51
|
Augustine RC, Vierstra RD. SUMOylation: re-wiring the plant nucleus during stress and development. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:143-154. [PMID: 30014889 DOI: 10.1016/j.pbi.2018.06.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 05/08/2023]
Abstract
Conjugation of small ubiquitin-related modifier (SUMO) to intracellular proteins provides a dynamic regulatory mechanism that enables plants to rapidly defend against environmental challenges. SUMOylation of mostly nuclear proteins is among the fastest stress responses observed but precisely how this post-translational modification provides stress resilience remains unclear. Here, we describe the plant SUMO system and its expanding target catalog, which implicates this modification in DNA repair, chromatin modification/remodeling, transcriptional activation/repression, epigenetics, and RNA metabolism, with a likely outcome being extensive nuclear re-wiring to withstand stress. In parallel, studies have linked SUMO to developmental programs such as gametogenesis and gene silencing. The accumulating data support the notion that SUMOylation substantially influences the transcriptional and epigenetic landscapes to promote stress tolerance and developmental progression.
Collapse
Affiliation(s)
- Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
52
|
Rytz TC, Miller MJ, McLoughlin F, Augustine RC, Marshall RS, Juan YT, Charng YY, Scalf M, Smith LM, Vierstra RD. SUMOylome Profiling Reveals a Diverse Array of Nuclear Targets Modified by the SUMO Ligase SIZ1 during Heat Stress. THE PLANT CELL 2018; 30:1077-1099. [PMID: 29588388 PMCID: PMC6002191 DOI: 10.1105/tpc.17.00993] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/15/2018] [Accepted: 03/26/2018] [Indexed: 05/20/2023]
Abstract
The posttranslational addition of small ubiquitin-like modifier (SUMO) is an essential protein modification in plants that provides protection against numerous environmental challenges. Ligation is accomplished by a small set of SUMO ligases, with the SAP-MIZ domain-containing SIZ1 and METHYL METHANESULFONATE-SENSITIVE21 (MMS21) ligases having critical roles in stress protection and DNA endoreduplication/repair, respectively. To help identify their corresponding targets in Arabidopsis thaliana, we used siz1 and mms21 mutants for proteomic analyses of SUMOylated proteins enriched via an engineered SUMO1 isoform suitable for mass spectrometric studies. Through multiple data sets from seedlings grown at normal temperatures or exposed to heat stress, we identified over 1000 SUMO targets, most of which are nuclear localized. Whereas no targets could be assigned to MMS21, suggesting that it modifies only a few low abundance proteins, numerous targets could be assigned to SIZ1, including major transcription factors, coactivators/repressors, and chromatin modifiers connected to abiotic and biotic stress defense, some of which associate into multisubunit regulatory complexes. SIZ1 itself is also a target, but studies with mutants protected from SUMOylation failed to uncover a regulatory role. The catalog of SIZ1 substrates indicates that SUMOylation by this ligase provides stress protection by modifying a large array of key nuclear regulators.
Collapse
Affiliation(s)
- Thérèse C Rytz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marcus J Miller
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Fionn McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Robert C Augustine
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Richard S Marshall
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Yu-Ting Juan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yee-Yung Charng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
53
|
Baik H, Boulanger M, Hosseini M, Kowalczyk J, Zaghdoudi S, Salem T, Sarry JE, Hicheri Y, Cartron G, Piechaczyk M, Bossis G. Targeting the SUMO Pathway Primes All- trans Retinoic Acid-Induced Differentiation of Nonpromyelocytic Acute Myeloid Leukemias. Cancer Res 2018; 78:2601-2613. [PMID: 29487199 DOI: 10.1158/0008-5472.can-17-3361] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/18/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022]
Abstract
Differentiation therapies using all-trans retinoic acid (ATRA) are highly efficient at treating acute promyelocytic leukemia (APL), a subtype of acute myeloid leukemia (AML). However, their efficacy, if any, is limited in the case of non-APL AML. We report here that inhibition of SUMOylation, a posttranslational modification related to ubiquitination, restores the prodifferentiation and antiproliferative activities of retinoids in non-APL AML. Controlled inhibition of SUMOylation with the pharmacologic inhibitors 2-D08 or anacardic acid, or via overexpression of SENP deSUMOylases, enhanced the ATRA-induced expression of key genes involved in differentiation, proliferation, and apoptosis in non-APL AML cells. This activated ATRA-induced terminal myeloid differentiation and reduced cell proliferation and viability, including in AML cells resistant to chemotherapeutic drugs. Conversely, enhancement of SUMOylation via overexpression of the SUMO-conjugating enzyme Ubc9 dampened expression of ATRA-responsive genes and prevented differentiation. Thus, inhibition of the SUMO pathway is a promising strategy to sensitize patients with non-APL AML to retinoids and improve the treatment of this poor-prognosis cancer.Significance: SUMOylation silences key ATRA-responsive genes in nonpromyelocytic acute myeloid leukemias. Cancer Res; 78(10); 2601-13. ©2018 AACR.
