini AM, Riley MM, Wang C, Stufflebeam SM, Haggarty SJ, Holt DJ, Loggia ML, Perlis RH, Brown HE, Roffman JL, Hooker JM. PET neuroimaging reveals histone deacetylase dysregulation in schizophrenia. J Clin Invest 2018; 129:364-372. [PMID: 30530989 DOI: 10.1172/jci123743] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with schizophrenia (SCZ) experience chronic cognitive deficits. Histone deacetylases (HDACs) are enzymes that regulate cognitive circuitry; however, the role of HDACs in cognitive disorders, including SCZ, remains unknown in humans. We previously determined that HDAC2 mRNA levels were lower in dorsolateral prefrontal cortex (DLPFC) tissue from donors with SCZ compared with controls. Here we investigated the relationship between in vivo HDAC expression and cognitive impairment in patients with SCZ and matched healthy controls using [11C]Martinostat positron emission tomography (PET). METHODS In a case-control study, relative [11C]Martinostat uptake was compared between 14 patients with SCZ or schizoaffective disorder (SCZ/SAD) and 17 controls using hypothesis-driven region-of-interest analysis and unbiased whole brain voxel-wise approaches. Clinical measures, including the MATRICS consensus cognitive battery, were administered. RESULTS Relative HDAC expression was lower in the DLPFC of patients with SCZ/SAD compared with controls, and HDAC expression positively correlated with cognitive performance scores across groups. Patients with SCZ/SAD also showed lower relative HDAC expression in the dorsomedial prefrontal cortex and orbitofrontal gyrus, and higher relative HDAC expression in the cerebral white matter, pons, and cerebellum compared with controls. CONCLUSIONS These findings provide in vivo evidence of HDAC dysregulation in patients with SCZ and suggest that altered HDAC expression may impact cognitive function in humans. FUNDING National Institute of Mental Health (NIMH), Brain and Behavior Foundation, Massachusetts General Hospital (MGH), Athinoula A. Martinos Center for Biomedical Imaging, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH Shared Instrumentation Grant Program.
Collapse
Affiliation(s)
- Tonya M Gilbert
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Christine J Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anisha Bhanot
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Baileigh G Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Minhae Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Daniel S Albrecht
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Frederick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anais Rodriguez-Thompson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Thomas M Morin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | | | | | - Misha M Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Stephen J Haggarty
- Center for Genomic Medicine.,Department of Neurology, and.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daphne J Holt
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Roy H Perlis
- Center for Genomic Medicine.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Hannah E Brown
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua L Roffman
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
90
|
Zille P, Calhoun VD, Wang YP. Enforcing Co-Expression Within a Brain-Imaging Genomics Regression Framework. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2561-2571. [PMID: 28678703 PMCID: PMC6415768 DOI: 10.1109/tmi.2017.2721301] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Among the challenges arising in brain imaging genetic studies, estimating the potential links between neurological and genetic variability within a population is key. In this paper, we propose a multivariate, multimodal formulation for variable selection that leverages co-expression patterns across various data modalities. Our approach is based on an intuitive combination of two widely used statistical models: sparse regression and canonical correlation analysis (CCA). While the former seeks multivariate linear relationships between a given phenotype and associated observations, the latter searches to extract co-expression patterns between sets of variables belonging to different modalities. In the following, we propose to rely on a "CCA-type" formulation in order to regularize the classical multimodal sparse regression problem (essentially incorporating both CCA and regression models within a unified formulation). The underlying motivation is to extract discriminative variables that are also co-expressed across modalities. We first show that the simplest formulation of such model can be expressed as a special case of collaborative learning methods. After discussing its limitation, we propose an extended, more flexible formulation, and introduce a simple and efficient alternating minimization algorithm to solve the associated optimization problem. We explore the parameter space and provide some guidelines regarding parameter selection. Both the original and extended versions are then compared on a simple toy data set and a more advanced simulated imaging genomics data set in order to illustrate the benefits of the latter. Finally, we validate the proposed formulation using single nucleotide polymorphisms data and functional magnetic resonance imaging data from a population of adolescents ( subjects, age 16.9 ± 1.9 years from the Philadelphia Neurodevelopmental Cohort) for the study of learning ability. Furthermore, we carry out a significance analysis of the resulting features that allow us to carefully extract brain regions and genes linked to learning and cognitive ability.
