51
|
Lewno MT, Cui T, Wang X. Cullin Deneddylation Suppresses the Necroptotic Pathway in Cardiomyocytes. Front Physiol 2021; 12:690423. [PMID: 34262479 PMCID: PMC8273387 DOI: 10.3389/fphys.2021.690423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiomyocyte death in the form of apoptosis and necrosis represents a major cellular mechanism underlying cardiac pathogenesis. Recent advances in cell death research reveal that not all necrosis is accidental, but rather there are multiple forms of necrosis that are regulated. Necroptosis, the earliest identified regulated necrosis, is perhaps the most studied thus far, and potential links between necroptosis and Cullin-RING ligases (CRLs), the largest family of ubiquitin E3 ligases, have been postulated. Cullin neddylation activates the catalytic dynamic of CRLs; the reverse process, Cullin deneddylation, is performed by the COP9 signalosome holocomplex (CSN) that is formed by eight unique protein subunits, COPS1/CNS1 through COPS8/CNS8. As revealed by cardiomyocyte-restricted knockout of Cops8 (Cops8-cko) in mice, perturbation of Cullin deneddylation in cardiomyocytes impairs not only the functioning of the ubiquitin-proteasome system (UPS) but also the autophagic-lysosomal pathway (ALP). Similar cardiac abnormalities are also observed in Cops6-cko mice; and importantly, loss of the desmosome targeting of COPS6 is recently implicated as a pathogenic factor in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Cops8-cko causes massive cardiomyocyte death in the form of necrosis rather than apoptosis and rapidly leads to a progressive dilated cardiomyopathy phenotype as well as drastically shortened lifespan in mice. Even a moderate downregulation of Cullin deneddylation as seen in mice with Cops8 hypomorphism exacerbates cardiac proteotoxicity induced by overexpression of misfolded proteins. More recently, it was further demonstrated that cardiomyocyte necrosis caused by Cops8-cko belongs to necroptosis and is mediated by the RIPK1-RIPK3 pathway. This article reviews these recent advances and discusses the potential links between Cullin deneddylation and the necroptotic pathways in hopes of identifying potentially new therapeutic targets for the prevention of cardiomyocyte death.
Collapse
Affiliation(s)
- Megan T Lewno
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
52
|
The Role of the Key Effector of Necroptotic Cell Death, MLKL, in Mouse Models of Disease. Biomolecules 2021; 11:biom11060803. [PMID: 34071602 PMCID: PMC8227991 DOI: 10.3390/biom11060803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Necroptosis is an inflammatory form of lytic programmed cell death that is thought to have evolved to defend against pathogens. Genetic deletion of the terminal effector protein—MLKL—shows no overt phenotype in the C57BL/6 mouse strain under conventional laboratory housing conditions. Small molecules that inhibit necroptosis by targeting the kinase activity of RIPK1, one of the main upstream conduits to MLKL activation, have shown promise in several murine models of non-infectious disease and in phase II human clinical trials. This has triggered in excess of one billion dollars (USD) in investment into the emerging class of necroptosis blocking drugs, and the potential utility of targeting the terminal effector is being closely scrutinised. Here we review murine models of disease, both genetic deletion and mutation, that investigate the role of MLKL. We summarize a series of examples from several broad disease categories including ischemia reperfusion injury, sterile inflammation, pathogen infection and hematological stress. Elucidating MLKL’s contribution to mouse models of disease is an important first step to identify human indications that stand to benefit most from MLKL-targeted drug therapies.
Collapse
|
53
|
Garnish SE, Meng Y, Koide A, Sandow JJ, Denbaum E, Jacobsen AV, Yeung W, Samson AL, Horne CR, Fitzgibbon C, Young SN, Smith PPC, Webb AI, Petrie EJ, Hildebrand JM, Kannan N, Czabotar PE, Koide S, Murphy JM. Conformational interconversion of MLKL and disengagement from RIPK3 precede cell death by necroptosis. Nat Commun 2021; 12:2211. [PMID: 33850121 PMCID: PMC8044208 DOI: 10.1038/s41467-021-22400-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Phosphorylation of the MLKL pseudokinase by the RIPK3 kinase leads to MLKL oligomerization, translocation to, and permeabilization of, the plasma membrane to induce necroptotic cell death. The precise choreography of MLKL activation remains incompletely understood. Here, we report Monobodies, synthetic binding proteins, that bind the pseudokinase domain of MLKL within human cells and their crystal structures in complex with the human MLKL pseudokinase domain. While Monobody-32 constitutively binds the MLKL hinge region, Monobody-27 binds MLKL via an epitope that overlaps the RIPK3 binding site and is only exposed after phosphorylated MLKL disengages from RIPK3 following necroptotic stimulation. The crystal structures identified two distinct conformations of the MLKL pseudokinase domain, supporting the idea that a conformational transition accompanies MLKL disengagement from RIPK3. These studies provide further evidence that MLKL undergoes a large conformational change upon activation, and identify MLKL disengagement from RIPK3 as a key regulatory step in the necroptosis pathway.