Collapse
Affiliation(s)
- Hayeon Baik
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mathias Boulanger
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Mohsen Hosseini
- Centre de Recherche en Cancérologie de Toulouse, Inserm and Université de Toulouse, Toulouse, France
| | - Julie Kowalczyk
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Département d'Hématologie Clinique, CHU de Montpellier, Montpellier, France
| | - Sonia Zaghdoudi
- Centre de Recherche en Cancérologie de Toulouse, Inserm and Université de Toulouse, Toulouse, France
| | - Tamara Salem
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jean-Emmanuel Sarry
- Centre de Recherche en Cancérologie de Toulouse, Inserm and Université de Toulouse, Toulouse, France
| | - Yosr Hicheri
- Département d'Hématologie Clinique, CHU de Montpellier, Montpellier, France
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU de Montpellier, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Guillaume Bossis
- Equipe Labellisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
54
|
Peek J, Harvey C, Gray D, Rosenberg D, Kolla L, Levy-Myers R, Yin R, McMurry JL, Kerscher O. SUMO targeting of a stress-tolerant Ulp1 SUMO protease. PLoS One 2018; 13:e0191391. [PMID: 29351565 PMCID: PMC5774762 DOI: 10.1371/journal.pone.0191391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 01/04/2018] [Indexed: 11/18/2022] Open
Abstract
SUMO proteases of the SENP/Ulp family are master regulators of both sumoylation and desumoylation and regulate SUMO homeostasis in eukaryotic cells. SUMO conjugates rapidly increase in response to cellular stress, including nutrient starvation, hypoxia, osmotic stress, DNA damage, heat shock, and other proteotoxic stressors. Nevertheless, little is known about the regulation and targeting of SUMO proteases during stress. To this end we have undertaken a detailed comparison of the SUMO-binding activity of the budding yeast protein Ulp1 (ScUlp1) and its ortholog in the thermotolerant yeast Kluyveromyces marxianus, KmUlp1. We find that the catalytic UD domains of both ScUlp1 and KmUlp1 show a high degree of sequence conservation, complement a ulp1Δ mutant in vivo, and process a SUMO precursor in vitro. Next, to compare the SUMO-trapping features of both SUMO proteases we produced catalytically inactive recombinant fragments of the UD domains of ScUlp1 and KmUlp1, termed ScUTAG and KmUTAG respectively. Both ScUTAG and KmUTAG were able to efficiently bind a variety of purified SUMO isoforms and bound immobilized SUMO1 with nanomolar affinity. However, KmUTAG showed a greatly enhanced ability to bind SUMO and SUMO-modified proteins in the presence of oxidative, temperature and other stressors that induce protein misfolding. We also investigated whether a SUMO-interacting motif (SIM) in the UD domain of KmULP1 that is not conserved in ScUlp1 may contribute to the SUMO-binding properties of KmUTAG. In summary, our data reveal important details about how SUMO proteases target and bind their sumoylated substrates, especially under stress conditions. We also show that the robust pan-SUMO binding features of KmUTAG can be exploited to detect and study SUMO-modified proteins in cell culture systems.
