51
|
Nag A, Mafi A, Das S, Yu MB, Alvarez-Villalonga B, Kim SK, Su Y, Goddard WA, Heath JR. Stereochemical engineering yields a multifunctional peptide macrocycle inhibitor of Akt2 by fine-tuning macrocycle-cell membrane interactions. Commun Chem 2023; 6:95. [PMID: 37202473 DOI: 10.1038/s42004-023-00890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023] Open
Abstract
Macrocycle peptides are promising constructs for imaging and inhibiting extracellular, and cell membrane proteins, but their use for targeting intracellular proteins is typically limited by poor cell penetration. We report the development of a cell-penetrant high-affinity peptide ligand targeted to the phosphorylated Ser474 epitope of the (active) Akt2 kinase. This peptide can function as an allosteric inhibitor, an immunoprecipitation reagent, and a live cell immunohistochemical staining reagent. Two cell penetrant stereoisomers were prepared and shown to exhibit similar target binding affinities and hydrophobic character but 2-3-fold different rates of cell penetration. Experimental and computational studies resolved that the ligands' difference in cell penetration could be assigned to their differential interactions with cholesterol in the membrane. These results expand the tool kit for designing new chiral-based cell-penetrant ligands.
Collapse
Affiliation(s)
- Arundhati Nag
- California Institute of Technology, Pasadena, CA, USA
- Clark University, Worcester, MA, USA
| | - Amirhossein Mafi
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - Samir Das
- California Institute of Technology, Pasadena, CA, USA
- Clark University, Worcester, MA, USA
| | - Mary Beth Yu
- California Institute of Technology, Pasadena, CA, USA
| | | | - Soo-Kyung Kim
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - Yapeng Su
- California Institute of Technology, Pasadena, CA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - William A Goddard
- Materials and Process Simulation Center (139-74), California Institute of Technology, Pasadena, CA, USA
| | - James R Heath
- California Institute of Technology, Pasadena, CA, USA.
- Institute for Systems Biology, Seattle, WA, USA.
| |
Collapse
|
52
|
Ueda K. Review: MDMX plays a central role in leukemic transformation and may be a promising target for leukemia prevention strategies. Exp Hematol 2023:S0301-472X(23)00161-3. [PMID: 37086813 DOI: 10.1016/j.exphem.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023]
Abstract
Acute myeloid leukemia (AML) is a fatal disease resulting from preleukemic hematopoietic conditions including asymptomatic clonal hematopoiesis. The accumulation of genetic changes is one of the causes of leukemic transformation. However, nongenetic factors including the overexpression of specific genes also contribute to preleukemic to leukemic transition. Among them, the p53 inhibitor Murine Double Minute X (MDMX) plays crucial roles especially in leukemia initiation. MDMX is broadly overexpressed in vast majority of AML cases, including in hematopoietic stem/progenitor cell (HSPC) level. Recently, high expression of MDMX in HSPC has been shown to be associated with leukemic transformation in patients with myelodysplastic syndromes, and preclinical studies demonstrated that MDMX overexpression accelerates the transformation of preleukemic murine models, including models of clonal hematopoiesis. MDMX inhibition, through activation of cell-intrinsic p53 activity, shows antileukemic effects. However, the molecular mechanisms of MDMX in provoking leukemic transformation are complicated. Both p53-dependent and independent mechanisms are involved in the progression of the disease. This review discusses the canonical and noncanonical functions of MDMX and how these functions are involved in the maintenance, expansion, and progression to malignancy of preleukemic stem cells. Moreover, strategies on how leukemic transformation could possibly be prevented by targeting MDMX in preleukemic stem cells are discussed.