Collapse
|
91
|
Kyrke-Smith M, Williams JM. Bridging Synaptic and Epigenetic Maintenance Mechanisms of the Engram. Front Mol Neurosci 2018; 11:369. [PMID: 30344478 PMCID: PMC6182070 DOI: 10.3389/fnmol.2018.00369] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022] Open
Abstract
How memories are maintained, and how memories are lost during aging or disease, are intensely investigated issues. Arguably, the reigning theory is that synaptic modifications allow for the formation of engrams during learning, and sustaining engrams sustains memory. Activity-regulated gene expression profiles have been shown to be critical to these processes, and their control by the epigenome has begun to be investigated in earnest. Here, we propose a novel theory as to how engrams are sustained. We propose that many of the genes that are currently believed to underlie long-term memory are actually part of a “plasticity transcriptome” that underpins structural and functional modifications to neuronal connectivity during the hours to days following learning. Further, we hypothesize that a “maintenance transcriptome” is subsequently induced that includes epigenetic negative regulators of gene expression, particularly histone deacetylases. The maintenance transcriptome negatively regulates the plasticity transcriptome, and thus the plastic capability of a neuron, after learning. In this way, the maintenance transcriptome would act as a metaplasticity mechanism that raises the threshold for change in neurons within an engram, helping to ensure the connectivity is stabilized and memory is maintained.
Collapse
Affiliation(s)
- Madeleine Kyrke-Smith
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Psychology, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.,Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, United States
| | - Joanna M Williams
- Department of Anatomy, The Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
92
|
Su M, Xiao Y, Ma J, Cao D, Zhou Y, Wang H, Liao Q, Wang W. Long non-coding RNAs in esophageal cancer: molecular mechanisms, functions, and potential applications. J Hematol Oncol 2018; 11:118. [PMID: 30223861 PMCID: PMC6142629 DOI: 10.1186/s13045-018-0663-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022] Open
Abstract
Esophageal cancer (EC) is the sixth leading cause of cancer-related death worldwide. The lack of early diagnostic biomarkers and effective prognostic indicators for metastasis and recurrence has resulted in the poor prognosis of EC. In addition, the underlying molecular mechanisms of EC development have yet to be elucidated. Accumulating evidence has demonstrated that lncRNAs play a vital role in the pathological progression of EC. LncRNAs may regulate gene expression through the recruitment of histone-modifying complexes to the chromatin and through interactions with RNAs or proteins. Recent evidence has demonstrated that the dysregulation of lncRNAs plays important roles in the proliferation, metastasis, invasion, angiogenesis, apoptosis, chemoradiotherapy resistance, and stemness of EC, which suggests potential clinical implications. In this review, we highlight the emerging roles and regulatory mechanisms of lncRNAs in the context of EC and discuss their potential clinical applications as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Min Su
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China. .,Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, 410001, Hunan, People's Republic of China
| | - Junliang Ma
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Deliang Cao
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yong Zhou
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Hui Wang
- Department of Thoracic Radiotherapy, Key laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Qianjin Liao
- Department of the Central Laboratory, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| | - Wenxiang Wang
- Department of the 2nd Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
| |
Collapse
|
93
|
Shepard RD, Gouty S, Kassis H, Berenji A, Zhu W, Cox BM, Nugent FS. Targeting histone deacetylation for recovery of maternal deprivation-induced changes in BDNF and AKAP150 expression in the VTA. Exp Neurol 2018; 309:160-168. [PMID: 30102916 DOI: 10.1016/j.expneurol.2018.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/17/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022]
Abstract
Severe early life stressors increase the probability of developing psychiatric disorders later in life through modifications in neuronal circuits controlling brain monoaminergic signaling. Our previous work demonstrated that 24 h maternal deprivation (MD) in male Sprague Dawley rats modifies dopamine (DA) signaling from the ventral tegmental area (VTA) through changes at GABAergic synapses that were reversible by in vitro histone deacetylase (HDAC) inhibition which led to restoration of the scaffold A-kinase anchoring protein (AKAP150) signaling and subsequently recovered GABAergic plasticity (Authement et al., 2015). Using a combination of in situ hybridization, Western blots and immunohistochemistry, we confirmed that MD-induced epigenetic modifications at the level of histone acetylation were associated with an upregulation of HDAC2. MD also increased Akap5 mRNA levels in the VTA. Western blot analysis of AKAP150 protein expression showed an increase in synaptic levels of AKAP150 protein in the VTA with an accompanying decrease in synaptic levels of protein kinase A (PKA). Moreover, the abundance of mature brain-derived neurotrophic factor (BDNF) protein of VTA tissues from MD rats was significantly lower than in control groups. In vivo systemic injection with a selective class I HDAC inhibitor (CI-994) was sufficient to reverse MD-induced histone hypoacetylation in the VTA for 24 h after the injection. Furthermore, HDAC inhibition normalized the levels of mBDNF and AKAP150 proteins at 24 h. Our data suggest that HDAC-mediated targeting of BDNF and AKAP-dependent local signaling within VTA could provide novel therapeutics for prevention of later-life psychopathology.