Collapse
Affiliation(s)
- Jennifer Peek
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Catherine Harvey
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Dreux Gray
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Danny Rosenberg
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Likhitha Kolla
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Reuben Levy-Myers
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Rui Yin
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
| | - Jonathan L. McMurry
- Department of Molecular & Cellular Biology, Kennesaw State University, Kennesaw, Georgia, United States of America
| | - Oliver Kerscher
- Biology Department, The College of William & Mary, Williamsburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
55
|
Comprehensive list of SUMO targets in Caenorhabditis elegans and its implication for evolutionary conservation of SUMO signaling. Sci Rep 2018; 8:1139. [PMID: 29348603 PMCID: PMC5773548 DOI: 10.1038/s41598-018-19424-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Post-translational modification by small ubiquitin-related modifier (SUMO) is a key regulator of cell physiology, modulating protein-protein and protein-DNA interactions. Recently, SUMO modifications were postulated to be involved in response to various stress stimuli. We aimed to identify the near complete set of proteins modified by SUMO and the dynamics of the modification in stress conditions in the higher eukaryote, Caenorhabditis elegans. We identified 874 proteins modified by SUMO in the worm. We have analyzed the SUMO modification in stress conditions including heat shock, DNA damage, arsenite induced cellular stress, ER and osmotic stress. In all these conditions the global levels of SUMOylation was significantly increased. These results show the evolutionary conservation of SUMO modifications in reaction to stress. Our analysis showed that SUMO targets are highly conserved throughout species. By comparing the SUMO targets among species, we approximated the total number of proteins modified in a given proteome to be at least 15–20%. We developed a web server designed for convenient prediction of potential SUMO modification based on experimental evidences in other species.
Collapse
|
56
|
Matunis MJ, Rodriguez MS. Concepts and Methodologies to Study Protein SUMOylation: An Overview. Methods Mol Biol 2018; 1475:3-22. [PMID: 27631794 DOI: 10.1007/978-1-4939-6358-4_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) was simultaneously discovered by several groups at the middle of the 1990s. Although distinct names were proposed including Sentrin, GMP1, PIC1, or SMT3, SUMO became the most popular. Early studies on the functions of SUMOylation focused on activities in the nucleus, including transcription activation, chromatin structure, and DNA repair. However, it is now recognized that SUMOylation affects a large diversity of cellular processes both in the nucleus and the cytoplasm and functions of SUMOylation appear to have undefined limits. SUMO-conjugating enzymes and specific proteases actively regulate the modification status of target proteins. The recent discoveries of ubiquitin-SUMO hybrid chains, multiple SUMO-interacting motifs, and macromolecular complexes regulated by SUMOylation underscore the high complexity of this dynamic reversible system. New conceptual frameworks suggested by these findings have motivated the development of new methodologies to study pre- and post-SUMOylation events in vitro and in vivo, using distinct model organisms. Here we summarize some of the new developments and methodologies in the field, particularly those that will be further elaborated on in the chapters integrating this book.
Collapse
Affiliation(s)
- Michael J Matunis
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe St., Room W8118, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
57
|
Abstract
Protein modification by the small ubiquitin-related modifier (SUMO) protein regulates numerous cellular pathways and mounting evidence reveals a critical role for SUMO in modulating gene expression. Dynamic sumoylation of transcription factors, chromatin-modifying enzymes, histones, and other chromatin-associated factors significantly affects the transcriptional status of the eukaryotic genome. Recent studies have employed high-throughput ChIP-Seq analyses to gain clues regarding the role of the SUMO pathway in regulating chromatin-based transactions. Indeed, the global distribution of SUMO across chromatin reveals an important function for SUMO in controlling transcription, particularly of genes involved in protein synthesis. These newly appreciated patterns of genome-wide sumoylation will inform more directed studies aimed at analyzing how the dynamics of gene expression are controlled by posttranslational SUMO modification.
