51
|
Grum-Schwensen B, Klingelhöfer J, Beck M, Bonefeld CM, Hamerlik P, Guldberg P, Grigorian M, Lukanidin E, Ambartsumian N. S100A4-neutralizing antibody suppresses spontaneous tumor progression, pre-metastatic niche formation and alters T-cell polarization balance. BMC Cancer 2015; 15:44. [PMID: 25884510 PMCID: PMC4335362 DOI: 10.1186/s12885-015-1034-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/23/2015] [Indexed: 01/19/2023] Open
Abstract
Background The tumor microenvironment plays a determinative role in stimulating tumor progression and metastasis. Notably, tumor-stroma signals affect the pattern of infiltrated immune cells and the profile of tumor-released cytokines. Among the known molecules that are engaged in stimulating the metastatic spread of tumor cells is the S100A4 protein. S100A4 is known as an inducer of inflammatory processes and has been shown to attract T-cells to the primary tumor and to the pre-metastatic niche. The present study aims to examine the immunomodulatory role of S100A4 in vivo and in vitro and assess the mode of action of 6B12, a S100A4 neutralizing antibody. Methods The therapeutic effect of the 6B12 antibody was evaluated in two different mouse models. First, in a model of spontaneous breast cancer we assessed the dynamics of tumor growth and metastasis. Second, in a model of metastatic niche formation we determined the expression of metastatic niche markers. The levels of cytokine expression were assessed using antibody as well as PCR arrays and the results confirmed by qRT-PCR and ELISA. T-cell phenotyping and in vitro differentiation analyses were performed by flow cytometry. Results We show that the S100A4 protein alters the expression of transcription factor and signal transduction pathway genes involved in the T-cell lineage differentiation. T-cells challenged with S100A4 demonstrated reduced proportion of Th1-polarized cells shifting the Th1/Th2 balance towards the Th2 pro-tumorigenic phenotype. The 6B12 antibody restored the Th1/Th2 balance. Furthermore, we provide evidence that the 6B12 antibody deploys its anti-metastatic effect, by suppressing the attraction of T-cells to the site of primary tumor and pre-metastatic niche. This was associated with delayed primary tumor growth, decreased vessel density and inhibition of metastases. Conclusion The S100A4 blocking antibody (6B12) reduces tumor growth and metastasis in a model of spontaneous breast cancer. The 6B12 antibody treatment inhibits T cell accumulation at the primary and pre-metastatic tumor sites. The 6B12 antibody acts as an immunomodulatory agent and thus supports the view that the 6B12 antibody is a promising therapeutic candidate to fight cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1034-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jörg Klingelhöfer
- Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, 2200, Copenhagen, Denmark.
| | - Mette Beck
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| | - Charlotte Menné Bonefeld
- Institute of International Health, Immunology and Microbiology, Faculty of Health Sciences, Copenhagen University, 2200, Copenhagen, Denmark.
| | - Petra Hamerlik
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| | - Per Guldberg
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| | - Mariam Grigorian
- Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, 2200, Copenhagen, Denmark.
| | - Eugene Lukanidin
- Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| | - Noona Ambartsumian
- Institute of Neuroscience and Pharmacology, Faculty of Health Sciences, Copenhagen University, 2200, Copenhagen, Denmark.
| |
Collapse
|
52
|
Gustafsson M, Nestor CE, Zhang H, Barabási AL, Baranzini S, Brunak S, Chung KF, Federoff HJ, Gavin AC, Meehan RR, Picotti P, Pujana MÀ, Rajewsky N, Smith KG, Sterk PJ, Villoslada P, Benson M. Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome Med 2014; 6:82. [PMID: 25473422 PMCID: PMC4254417 DOI: 10.1186/s13073-014-0082-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many common diseases, such as asthma, diabetes or obesity, involve
altered interactions between thousands of genes. High-throughput techniques (omics)
allow identification of such genes and their products, but functional understanding
is a formidable challenge. Network-based analyses of omics data have identified
modules of disease-associated genes that have been used to obtain both a systems
level and a molecular understanding of disease mechanisms. For example, in allergy a
module was used to find a novel candidate gene that was validated by functional and
clinical studies. Such analyses play important roles in systems medicine. This is an
emerging discipline that aims to gain a translational understanding of the complex
mechanisms underlying common diseases. In this review, we will explain and provide
examples of how network-based analyses of omics data, in combination with functional
and clinical studies, are aiding our understanding of disease, as well as helping to
prioritize diagnostic markers or therapeutic candidate genes. Such analyses involve
significant problems and limitations, which will be discussed. We also highlight the
steps needed for clinical implementation.