Collapse
Affiliation(s)
- Ryan D Shepard
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, MD 20814, USA
| | - Shawn Gouty
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, MD 20814, USA
| | - Haifa Kassis
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, MD 20814, USA
| | - Aylar Berenji
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, MD 20814, USA
| | - William Zhu
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, MD 20814, USA
| | - Brian M Cox
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, MD 20814, USA
| | - Fereshteh S Nugent
- Uniformed Services University of the Health Sciences, Department of Pharmacology, Bethesda, MD 20814, USA.
| |
Collapse
|
94
|
Girdhar K, Hoffman GE, Jiang Y, Brown L, Kundakovic M, Hauberg ME, Francoeur NJ, Wang YC, Shah H, Kavanagh DH, Zharovsky E, Jacobov R, Wiseman JR, Park R, Johnson JS, Kassim BS, Sloofman L, Mattei E, Weng Z, Sieberts SK, Peters MA, Harris BT, Lipska BK, Sklar P, Roussos P, Akbarian S. Cell-specific histone modification maps in the human frontal lobe link schizophrenia risk to the neuronal epigenome. Nat Neurosci 2018; 21:1126-1136. [PMID: 30038276 PMCID: PMC6063773 DOI: 10.1038/s41593-018-0187-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/25/2018] [Indexed: 12/13/2022]
Abstract
Risk variants for schizophrenia affect more than 100 genomic loci, yet cell- and tissue-specific roles underlying disease liability remain poorly characterized. We have generated for two cortical areas implicated in psychosis, the dorsolateral prefrontal cortex and anterior cingulate cortex, 157 reference maps from neuronal, neuron-depleted and bulk tissue chromatin for two histone marks associated with active promoters and enhancers, H3-trimethyl-Lys4 (H3K4me3) and H3-acetyl-Lys27 (H3K27ac). Differences between neuronal and neuron-depleted chromatin states were the major axis of variation in histone modification profiles, followed by substantial variability across subjects and cortical areas. Thousands of significant histone quantitative trait loci were identified in neuronal and neuron-depleted samples. Risk variants for schizophrenia, depressive symptoms and neuroticism were significantly over-represented in neuronal H3K4me3 and H3K27ac landscapes. Our Resource, sponsored by PsychENCODE and CommonMind, highlights the critical role of cell-type-specific signatures at regulatory and disease-associated noncoding sequences in the human frontal lobe.