Collapse
Affiliation(s)
- Nicole R Wilson
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA.
| |
Collapse
|
58
|
Paasch F, den Brave F, Psakhye I, Pfander B, Jentsch S. Failed mitochondrial import and impaired proteostasis trigger SUMOylation of mitochondrial proteins. J Biol Chem 2017; 293:599-609. [PMID: 29183993 PMCID: PMC5767865 DOI: 10.1074/jbc.m117.817833] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/16/2017] [Indexed: 11/23/2022] Open
Abstract
Modification by the ubiquitin-like protein SUMO affects hundreds of cellular substrate proteins and regulates a wide variety of physiological processes. While the SUMO system appears to predominantly target nuclear proteins and, to a lesser extent, cytosolic proteins, hardly anything is known about the SUMOylation of proteins targeted to membrane-enclosed organelles. Here, we identify a large set of structurally and functionally unrelated mitochondrial proteins as substrates of the SUMO pathway in yeast. We show that SUMO modification of mitochondrial proteins does not rely on mitochondrial targeting and, in fact, is strongly enhanced upon import failure, consistent with the modification occurring in the cytosol. Moreover, SUMOylated forms of mitochondrial proteins particularly accumulate in HSP70- and proteasome-deficient cells, suggesting that SUMOylation participates in cellular protein quality control. We therefore propose that SUMO serves as a mark for nonfunctional mitochondrial proteins, which only sporadically arise in unstressed cells but strongly accumulate upon defective mitochondrial import and impaired proteostasis. Overall, our findings provide support for a role of SUMO in the cytosolic response to aberrant proteins.
Collapse
Affiliation(s)
| | | | - Ivan Psakhye
- From the Department of Molecular Cell Biology and
| | - Boris Pfander
- the Research Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | |
Collapse
|
59
|
Abstract
Many of the known SUMO substrates are nuclear proteins, which regulate gene expression and chromatin dynamics. Sumoylation, in general, appears to correlate with decreased transcriptional activity, and in many cases modulation of the chromatin template is implicated. Sumoylation of the core histones is associated with transcriptional silencing, and transcription factor sumoylation can decrease gene expression by promoting recruitment of chromatin modifying enzymes. Additionally, sumoylation of transcriptional corepressors and chromatin remodeling enzymes can influence interactions with other transcriptional regulators, and alter their enzymatic activity. In some cases, proteins that are components of transcriptional corepressor complexes have been shown to be SUMO E3 ligases, further emphasizing the integration of sumoylation with the regulation of chromatin remodeling. Despite the evidence suggesting that sumoylation is primarily repressive for access to chromatin, recent analyses suggest that protein sumoylation on the chromatin template may play important roles at highly expressed genes. Elucidating the dynamic interplay of sumoylation with other post-translational modifications of histones and chromatin associated proteins will be key to fully understanding the regulation of access to the chromatin template.
Collapse
|
60
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
61
|
Niskanen EA, Palvimo JJ. Chromatin SUMOylation in heat stress: To protect, pause and organise?: SUMO stress response on chromatin. Bioessays 2017; 39. [PMID: 28440894 DOI: 10.1002/bies.201600263] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Post-translational modifications, e.g. SUMO modifications (SUMOylation), provide a mechanism for swiftly changing a protein's activity. Various stress conditions trigger a SUMO stress response (SSR) - a stress-induced rapid change in the conjugation of SUMO to multiple proteins, which predominantly targets nuclear proteins. The SSR has been postulated to protect stressed cells by preserving the functionality of crucial proteins. However, it is unclear how it exerts its protective functions. Interestingly, heat stress (HS) increases SUMOylation of proteins at active promoters and enhancers. In promoters, HS-induced SUMOylation correlates with gene transcription and stress-induced RNA polymerase II (Pol2) pausing. Conversely, a disappearance of SUMOylation in HS occurs at chromatin anchor points that maintain chromatin-looping structures and the spatial organisation of chromatin. In reviewing the literature, we hypothesise that the SSR regulates Pol2 pausing by modulating the interactions of pausing-regulating proteins, whereas deSUMOylation alters the function of chromatin anchors.