Collapse
Affiliation(s)
- Koki Ueda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University, Fukushima, Fukushima 9601295, Japan; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
53
|
McElhinney K, Irnaten M, O’Brien C. p53 and Myofibroblast Apoptosis in Organ Fibrosis. Int J Mol Sci 2023; 24:ijms24076737. [PMID: 37047710 PMCID: PMC10095465 DOI: 10.3390/ijms24076737] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Organ fibrosis represents a dysregulated, maladaptive wound repair response that results in progressive disruption of normal tissue architecture leading to detrimental deterioration in physiological function, and significant morbidity/mortality. Fibrosis is thought to contribute to nearly 50% of all deaths in the Western world with current treatment modalities effective in slowing disease progression but not effective in restoring organ function or reversing fibrotic changes. When physiological wound repair is complete, myofibroblasts are programmed to undergo cell death and self-clearance, however, in fibrosis there is a characteristic absence of myofibroblast apoptosis. It has been shown that in fibrosis, myofibroblasts adopt an apoptotic-resistant, highly proliferative phenotype leading to persistent myofibroblast activation and perpetuation of the fibrotic disease process. Recently, this pathological adaptation has been linked to dysregulated expression of tumour suppressor gene p53. In this review, we discuss p53 dysregulation and apoptotic failure in myofibroblasts and demonstrate its consistent link to fibrotic disease development in all types of organ fibrosis. An enhanced understanding of the role of p53 dysregulation and myofibroblast apoptosis may aid in future novel therapeutic and/or diagnostic strategies in organ fibrosis.
Collapse
Affiliation(s)
- Kealan McElhinney
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Mustapha Irnaten
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| | - Colm O’Brien
- UCD Clinical Research Centre, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland
| |
Collapse
|
54
|
Samad A, Khurshid B, Mahmood A, Rehman AU, Khalid A, Abdalla AN, Algarni AS, Wadood A. Identification of novel peptide inhibitors for oncogenic KRAS G12D as therapeutic options using mutagenesis-based remodeling and MD simulations. J Biomol Struct Dyn 2023; 41:13425-13437. [PMID: 37010994 DOI: 10.1080/07391102.2023.2192298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/22/2023] [Indexed: 04/04/2023]
Abstract
The Kirsten rat sarcoma 2 viral oncogene homolog (KRAS) serves as a molecular switch, cycling between guanosine triphosphate (GTP)-bound and inactive guanosine diphosphate (GDP)-bound states. KRAS modulates numerous signal transduction pathways including the conventional RAF-MEK-ERK pathway. Mutations in the RAS genes have been linked to the formation of malignant tumors. Human malignancies typically show mutations in the Ras gene including HRAS, KRAS, and NRAS. Among all the mutations in exon 12 and exon 13 of the KRAS gene, the G12D mutation is more prevalent in pancreatic and lung cancer and accounts for around 41% of all G12 mutations, making them potential anticancer therapeutic targets. The present study is aimed at repurposing the peptide inhibitor KD2 of the KRAS G12D mutant. We employed an in-silico mutagenesis approach to design novel peptide inhibitors from the experimentally reported peptide inhibitor, and it was found that substitutions (N8W, N8I, and N8Y) might enhance the peptide's binding affinity toward the KRAS. Molecular dynamics simulations and binding energy calculations confirmed that the newly designed peptide inhibitors are stable and that their binding affinities are stronger as compared to the wild-type peptide. The detailed analysis revealed that newly designed peptides have the potential to inhibit KRAS/Raf interaction and the oncogenic signal of the KRAS G12D mutant. Our findings strongly suggest that these peptides should be tested and clinically validated to combat the oncogenic activity of KRAS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ashfaq Ur Rehman
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California, USA
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
55
|
Wu HH, Leng S, Abuetabh Y, Sergi C, Eisenstat DD, Leng R. The SWIB/MDM2 motif of UBE4B activates the p53 pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:466-481. [PMID: 36865087 PMCID: PMC9971181 DOI: 10.1016/j.omtn.2023.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The tumor suppressor p53 plays a critical role in cancer pathogenesis, and regulation of p53 expression is essential for maintaining normal cell growth. UBE4B is an E3/E4 ubiquitin ligase involved in a negative-feedback loop with p53. UBE4B is required for Hdm2-mediated p53 polyubiquitination and degradation. Thus, targeting the p53-UBE4B interactions is a promising anticancer strategy for cancer therapy. In this study, we confirm that while the UBE4B U box does not bind to p53, it is essential for the degradation of p53 and acts in a dominant-negative manner, thereby stabilizing p53. C-terminal UBE4B mutants lose their ability to degrade p53. Notably, we identified one SWIB/Hdm2 motif of UBE4B that is vital for p53 binding. Furthermore, the novel UBE4B peptide activates p53 functions, including p53-dependent transactivation and growth inhibition, by blocking the p53-UBE4B interactions. Our findings indicate that targeting the p53-UBE4B interaction presents a novel approach for p53 activation therapy in cancer.