Collapse
Affiliation(s)
- Mika Gustafsson
- Centre for Individualized Medicine, Department of Pediatrics, Faculty of Medicine, 58185 Linköping, Sweden
| | - Colm E Nestor
- Centre for Individualized Medicine, Department of Pediatrics, Faculty of Medicine, 58185 Linköping, Sweden
| | - Huan Zhang
- Centre for Individualized Medicine, Department of Pediatrics, Faculty of Medicine, 58185 Linköping, Sweden
| | - Albert-László Barabási
- Department of Physics, Biology and Computer Science, Center for Complex Network Research, Northeastern University, Boston, MA 02115 USA
| | - Sergio Baranzini
- Department of Neurology, University of California, San Francisco, CA 94143 USA
| | - Sören Brunak
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark ; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kian Fan Chung
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, SW3 6LY UK
| | - Howard J Federoff
- Department of Neurology and Neuroscience, Georgetown University Medical Center, Washington, DC 20057 USA
| | | | - Richard R Meehan
- MRC Human Genetics Unit, MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Paola Picotti
- Institute of Biochemistry, University of Zürich, 8093 Zürich, Switzerland
| | - Miguel Àngel Pujana
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, 08908 Spain
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Kenneth Gc Smith
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK ; Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, CB2 0QQ UK
| | - Peter J Sterk
- Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Pablo Villoslada
- Center of Neuroimmunology and Department of Neurology, Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic of Barcelona, 08028 Barcelona, Spain
| | - Mikael Benson
- Centre for Individualized Medicine, Department of Pediatrics, Faculty of Medicine, 58185 Linköping, Sweden
| |
Collapse
|
53
|
Zhang H, Gustafsson M, Nestor C, Chung KF, Benson M. Targeted omics and systems medicine: personalising care. THE LANCET RESPIRATORY MEDICINE 2014; 2:785-7. [DOI: 10.1016/s2213-2600(14)70188-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
54
|
Gustafsson M, Edström M, Gawel D, Nestor CE, Wang H, Zhang H, Barrenäs F, Tojo J, Kockum I, Olsson T, Serra-Musach J, Bonifaci N, Pujana MA, Ernerudh J, Benson M. Integrated genomic and prospective clinical studies show the importance of modular pleiotropy for disease susceptibility, diagnosis and treatment. Genome Med 2014; 6:17. [PMID: 24571673 PMCID: PMC4064311 DOI: 10.1186/gm534] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Background Translational research typically aims to identify and functionally validate individual, disease-specific genes. However, reaching this aim is complicated by the involvement of thousands of genes in common diseases, and that many of those genes are pleiotropic, that is, shared by several diseases. Methods We integrated genomic meta-analyses with prospective clinical studies to systematically investigate the pathogenic, diagnostic and therapeutic roles of pleiotropic genes. In a novel approach, we first used pathway analysis of all published genome-wide association studies (GWAS) to find a cell type common to many diseases. Results The analysis showed over-representation of the T helper cell differentiation pathway, which is expressed in T cells. This led us to focus on expression profiling of CD4+ T cells from highly diverse inflammatory and malignant diseases. We found that pleiotropic genes were highly interconnected and formed a pleiotropic module, which was enriched for inflammatory, metabolic and proliferative pathways. The general relevance of this module was supported by highly significant enrichment of genetic variants identified by all GWAS and cancer studies, as well as known diagnostic and therapeutic targets. Prospective clinical studies of multiple sclerosis and allergy showed the importance of both pleiotropic and disease specific modules for clinical stratification. Conclusions In summary, this translational genomics study identified a pleiotropic module, which has key pathogenic, diagnostic and therapeutic roles.
Collapse
Affiliation(s)
- Mika Gustafsson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Måns Edström
- Clinical and Experimental Medicine, Faculty of Health Sciences, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, 58185 Linköping, Sweden
| | - Danuta Gawel
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Colm E Nestor
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Hui Wang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Huan Zhang
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - Fredrik Barrenäs
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| | - James Tojo
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neurosciences, Karolinska Institutet and Centrum for Molecular Medicine, 17177 Stockholm, Sweden
| | - Jordi Serra-Musach
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Núria Bonifaci
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Miguel Angel Pujana
- Cancer and Systems Biology Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, 08908 Barcelona, Spain
| | - Jan Ernerudh
- Clinical and Experimental Medicine, Faculty of Health Sciences, Division of Clinical Immunology, Unit of Autoimmunity and Immune Regulation, Linköping University, 58185 Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualised Medicine, Department of Clinical and Experimental Medicine, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|