Collapse
Affiliation(s)
- Einari A Niskanen
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Jorma J Palvimo
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| |
Collapse
|
62
|
Rosonina E, Akhter A, Dou Y, Babu J, Sri Theivakadadcham VS. Regulation of transcription factors by sumoylation. Transcription 2017; 8:220-231. [PMID: 28379052 PMCID: PMC5574528 DOI: 10.1080/21541264.2017.1311829] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Transcription factors (TFs) are among the most frequently detected targets of sumoylation, and effects of the modification have been studied for about 200 individual TFs to date. TF sumoylation is most often associated with reduced target gene expression, which can be mediated by enhanced interactions with corepressors or by interference with protein modifications that promote transcription. However, recent studies show that sumoylation also regulates gene expression by controlling the levels of TFs that are associated with chromatin. SUMO can mediate this by modulating TF DNA-binding activity, promoting clearance of TFs from chromatin, or indirectly, by influencing TF abundance or localization.
Collapse
Affiliation(s)
- Emanuel Rosonina
- a Department of Biology , York University , Toronto , ON , Canada
| | - Akhi Akhter
- a Department of Biology , York University , Toronto , ON , Canada
| | - Yimo Dou
- a Department of Biology , York University , Toronto , ON , Canada
| | - John Babu
- a Department of Biology , York University , Toronto , ON , Canada
| | | |
Collapse
|
63
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
64
|
Zhang L, Liu X, Sheng H, Liu S, Li Y, Zhao JQ, Warner DS, Paschen W, Yang W. Neuron-specific SUMO knockdown suppresses global gene expression response and worsens functional outcome after transient forebrain ischemia in mice. Neuroscience 2016; 343:190-212. [PMID: 27919694 DOI: 10.1016/j.neuroscience.2016.11.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/30/2022]
Abstract
Small ubiquitin-like modifier (SUMO) conjugation (SUMOylation) plays key roles in neurologic function in health and disease. Neuronal SUMOylation is essential for emotionality and cognition, and this pathway is dramatically activated in post-ischemic neurons, a neuroprotective response to ischemia. It is also known from cell culture studies that SUMOylation modulates gene expression. However, it remains unknown how SUMOylation regulates neuronal gene expression in vivo, in the physiologic state and after ischemia, and modulates post-ischemic recovery of neurologic function. To address these important questions, we used a SUMO1-3 knockdown (SUMO-KD) mouse in which a Thy-1 promoter drives expression of 3 distinct microRNAs against SUMO1-3 to silence SUMO expression specifically in neurons. Wild-type and SUMO-KD mice were subjected to transient forebrain ischemia. Microarray analysis was performed in hippocampal CA1 samples, and neurologic function was evaluated. SUMOylation had opposite effects on neuronal gene expression before and after ischemia. In the physiological state, most genes regulated by SUMOylation were up-regulated in SUMO-KD compared to wild-type mice. Brain ischemia/reperfusion significantly modulated the expression levels of more than 400 genes in wild-type mice, with a majority of those genes upregulated. The extent of this post-ischemic transcriptome change was suppressed in SUMO-KD mice. Moreover, SUMO-KD mice exhibited significantly worse functional outcome. This suggests that suppression of global gene expression response in post-ischemic brain due to SUMO knockdown has a negative effect on post-ischemic neurologic function. Together, our data provide a basis for future studies to mechanistically link SUMOylation to neurologic function in health and disease.
Collapse
Affiliation(s)
- Lin Zhang
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Xiaozhi Liu
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Neurosurgery, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Shuai Liu
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ying Li
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA; Department of Cardiology, The Fifth Central Hospital of Tianjin, Tianjin, China
| | - Julia Q Zhao
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - David S Warner
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Wei Yang
- Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
65
|
Proteostasis regulation by the ubiquitin system. Essays Biochem 2016; 60:143-151. [DOI: 10.1042/ebc20160001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022]
Abstract
Cells have developed an evolutionary obligation to survey and maintain proteome fidelity and avoid the possible toxic consequences of protein misfolding and aggregation. Disturbances to protein homoeostasis (proteostasis) can result in severe cellular phenotypes and are closely linked with the accumulation of microscopically visible deposits of aggregated proteins. These include inclusion bodies found in AD (Alzheimer's disease), HD (Huntington's disease) and ALS (amyotrophic lateral sclerosis) patient neurons. Protein aggregation is intimately linked with the ubiquitin and ubiquitin-like post-translational modifier system, which manages cellular protein folding stress and promotes the restoration of proteostasis. This is achieved in large part through the action of the UPS (ubiquitin–proteasome system), which is responsible for directing the proteasomal destruction of misfolded and damaged proteins tagged with ubiquitin chains. There are other less well understood ways in which ubiquitin family members can help to maintain proteostasis that complement, but are independent of, the UPS. This article discusses our current understanding of how the ubiquitin family regulates the protein misfolding pathways that threaten proteome fidelity, and how this is achieved by the key players in this process.