Collapse
Affiliation(s)
- H. Helena Wu
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Sarah Leng
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Yasser Abuetabh
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology (5B4. 09), University of Alberta, Edmonton, AB T6G 2B7, Canada
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - David D. Eisenstat
- Department of Oncology, Cross Cancer Institute, 11560 University Avenue, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Pediatrics, University of Alberta, 11405 - 87 Avenue, Edmonton, AB T6G 1C9, Canada
- Department of Medical Genetics, University of Alberta, 8613 114 Street, Edmonton, AB T6G 2H7, Canada
- Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Roger Leng
- 370 Heritage Medical Research Center, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
56
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
57
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 339] [Impact Index Per Article: 169.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
58
|
Sebert M, Gachet S, Leblanc T, Rousseau A, Bluteau O, Kim R, Ben Abdelali R, Sicre de Fontbrune F, Maillard L, Fedronie C, Murigneux V, Bellenger L, Naouar N, Quentin S, Hernandez L, Vasquez N, Da Costa M, Prata PH, Larcher L, de Tersant M, Duchmann M, Raimbault A, Trimoreau F, Fenneteau O, Cuccuini W, Gachard N, Auger N, Tueur G, Blanluet M, Gazin C, Souyri M, Langa Vives F, Mendez-Bermudez A, Lapillonne H, Lengline E, Raffoux E, Fenaux P, Adès L, Forcade E, Jubert C, Domenech C, Strullu M, Bruno B, Buchbinder N, Thomas C, Petit A, Leverger G, Michel G, Cavazzana M, Gluckman E, Bertrand Y, Boissel N, Baruchel A, Dalle JH, Clappier E, Gilson E, Deriano L, Chevret S, Sigaux F, Socié G, Stoppa-Lyonnet D, de Thé H, Antoniewski C, Bluteau D, Peffault de Latour R, Soulier J. Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia. Cell Stem Cell 2023; 30:153-170.e9. [PMID: 36736290 DOI: 10.1016/j.stem.2023.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Fanconi anemia (FA) patients experience chromosome instability, yielding hematopoietic stem/progenitor cell (HSPC) exhaustion and predisposition to poor-prognosis myeloid leukemia. Based on a longitudinal cohort of 335 patients, we performed clinical, genomic, and functional studies in 62 patients with clonal evolution. We found a unique pattern of somatic structural variants and mutations that shares features of BRCA-related cancers, the FA-hallmark being unbalanced, microhomology-mediated translocations driving copy-number alterations. Half the patients developed chromosome 1q gain, driving clonal hematopoiesis through MDM4 trisomy downmodulating p53 signaling later followed by secondary acute myeloid lukemia genomic alterations. Functionally, MDM4 triplication conferred greater fitness to murine and human primary FA HSPCs, rescued inflammation-mediated bone marrow failure, and drove clonal dominance in FA mouse models, while targeting MDM4 impaired leukemia cells in vitro and in vivo. Our results identify a linear route toward secondary leukemogenesis whereby early MDM4-driven downregulation of basal p53 activation plays a pivotal role, opening monitoring and therapeutic prospects.