Collapse
Affiliation(s)
- Kiran Girdhar
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Yan Jiang
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanne Brown
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marija Kundakovic
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Mads E Hauberg
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nancy J Francoeur
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David H Kavanagh
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Zharovsky
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rivka Jacobov
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer R Wiseman
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Royce Park
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica S Johnson
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bibi S Kassim
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Sloofman
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eugenio Mattei
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | | | - Brent T Harris
- Department of Neurology, Georgetown University, Washington, DC, USA
- Human Brain Collection Core, NIMH, Bethesda, MD, USA
| | | | - Pamela Sklar
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn Institute of Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research, Education, and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, USA.
| | - Schahram Akbarian
- Department of Psychiatry and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
95
|
Repression of human and mouse brain inflammaging transcriptome by broad gene-body histone hyperacetylation. Proc Natl Acad Sci U S A 2018; 115:7611-7616. [PMID: 29967166 DOI: 10.1073/pnas.1800656115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain "inflammaging," a low-grade and chronic inflammation, is a major hallmark for aging-related neurodegenerative diseases. Here, by profiling H3K27ac and gene expression patterns in human and mouse brains, we found that age-related up-regulated (Age-Up) and down-regulated (Age-Down) genes have distinct H3K27ac patterns. Although both groups show promoter H3K27ac, the Age-Up genes, enriched for inflammation-related functions, are additionally marked by broad H3K27ac distribution over their gene bodies, which is progressively reduced during aging. Age-related gene expression changes can be predicted by gene-body H3K27ac level. Contrary to the presumed transcription activation function of promoter H3K27ac, we found that broad gene-body hyper H3K27ac suppresses overexpression of inflammaging genes. Altogether, our findings revealed opposite regulations by H3K27ac of Age-Up and Age-Down genes and a mode of broad gene-body H3K27ac in repressing transcription.
Collapse
|
96
|
Reducing histone acetylation rescues cognitive deficits in a mouse model of Fragile X syndrome. Nat Commun 2018; 9:2494. [PMID: 29950602 PMCID: PMC6021376 DOI: 10.1038/s41467-018-04869-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited intellectual disability, resulting from a loss of fragile X mental retardation protein (FMRP). Patients with FXS suffer lifelong cognitive disabilities, but the function of FMRP in the adult brain and the mechanism underlying age-related cognitive decline in FXS is not fully understood. Here, we report that a loss of FMRP results in increased protein synthesis of histone acetyltransferase EP300 and ubiquitination-mediated degradation of histone deacetylase HDAC1 in adult hippocampal neural stem cells (NSCs). Consequently, FMRP-deficient NSCs exhibit elevated histone acetylation and age-related NSC depletion, leading to cognitive impairment in mature adult mice. Reducing histone acetylation rescues both neurogenesis and cognitive deficits in mature adult FMRP-deficient mice. Our work reveals a role for FMRP and histone acetylation in cognition and presents a potential novel therapeutic strategy for treating adult FXS patients. Loss of fragile X mental retardation protein (FMRP) leads to fragile X syndrome, associated with cognitive dysfunction. Here the authors show that mice lacking FMRP show reduced hippocampal neurogenesis and cognitive deficits, which can be rescued by reducing histone acetylation.
Collapse
|
97
|
Abstract
Among the metal-dependent histone deacetylases, the class IIb isozyme HDAC6 is remarkable because of its role in the regulation of microtubule dynamics in the cytosol. Selective inhibition of HDAC6 results in microtubule hyperacetylation, leading to cell cycle arrest and apoptosis, which is a validated strategy for cancer chemotherapy and the treatment of other disorders. HDAC6 inhibitors generally consist of a Zn2+-binding group such as a hydroxamate, a linker, and a capping group; the capping group is a critical determinant of isozyme selectivity. Surprisingly, however, even "capless" inhibitors exhibit appreciable HDAC6 selectivity. To probe the chemical basis for this selectivity, we now report high-resolution crystal structures of HDAC6 complexed with capless cycloalkyl hydroxamate inhibitors 1-4. Each inhibitor hydroxamate group coordinates to the catalytic Zn2+ ion with canonical bidentate geometry. Additionally, the olefin moieties of compounds 2 and 4 bind in an aromatic crevice between the side chains of F583 and F643. Reasoning that similar binding could be achieved in the representative class I isozyme HDAC8, we employed isothermal titration calorimetry to study the thermodynamics of inhibitor binding. These measurements indicate that the entropy of inhibitor binding is generally positive for binding to HDAC6 and negative for binding to HDAC8, resulting in ≤313-fold selectivity for binding to HDAC6 relative to HDAC8. Thus, favorable binding entropy contributes to HDAC6 selectivity. Notably, cyclohexenyl hydroxamate 2 represents a promising lead for derivatization with capping groups that may further enhance its impressive 313-fold thermodynamic selectivity for HDAC6 inhibition.