Collapse
Affiliation(s)
- Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jarrod J Sandow
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Eric Denbaum
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Phoebe P C Smith
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Andrew I Webb
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Emma J Petrie
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
54
|
Hildebrand JM, Lo B, Tomei S, Mattei V, Young SN, Fitzgibbon C, Murphy JM, Fadda A. A family harboring an MLKL loss of function variant implicates impaired necroptosis in diabetes. Cell Death Dis 2021; 12:345. [PMID: 33795639 PMCID: PMC8016849 DOI: 10.1038/s41419-021-03636-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 02/01/2023]
Abstract
Maturity-onset diabetes of the young, MODY, is an autosomal dominant disease with incomplete penetrance. In a family with multiple generations of diabetes and several early onset diabetic siblings, we found the previously reported P33T PDX1 damaging mutation. Interestingly, this substitution was also present in a healthy sibling. In contrast, a second very rare heterozygous damaging mutation in the necroptosis terminal effector, MLKL, was found exclusively in the diabetic family members. Aberrant cell death by necroptosis is a cause of inflammatory diseases and has been widely implicated in human pathologies, but has not yet been attributed functions in diabetes. Here, we report that the MLKL substitution observed in diabetic patients, G316D, results in diminished phosphorylation by its upstream activator, the RIPK3 kinase, and no capacity to reconstitute necroptosis in two distinct MLKL-/- human cell lines. This MLKL mutation may act as a modifier to the P33T PDX1 mutation, and points to a potential role of impairment of necroptosis in diabetes. Our findings highlight the importance of family studies in unraveling MODY's incomplete penetrance, and provide further support for the involvement of dysregulated necroptosis in human disease.
Collapse
Affiliation(s)
- Joanne M Hildebrand
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Bernice Lo
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | - Sara Tomei
- Research Department, Sidra Medicine, Doha, 26999, Qatar
| | | | - Samuel N Young
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Cheree Fitzgibbon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - James M Murphy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3050, Australia
| | - Abeer Fadda
- Research Department, Sidra Medicine, Doha, 26999, Qatar.
| |
Collapse
|
55
|
Samson AL, Fitzgibbon C, Patel KM, Hildebrand JM, Whitehead LW, Rimes JS, Jacobsen AV, Horne CR, Gavin XJ, Young SN, Rogers KL, Hawkins ED, Murphy JM. A toolbox for imaging RIPK1, RIPK3, and MLKL in mouse and human cells. Cell Death Differ 2021; 28:2126-2144. [PMID: 33589776 DOI: 10.1038/s41418-021-00742-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Necroptosis is a lytic, inflammatory cell death pathway that is dysregulated in many human pathologies. The pathway is executed by a core machinery comprising the RIPK1 and RIPK3 kinases, which assemble into necrosomes in the cytoplasm, and the terminal effector pseudokinase, MLKL. RIPK3-mediated phosphorylation of MLKL induces oligomerization and translocation to the plasma membrane where MLKL accumulates as hotspots and perturbs the lipid bilayer to cause death. The precise choreography of events in the pathway, where they occur within cells, and pathway differences between species, are of immense interest. However, they have been poorly characterized due to a dearth of validated antibodies for microscopy studies. Here, we describe a toolbox of antibodies for immunofluorescent detection of the core necroptosis effectors, RIPK1, RIPK3, and MLKL, and their phosphorylated forms, in human and mouse cells. By comparing reactivity with endogenous proteins in wild-type cells and knockout controls in basal and necroptosis-inducing conditions, we characterise the specificity of frequently-used commercial and recently-developed antibodies for detection of necroptosis signaling events. Importantly, our findings demonstrate that not all frequently-used antibodies are suitable for monitoring necroptosis by immunofluorescence microscopy, and methanol- is preferable to paraformaldehyde-fixation for robust detection of specific RIPK1, RIPK3, and MLKL signals.
Collapse
Affiliation(s)
- André L Samson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Komal M Patel
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lachlan W Whitehead
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Annette V Jacobsen
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Xavier J Gavin
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia. .,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
56
|
Mace PD, Murphy JM. There's more to death than life: Noncatalytic functions in kinase and pseudokinase signaling. J Biol Chem 2021; 296:100705. [PMID: 33895136 PMCID: PMC8141879 DOI: 10.1016/j.jbc.2021.100705] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Protein kinases are present in all domains of life and play diverse roles in cellular signaling. Whereas the impact of substrate phosphorylation by protein kinases has long been appreciated, it is becoming increasingly clear that protein kinases also play other, noncatalytic, functions. Here, we review recent developments in understanding the noncatalytic functions of protein kinases. Many noncatalytic activities are best exemplified by protein kinases that are devoid of enzymatic activity altogether-known as pseudokinases. These dead proteins illustrate that, beyond conventional notions of kinase function, catalytic activity can be dispensable for biological function. Through key examples we illustrate diverse mechanisms of noncatalytic kinase activity: as allosteric modulators; protein-based switches; scaffolds for complex assembly; and as competitive inhibitors in signaling pathways. In common, these noncatalytic mechanisms exploit the nature of the protein kinase fold as a versatile protein-protein interaction module. Many examples are also intrinsically linked to the ability of the protein kinase to switch between multiple states, a function shared with catalytic protein kinases. Finally, we consider the contemporary landscape of small molecules to modulate noncatalytic functions of protein kinases, which, although challenging, has significant potential given the scope of noncatalytic protein kinase function in health and disease.
Collapse
Affiliation(s)
- Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - James M Murphy
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|