Collapse
Affiliation(s)
- Marie Sebert
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Stéphanie Gachet
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Thierry Leblanc
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Alix Rousseau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France
| | - Olivier Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Rathana Kim
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Raouf Ben Abdelali
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Flore Sicre de Fontbrune
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Loïc Maillard
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Carèle Fedronie
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Valentine Murigneux
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Naira Naouar
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Samuel Quentin
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Lucie Hernandez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Nadia Vasquez
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Mélanie Da Costa
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Pedro H Prata
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lise Larcher
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Marie de Tersant
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Matthieu Duchmann
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Anna Raimbault
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Franck Trimoreau
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | | | - Wendy Cuccuini
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Nathalie Gachard
- Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Hematology Laboratory, CHU Limoges, Limoges, France
| | - Nathalie Auger
- Département de Biologie et Pathologie Médicales, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Giulia Tueur
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Maud Blanluet
- Department of Genetics, Institut Curie, Université de Paris, INSERM U830, Paris, France
| | - Claude Gazin
- INSERM U944/CNRS UMR7212, Paris, France; Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Evry, France
| | - Michèle Souyri
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM UMR S1131, Hôpital Saint Louis, Paris, France
| | | | - Aaron Mendez-Bermudez
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | | | - Etienne Lengline
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Emmanuel Raffoux
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Pierre Fenaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Lionel Adès
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM U944/CNRS UMR7212, Paris, France
| | - Edouard Forcade
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Charlotte Jubert
- CHU Bordeaux, Service d'Hématologie et Thérapie Cellulaire et Unité d'Hématologie Oncologie Pédiatrique, 33000 Bordeaux, France
| | - Carine Domenech
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Marion Strullu
- Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France
| | | | - Nimrod Buchbinder
- Centre Pédiatrique de Transplantation de Cellules Souches Hématopoïétiques, CHU de Rouen, Rouen, France
| | - Caroline Thomas
- Service d'Oncologie-Hématologie et Immunologie Pédiatrique, CHU de Nantes, Nantes, France
| | - Arnaud Petit
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Guy Leverger
- Pediatric Hematology-Oncology, Trousseau Hospital and HUEP, Paris, France
| | - Gérard Michel
- Timone Enfants Hospital, Department of Pediatric Hematology and Oncology, Aix-Marseille University, EA 3279, Marseille, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, APHP Centre, Biotherapy Clinical Investigation Center, Inserm U1416, University of Paris, Imagine Institute, Paris, France
| | - Eliane Gluckman
- Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Eurocord, Department of Hematology, Saint-Louis Hospital, Paris, France
| | - Yves Bertrand
- Institut of Hematology and Pediatric Oncology (IHOP), Hospices Civils de Lyon, France; Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université Lyon 1, Lyon, France
| | - Nicolas Boissel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France
| | - André Baruchel
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean-Hugues Dalle
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Robert Debré Hospital, Department of Pediatric Hematology, Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Emmanuelle Clappier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, Inserm, Institute for Research on Cancer and Aging, Nice (IRCAN), France; Department of Medical Genetics, CHU, Nice, France
| | - Ludovic Deriano
- Genome Integrity, Immunity and Cancer Unit, INSERM U1223, Equipe Labellisée Ligue Contre Le Cancer, Institut Pasteur, Paris, France
| | - Sylvie Chevret
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Division of Biostatistics, Saint-Louis Hospital, APHP, Paris, France
| | - François Sigaux
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France
| | - Gérard Socié
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; INSERM UMR-976, Saint-Louis Hospital, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | | | - Hugues de Thé
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Collège de France, Paris, France
| | - Christophe Antoniewski
- Sorbonne Université, CNRS FR3631, INSERM US037, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Institut Français de Bioinformatique (IFB), Paris, France
| | - Dominique Bluteau
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; EPHE, PSL University, Paris, France.
| | - Régis Peffault de Latour
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; Clinical Hematology Departments, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; EA 3518, IRSL, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France
| | - Jean Soulier
- Institut de Recherche Saint-Louis (IRSL), Université Paris Cité, 75010 Paris, France; INSERM U944/CNRS UMR7212, Paris, France; Saint-Louis Hospital, Hematology Laboratory, APHP, Paris, France; Centre de Référence Maladies Rares "Aplasie Médullaire", Saint-Louis and Robert Debré Hospitals, Paris, France.
| |
Collapse
|
59
|
Zhu G, Cai J, Zhong H. TP53 signal pathway confers potential therapy target in acute myeloid leukemia. Eur J Haematol 2023; 110:480-489. [PMID: 36692074 DOI: 10.1111/ejh.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
TP53 mutation is a frequent tumor suppressor mutation and a critical prognostic indicator across studies in many malignant tumors including hematologic malignancies. However, the role of TP53 and its correlative pathway in acute myeloid leukemia (AML) is enigmatic, which may provide possible emerging strategies with the potential to improve outcomes in AML. Accordingly, we focus not only on the TP53 mutation but also on the underlying mechanisms of the mutated TP53 signal pathway. While it is now generally accepted that TP53 mutations are widely associated with a dismal prognosis, resistance to chemotherapy, and high incidence of relapse and refractory AML. Hereby, the current therapeutics targeting TP53 mutant AML are summarized in this review. This will address emerging TP53-based therapeutic approaches, facilizing the TP53-targeted treatment options.