Collapse
|
66
|
Abstract
Small ubiquitin-like modifiers (SUMOs) are essential for the regulation of several cellular processes and are potential therapeutic targets owing to their involvement in diseases such as cancer and Alzheimer disease. In the past decade, we have witnessed a rapid expansion of proteomic approaches for identifying sumoylated proteins, with recent advances in detecting site-specific sumoylation. In this Analysis, we combined all human SUMO proteomics data currently available into one cohesive database. We provide proteomic evidence for sumoylation of 3,617 proteins at 7,327 sumoylation sites, and insight into SUMO group modification by clustering the sumoylated proteins into functional networks. The data support sumoylation being a frequent protein modification (on par with other major protein modifications) with multiple nuclear functions, including in transcription, mRNA processing, DNA replication and the DNA-damage response.
Collapse
|
67
|
Augustine RC, York SL, Rytz TC, Vierstra RD. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress. PLANT PHYSIOLOGY 2016; 171:2191-210. [PMID: 27208252 PMCID: PMC4936565 DOI: 10.1104/pp.16.00353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/12/2016] [Indexed: 05/03/2023]
Abstract
In response to abiotic and biotic challenges, plants rapidly attach small ubiquitin-related modifier (SUMO) to a large collection of nuclear proteins, with studies in Arabidopsis (Arabidopsis thaliana) linking SUMOylation to stress tolerance via its modification of factors involved in chromatin and RNA dynamics. Despite this importance, little is known about SUMOylation in crop species. Here, we describe the plant SUMO system at the phylogenetic, biochemical, and transcriptional levels with a focus on maize (Zea mays). In addition to canonical SUMOs, land plants encode a loosely constrained noncanonical isoform and a variant containing a long extension upstream of the signature β-grasp fold, with cereals also expressing a novel diSUMO polypeptide bearing two SUMO β-grasp domains in tandem. Maize and other cereals also synthesize a unique SUMO-conjugating enzyme variant with more restricted expression patterns that is enzymatically active despite a distinct electrostatic surface. Maize SUMOylation primarily impacts nuclear substrates, is strongly induced by high temperatures, and displays a memory that suppresses subsequent conjugation. Both in-depth transcript and conjugate profiles in various maize organs point to tissue/cell-specific functions for SUMOylation, with potentially significant roles during embryo and endosperm maturation. Collectively, these studies define the organization of the maize SUMO system and imply important functions during seed development and stress defense.
Collapse
Affiliation(s)
- Robert C Augustine
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706; andDepartment of Biology, Washington University, St. Louis, Missouri 63130
| | - Samuel L York
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706; andDepartment of Biology, Washington University, St. Louis, Missouri 63130
| | - Thérèse C Rytz
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706; andDepartment of Biology, Washington University, St. Louis, Missouri 63130
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706; andDepartment of Biology, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
68
|
Liebelt F, Vertegaal ACO. Ubiquitin-dependent and independent roles of SUMO in proteostasis. Am J Physiol Cell Physiol 2016; 311:C284-96. [PMID: 27335169 PMCID: PMC5129774 DOI: 10.1152/ajpcell.00091.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/04/2023]
Abstract
Cellular proteomes are continuously undergoing alterations as a result of new production of proteins, protein folding, and degradation of proteins. The proper equilibrium of these processes is known as proteostasis, implying that proteomes are in homeostasis. Stress conditions can affect proteostasis due to the accumulation of misfolded proteins as a result of overloading the degradation machinery. Proteostasis is affected in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and multiple polyglutamine disorders including Huntington's disease. Owing to a lack of proteostasis, neuronal cells build up toxic protein aggregates in these diseases. Here, we review the role of the ubiquitin-like posttranslational modification SUMO in proteostasis. SUMO alone contributes to protein homeostasis by influencing protein signaling or solubility. However, the main contribution of SUMO to proteostasis is the ability to cooperate with, complement, and balance the ubiquitin-proteasome system at multiple levels. We discuss the identification of enzymes involved in the interplay between SUMO and ubiquitin, exploring the complexity of this crosstalk which regulates proteostasis. These enzymes include SUMO-targeted ubiquitin ligases and ubiquitin proteases counteracting these ligases. Additionally, we review the role of SUMO in brain-related diseases, where SUMO is primarily investigated because of its role during formation of aggregates, either independently or in cooperation with ubiquitin. Detailed understanding of the role of SUMO in these diseases could lead to novel treatment options.