Collapse
|
98
|
Yamakawa H, Cheng J, Penney J, Gao F, Rueda R, Wang J, Yamakawa S, Kritskiy O, Gjoneska E, Tsai LH. The Transcription Factor Sp3 Cooperates with HDAC2 to Regulate Synaptic Function and Plasticity in Neurons. Cell Rep 2018; 20:1319-1334. [PMID: 28793257 DOI: 10.1016/j.celrep.2017.07.044] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 11/15/2022] Open
Abstract
The histone deacetylase HDAC2, which negatively regulates synaptic gene expression and neuronal plasticity, is upregulated in Alzheimer's disease (AD) patients and mouse models. Therapeutics targeting HDAC2 hold promise for ameliorating AD-related cognitive impairment; however, attempts to generate HDAC2-specific inhibitors have failed. Here, we take an integrative genomics approach to identify proteins that mediate HDAC2 recruitment to synaptic plasticity genes. Functional screening revealed that knockdown of the transcription factor Sp3 phenocopied HDAC2 knockdown and that Sp3 facilitated recruitment of HDAC2 to synaptic genes. Importantly, like HDAC2, Sp3 expression was elevated in AD patients and mouse models, where Sp3 knockdown ameliorated synaptic dysfunction. Furthermore, exogenous expression of an HDAC2 fragment containing the Sp3-binding domain restored synaptic plasticity and memory in a mouse model with severe neurodegeneration. Our findings indicate that targeting the HDAC2-Sp3 complex could enhance cognitive function without affecting HDAC2 function in other processes.
Collapse
Affiliation(s)
- Hidekuni Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jemmie Cheng
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jay Penney
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Fan Gao
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard Rueda
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jun Wang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Satoko Yamakawa
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Oleg Kritskiy
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeta Gjoneska
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
99
|
Peedicayil J, Kumar A. Epigenetic Drugs for Mood Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:151-174. [PMID: 29933949 DOI: 10.1016/bs.pmbts.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that changes in epigenetic mechanisms of gene expression are involved in the pathogenesis of mood disorders. Such evidence stems from studies conducted on postmortem brain tissues and peripheral cells or tissues of patients with mood disorders. This article describes and discusses the epigenetic changes in the mood disorders (major depressive disorder and bipolar disorder) found to date. The article also describes and discusses preclinical drug trials of epigenetic drugs for treating mood disorders. In addition, nonrandomized and randomized controlled trials of nutritional drugs with effects on epigenetic mechanisms of gene expression in patients with major depressive disorder and bipolar disorder are discussed. Trials of epigenetic drugs and nutritional drugs with epigenetic effects are showing promising results for the treatment of mood disorders. Thus, epigenetic drugs and nutritional drugs with epigenetic effects could be useful in the treatment of patients with these disorders.
Collapse
|
100
|
Abstract
Epigenetic deregulation, such as the reduction of histone acetylation levels, is thought to be causally linked to various maladies associated with aging. Consequently, histone deacetylase inhibitors are suggested to serve as epigenetic therapy by increasing histone acetylation. However, previous work suggests that many non-histone proteins, including metabolic enzymes, are also acetylated and that post transitional modifications may impact their activity. Furthermore, deacetylase inhibitors were recently shown to impact the acetylation of a variety of proteins. By utilizing a novel technique to measure oxygen consumption rate from whole living tissue, we demonstrate that treatment of whole living fly heads by the HDAC/KDAC inhibitors sodium butyrate and Trichostatin A, induces a rapid and transient increase of oxygen consumption rate. In addition, our study indicates that the rate increase is markedly attenuated in midlife fly head tissue. Overall, our data suggest that HDAC/KDAC inhibitors may induce enhanced mitochondrial activity in a rapid manner. This observed metabolic boost provides further, but novel evidence, that treating various maladies with deacetylase inhibitors may be beneficial.
Collapse
|