Collapse
Affiliation(s)
- Gelan Zhu
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jiayi Cai
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hua Zhong
- Department of Hematology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
60
|
Abstract
Mutations in the TP53 tumour suppressor gene are very frequent in cancer, and attempts to restore the functionality of p53 in tumours as a therapeutic strategy began decades ago. However, very few of these drug development programmes have reached late-stage clinical trials, and no p53-based therapeutics have been approved in the USA or Europe so far. This is probably because, as a nuclear transcription factor, p53 does not possess typical drug target features and has therefore long been considered undruggable. Nevertheless, several promising approaches towards p53-based therapy have emerged in recent years, including improved versions of earlier strategies and novel approaches to make undruggable targets druggable. Small molecules that can either protect p53 from its negative regulators or restore the functionality of mutant p53 proteins are gaining interest, and drugs tailored to specific types of p53 mutants are emerging. In parallel, there is renewed interest in gene therapy strategies and p53-based immunotherapy approaches. However, major concerns still remain to be addressed. This Review re-evaluates the efforts made towards targeting p53-dysfunctional cancers, and discusses the challenges encountered during clinical development.
Collapse
Affiliation(s)
- Ori Hassin
- grid.13992.300000 0004 0604 7563Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
61
|
Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022; 16:24. [PMID: 36678521 PMCID: PMC9866379 DOI: 10.3390/ph16010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The p53 protein has appropriately been named the "guardian of the genome". In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53.
Collapse
Affiliation(s)
- Angelo Aguilar
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
62
|
Salomao N, Maslah N, Giulianelli A, Drevon L, Aguinaga L, Gu X, Cassinat B, Giraudier S, Fenaux P, Fahraeus R. Reduced murine double minute 2 and
4
protein, but not
messenger RNA
, expression is associated with more severe disease in myelodysplastic syndromes and acute myeloblastic leukaemia. Br J Haematol 2022; 201:234-248. [PMID: 36546586 DOI: 10.1111/bjh.18608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
The human homologues of murine double minute 2 (MDM2) and 4 (MDM4) negatively regulate p53 tumour suppressor activity and are reported to be frequently overexpressed in human malignancies, prompting clinical trials with drugs that prevent interactions between MDM2/MDM4 and p53. Bone marrow samples from 111 patients with acute myeloblastic leukaemia, myelodysplastic syndrome or chronic myelomonocytic leukaemia were examined for protein (fluorescence-activated cell sorting) and messenger RNA (mRNA) expression (quantitative polymerase chain reaction) of MDM2, MDM4 and tumour protein p53 (TP53). Low protein expression of MDM2 and MDM4 was observed in immature cells from patients with excess of marrow blasts (>5%) compared with CD34+ /CD45low cells from healthy donors and patients without excess of marrow blasts (<5%). The mRNA levels were indistinguishable in all samples examined regardless of disease status or blast levels. Low MDM2 and MDM4 protein expression were correlated with poor survival. These data show a poor correlation between mRNA and protein expression levels, suggesting that quantitative flow cytometry analysis of protein expression levels should be used to predict and validate the efficacy of MDM2 and MDM4 inhibitors. These findings show that advanced disease is associated with reduced MDM2 and MDM4 protein expression and indicate that the utility of MDM2 and MDM4 inhibitors may have to be reconsidered in the treatment of advanced myeloid malignancies.
Collapse
Affiliation(s)
- Norman Salomao
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
| | - Nabih Maslah
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
| | - Anouk Giulianelli
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Louis Drevon
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Lorea Aguinaga
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Xiaolian Gu
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
| | - Bruno Cassinat
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Stephane Giraudier
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Pierre Fenaux
- Service d'Hématologie Senior—Hôpital Saint‐Louis—Assistance Publique Hôpitaux de Paris, and Paris Cité university Paris France
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Recherche Saint‐Louis, Institut de Génétique Moléculaire, Université de Paris‐Cité, Hôpital St. Louis Paris France
- Department of Medical Biosciences Building 6M, Umeå University Umeå Sweden
- RECAMO, Masaryk Memorial Cancer Institute Brno Czech Republic
| |
Collapse
|
63
|
Chen Y, Duan C, Chen K, Sun S, Zhang D, Meng X. Screening technology of cyclic peptide library based on gene encoding. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
64
|
Li W, Maekiniemi A, Sato H, Osman C, Singer RH. An improved imaging system that corrects MS2-induced RNA destabilization. Nat Methods 2022; 19:1558-1562. [PMID: 36357695 PMCID: PMC7613886 DOI: 10.1038/s41592-022-01658-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/21/2022] [Indexed: 11/12/2022]
Abstract
The MS2 and MS2-coat protein (MS2-MCP) imaging system is widely used to study messenger RNA (mRNA) spatial distribution in living cells. Here, we report that the MS2-MCP system destabilizes some tagged mRNAs by activating the nonsense-mediated mRNA decay pathway. We introduce an improved version, which counteracts this effect by increasing the efficiency of translation termination of the tagged mRNAs. Improved versions were developed for both yeast and mammalian systems.