Collapse
Affiliation(s)
- Frauke Liebelt
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
69
|
Gladman NP, Marshall RS, Lee KH, Vierstra RD. The Proteasome Stress Regulon Is Controlled by a Pair of NAC Transcription Factors in Arabidopsis. THE PLANT CELL 2016; 28:1279-96. [PMID: 27194708 PMCID: PMC4944403 DOI: 10.1105/tpc.15.01022] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/19/2016] [Accepted: 05/11/2016] [Indexed: 05/21/2023]
Abstract
Proteotoxic stress, which is generated by the accumulation of unfolded or aberrant proteins due to environmental or cellular perturbations, can be mitigated by several mechanisms, including activation of the unfolded protein response and coordinated increases in protein chaperones and activities that direct proteolysis, such as the 26S proteasome. Using RNA-seq analyses combined with chemical inhibitors or mutants that induce proteotoxic stress by impairing 26S proteasome capacity, we defined the transcriptional network that responds to this stress in Arabidopsis thaliana This network includes genes encoding core and assembly factors needed to build the complete 26S particle, alternative proteasome capping factors, enzymes involved in protein ubiquitylation/deubiquitylation and cellular detoxification, protein chaperones, autophagy components, and various transcriptional regulators. Many loci in this proteasome-stress regulon contain a consensus cis-element upstream of the transcription start site, which was previously identified as a binding site for the NAM/ATAF1/CUC2 78 (NAC78) transcription factor. Double mutants disrupting NAC78 and its closest relative NAC53 are compromised in the activation of this regulon and notably are strongly hypersensitive to the proteasome inhibitors MG132 and bortezomib. Given that NAC53 and NAC78 homo- and heterodimerize, we propose that they work as a pair in activating the expression of numerous factors that help plants survive proteotoxic stress and thus play a central regulatory role in maintaining protein homeostasis.
Collapse
Affiliation(s)
- Nicholas P Gladman
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard S Marshall
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706 Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Kwang-Hee Lee
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Richard D Vierstra
- Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706 Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
70
|
Shire K, Wong AI, Tatham MH, Anderson OF, Ripsman D, Gulstene S, Moffat J, Hay RT, Frappier L. Identification of RNF168 as a PML nuclear body regulator. J Cell Sci 2016; 129:580-91. [PMID: 26675234 PMCID: PMC4760303 DOI: 10.1242/jcs.176446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/12/2015] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) protein forms the basis of PML nuclear bodies (PML NBs), which control many important processes. We have screened an shRNA library targeting ubiquitin pathway proteins for effects on PML NBs, and identified RNF8 and RNF168 DNA-damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the levels of PML NBs and proteins, whereas overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin-interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted in increased ubiquitylation and SUMO2 modification of PML. In addition, RNF168 was found to associate with proteins modified by SUMO2 and/or SUMO3 in a manner dependent on its ubiquitin-binding sequences, suggesting that hybrid SUMO-ubiquitin chains can be bound. In vitro assays confirmed that RNF168, preferentially, binds hybrid SUMO2-K63 ubiquitin chains compared with K63-ubiquitin chains or individual SUMO2. Our study identified previously unrecognized roles for RNF8 and RNF168 in the regulation of PML, and a so far unknown preference of RNF168 for hybrid SUMO-ubiquitin chains.