Collapse
Affiliation(s)
- Weihan Li
- Program in RNA Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA,Correspondence: Weihan Li (); Anna Maekiniemi (); Robert H. Singer ()
| | - Anna Maekiniemi
- Program in RNA Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA,Correspondence: Weihan Li (); Anna Maekiniemi (); Robert H. Singer ()
| | - Hanae Sato
- Program in RNA Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Robert H. Singer
- Program in RNA Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA,Correspondence: Weihan Li (); Anna Maekiniemi (); Robert H. Singer ()
| |
Collapse
|
65
|
Yang J, Zhu Q, Wu Y, Qu X, Liu H, Jiang B, Ge D, Song X. Utilization of macrocyclic peptides to target protein-protein interactions in cancer. Front Oncol 2022; 12:992171. [PMID: 36465350 PMCID: PMC9714258 DOI: 10.3389/fonc.2022.992171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Protein-protein interactions (PPIs) play vital roles in normal cellular processes. Dysregulated PPIs are involved in the process of various diseases, including cancer. Thus, these PPIs may serve as potential therapeutic targets in cancer treatment. However, despite rapid advances in small-molecule drugs and biologics, it is still hard to target PPIs, especially for those intracellular PPIs. Macrocyclic peptides have gained growing attention for their therapeutic properties in targeting dysregulated PPIs. Macrocyclic peptides have some unique features, such as moderate sizes, high selectivity, and high binding affinities, which make them good drug candidates. In addition, some oncology macrocyclic peptide drugs have been approved by the US Food and Drug Administration (FDA) for clinical use. Here, we reviewed the recent development of macrocyclic peptides in cancer treatment. The opportunities and challenges were also discussed to inspire new perspectives.
Collapse
Affiliation(s)
- Jiawen Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Shanghai Clinical Research and Trial Center, Shanghai, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yifan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Song
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
66
|
Traweek RS, Cope BM, Roland CL, Keung EZ, Nassif EF, Erstad DJ. Targeting the MDM2-p53 pathway in dedifferentiated liposarcoma. Front Oncol 2022; 12:1006959. [PMID: 36439412 PMCID: PMC9684653 DOI: 10.3389/fonc.2022.1006959] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 10/12/2023] Open
Abstract
Dedifferentiated liposarcoma (DDLPS) is an aggressive adipogenic cancer with poor prognosis. DDLPS tumors are only modestly sensitive to chemotherapy and radiation, and there is a need for more effective therapies. Genetically, DDLPS is characterized by a low tumor mutational burden and frequent chromosomal structural abnormalities including amplification of the 12q13-15 chromosomal region and the MDM2 gene, which are defining features of DDLPS. The MDM2 protein is an E3 ubiquitin ligase that targets the tumor suppressor, p53, for proteasomal degradation. MDM2 amplification or overexpression in human malignancies is associated with cell-cycle progression and worse prognosis. The MDM2-p53 interaction has thus garnered interest as a therapeutic target for DDLPS and other malignancies. MDM2 binds p53 via a hydrophobic protein interaction that is easily accessible with synthetic analogues. Multiple agents have been developed, including Nutlins such as RG7112 and small molecular inhibitors including SAR405838 and HDM201. Preclinical in vitro and animal models have shown promising results with MDM2 inhibition, resulting in robust p53 reactivation and cancer cell death. However, multiple early-phase clinical trials have failed to show a benefit with MDM2 pathway inhibition for DDLPS. Mechanisms of resistance are being elucidated, and novel inhibitors and combination therapies are currently under investigation. This review provides an overview of these strategies for targeting MDM2 in DDLPS.