Collapse
Affiliation(s)
- Kathy Shire
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrew I Wong
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Oliver F Anderson
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - David Ripsman
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Stephanie Gulstene
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
71
|
Structures of HSF2 reveal mechanisms for differential regulation of human heat-shock factors. Nat Struct Mol Biol 2016; 23:147-54. [PMID: 26727490 PMCID: PMC4973471 DOI: 10.1038/nsmb.3150] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/25/2015] [Indexed: 02/07/2023]
Abstract
Heat Shock Transcription Factor (HSF) family members function in stress protection and in human disease including proteopathies, neurodegeneration and cancer. The mechanisms that drive distinct post-translational modifications, co-factor recruitment and target gene activation for specific HSF paralogs are unknown. We present high-resolution crystal structures of the human HSF2 DNA-binding domain (DBD) bound to DNA, revealing an unprecedented view of HSFs that provides insights into their unique biology. The HSF2 DBD structures resolve a novel carboxyl-terminal helix that directs the coiled-coil domain to wrap around DNA, exposing paralog-specific sequences of the DBD surface, for differential post-translational modifications and co-factor interactions. We further demonstrate a direct interaction between HSF1 and HSF2 through their coiled-coil domains. Together, these features provide a new model for HSF structure as the basis for differential and combinatorial regulation to influence the transcriptional response to cellular stress.
Collapse
|
72
|
Eckhoff J, Dohmen RJ. In Vitro Characterization of Chain Depolymerization Activities of SUMO-Specific Proteases. Methods Mol Biol 2016; 1475:123-135. [PMID: 27631802 DOI: 10.1007/978-1-4939-6358-4_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
SUMO-specific proteases, known as Ulps in baker's yeast and SENPs in humans, have important roles in controlling the dynamics of SUMO-modified proteins. They display distinct modes of action and specificity, in that they may act on the SUMO precursor, mono-sumoylated, and/or polysumoylated proteins, and they might be specific for substrates with certain SUMO paralogs. SUMO chains may be dismantled either by endo or exo mechanisms. Biochemical characterization of a protease usually requires purification of the protein of interest. Developing a purification protocol, however, can be very difficult, and in some cases, isolation of a protease in its pure form may go along with a substantial loss of activity. To characterize the reaction mechanism of Ulps, we have developed an in vitro assay, which makes use of substrates endowed with artificial poly-SUMO chains of defined lengths, and S. cerevisiae Ulp enzymes in crude extract from E. coli. This fast and economic approach should be applicable to SUMO-specific proteases from other species as well.
Collapse
Affiliation(s)
- Julia Eckhoff
- Institute for Genetics, Biocenter, University of Cologne, 50674, Cologne, Germany
| | - R Jürgen Dohmen
- Institute for Genetics, Biocenter, University of Cologne, 50674, Cologne, Germany.
| |
Collapse
|
73
|
Screen for multi-SUMO-binding proteins reveals a multi-SIM-binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin. Proc Natl Acad Sci U S A 2015; 112:E4854-63. [PMID: 26283374 DOI: 10.1073/pnas.1509716112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein SUMOylation has emerged as an important regulatory event, particularly in nuclear processes such as transcriptional control and DNA repair. In this context, small ubiquitin-like modifier (SUMO) often provides a binding platform for the recruitment of proteins via their SUMO-interacting motifs (SIMs). Recent discoveries point to an important role for multivalent SUMO binding through multiple SIMs in the binding partner as exemplified by poly-SUMOylation acting as a binding platform for ubiquitin E3 ligases such as ring finger protein 4. Here, we have investigated whether other types of protein are recruited through multivalent SUMO interactions. We have identified dozens of proteins that bind to multi-SUMO platforms, thereby uncovering a complex potential regulatory network. Multi-SUMO binding is mediated through multi-SIM modules, and the functional importance of these interactions is demonstrated for the transcriptional corepressor ZMYM2/ZNF198 where its multi-SUMO-binding activity is required for its recruitment to chromatin.
Collapse
|
74
|
Baumann K. Resisting heat stress with SUMO. Nat Rev Mol Cell Biol 2015. [DOI: 10.1038/nrm4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|