Collapse
Affiliation(s)
- Raymond S. Traweek
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brandon M. Cope
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina L. Roland
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Elise F. Nassif
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Derek J. Erstad
- Division of Surgical Oncology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
67
|
Su Y, Sai Y, Zhou L, Liu Z, Du P, Wu J, Zhang J. Current insights into the regulation of programmed cell death by TP53 mutation in cancer. Front Oncol 2022; 12:1023427. [PMID: 36313700 PMCID: PMC9608511 DOI: 10.3389/fonc.2022.1023427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene mutation is a complicated process that influences the onset and progression of cancer, and the most prevalent mutation involves the TP53 gene. One of the ways in which the body maintains homeostasis is programmed cell death, which includes apoptosis, autophagic cell death, pyroptosis, ferroptosis, NETosis, and the more recently identified process of cuprotosis. Evasion of these cell deaths is a hallmark of cancer cells, and our elucidation of the way these cells die helps us better understands the mechanisms by which cancer arises and provides us with more ways to treat it.Studies have shown that programmed cell death requires wild-type p53 protein and that mutations of TP53 can affect these modes of programmed cell death. For example, mutant p53 promotes iron-dependent cell death in ferroptosis and inhibits apoptotic and autophagic cell death. It is clear that TP53 mutations act on more than one pathway to death, and these pathways to death do not operate in isolation. They interact with each other and together determine cell death. This review focuses on the mechanisms via which TP53 mutation affects programmed cell death. Clinical investigations of TP53 mutation and the potential for targeted pharmacological agents that can be used to treat cancer are discussed.
Collapse
Affiliation(s)
- Yali Su
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Yingying Sai
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Linfeng Zhou
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Zeliang Liu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Panyan Du
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| | - Jinghua Zhang
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Heath Care Hospital, Tangshan, China
- *Correspondence: Jinghua Wu, ; Jinghua Zhang,
| |
Collapse
|
68
|
Krawiec K, Strzałka P, Czemerska M, Wiśnik A, Zawlik I, Wierzbowska A, Pluta A. Targeting Apoptosis in AML: Where Do We Stand? Cancers (Basel) 2022; 14:cancers14204995. [PMID: 36291779 PMCID: PMC9600036 DOI: 10.3390/cancers14204995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/01/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary In patients with acute myeloid leukemia (AML), genetic mutations can cause cells to evade regulated cell death (RCD), resulting in excessive cell proliferation. The best-known form of RCD is apoptosis, which prevents the emergence of cancer cells; disturbances in this process are an important factor in the development and progression of AML. Clearly, it is essential to understand the mechanisms of apoptosis to establish a personalized, patient-specific approach in AML therapy. Therefore, this paper comprehensively reviews the current range of AML treatment approaches related to apoptosis and highlights other promising concepts such as neddylation. Abstract More than 97% of patients with acute myeloid leukemia (AML) demonstrate genetic mutations leading to excessive proliferation combined with the evasion of regulated cell death (RCD). The most prominent and well-defined form of RCD is apoptosis, which serves as a defense mechanism against the emergence of cancer cells. Apoptosis is regulated in part by the BCL-2 family of pro- and anti-apoptotic proteins, whose balance can significantly determine cell survival. Apoptosis evasion plays a key role in tumorigenesis and drug resistance, and thus in the development and progression of AML. Research on the structural and biochemical aspects of apoptosis proteins and their regulators offers promise for new classes of targeted therapies and strategies for therapeutic intervention. This review provides a comprehensive overview of current AML treatment options related to the mechanism of apoptosis, particularly its mitochondrial pathway, and other promising concepts such as neddylation. It pays particular attention to clinically-relevant aspects of current and future AML treatment approaches, highlighting the molecular basis of individual therapies.
Collapse
Affiliation(s)
- Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Aneta Wiśnik
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-513 Lodz, Poland
- Copernicus Multi-Specialist Oncology and Traumatology Center, 93-513 Lodz, Poland
- Correspondence:
| |
Collapse
|
69
|
Testa U, Castelli G, Pelosi E. Clonal Hematopoiesis: Role in Hematologic and Non-Hematologic Malignancies. Mediterr J Hematol Infect Dis 2022; 14:e2022069. [PMID: 36119457 PMCID: PMC9448266 DOI: 10.4084/mjhid.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/18/2022] [Indexed: 02/08/2023] Open
Abstract
Hematopoietic stem cells (HSCs) ensure the coordinated and balanced production of all hematopoietic cell types throughout life. Aging is associated with a gradual decline of the self-renewal and regenerative potential of HSCs and with the development of clonal hematopoiesis. Clonal hematopoiesis of indeterminate potential (CHIP) defines the clonal expansion of genetically variant hematopoietic cells bearing one or more gene mutations and/or structural variants (such as copy number alterations). CHIP increases exponentially with age and is associated with cancers, including hematologic neoplasia, cardiovascular and other diseases. The presence of CHIP consistently increases the risk of hematologic malignancy, particularly in individuals who have CHIP in association with peripheral blood cytopenia.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
70
|
Ingelshed K, Spiegelberg D, Kannan P, Påvénius L, Hacheney J, Jiang L, Eisinger S, Lianoudaki D, Lama D, Castillo F, Bosdotter C, Kretzschmar WW, Al-Radi O, Fritz N, Villablanca EJ, Karlsson MCI, Wermeling F, Nestor M, Lane DP, Sedimbi SK. The MDM2 Inhibitor Navtemadlin Arrests Mouse Melanoma Growth In Vivo and Potentiates Radiotherapy. CANCER RESEARCH COMMUNICATIONS 2022; 2:1075-1088. [PMID: 36922937 PMCID: PMC10010373 DOI: 10.1158/2767-9764.crc-22-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022]
Abstract
The tumor suppressor protein p53 is mutated in close to 50% of human tumors and is dysregulated in many others, for instance by silencing or loss of p14ARF. Under steady-state conditions, the two E3 ligases MDM2/MDM4 interact with and inhibit the transcriptional activity of p53. Inhibition of p53-MDM2/4 interaction to reactivate p53 in tumors with wild-type (WT) p53 has therefore been considered a therapeutic strategy. Moreover, studies indicate that p53 reactivation may synergize with radiation and increase tumor immunogenicity. In vivo studies of most MDM2 inhibitors have utilized immunodeficient xenograft mouse models, preventing detailed studies of action of these molecules on the immune response. The mouse melanoma cell line B16-F10 carries functional, WT p53 but does not express the MDM2 regulator p19ARF. In this study, we tested a p53-MDM2 protein-protein interaction inhibitor, the small molecule Navtemadlin, which is currently being tested in phase II clinical trials. Using mass spectrometry-based proteomics and imaging flow cytometry, we identified specific protein expression patterns following Navtemadlin treatment of B16-F10 melanoma cells compared with their p53 CRISPR-inactivated control cells. In vitro, Navtemadlin induced a significant, p53-dependent, growth arrest but little apoptosis in B16-F10 cells. When combined with radiotherapy, Navtemadlin showed synergistic effects and increased apoptosis. In vivo, Navtemadlin treatment significantly reduced the growth of B16-F10 melanoma cells implanted in C57Bl/6 mice. Our data highlight the utility of a syngeneic B16-F10 p53+/+ mouse melanoma model for assessing existing and novel p53-MDM2/MDM4 inhibitors and in identifying new combination therapies that can efficiently eliminate tumors in vivo. Significance The MDM2 inhibitor Navtemadlin arrests mouse tumor growth and potentiates radiotherapy. Our results support a threshold model for apoptosis induction that requires a high, prolonged p53 signaling for cancer cells to become apoptotic.
Collapse
Affiliation(s)
- Katrine Ingelshed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Pavitra Kannan
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Linnéa Påvénius
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jessica Hacheney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Long Jiang
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Stockholm, Sweden
| | - Silke Eisinger
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Danai Lianoudaki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Francisca Castillo
- Center for Molecular Medicine, Stockholm, Sweden
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Bosdotter
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Omayma Al-Radi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas Fritz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo J. Villablanca
- Center for Molecular Medicine, Stockholm, Sweden
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Mikael C. I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wermeling
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Stockholm, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - David P. Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Corresponding Authors: Saikiran K. Sedimbi and David P. Lane, Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Nobels Väg 16, Stockholm, SE-17177, Sweden. Phone: +46 852 448 6452; E-mail: ; Phone: +46 852 448 6452; E-mail:
| | - Saikiran K. Sedimbi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Corresponding Authors: Saikiran K. Sedimbi and David P. Lane, Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Nobels Väg 16, Stockholm, SE-17177, Sweden. Phone: +46 852 448 6452; E-mail: ; Phone: +46 852 448 6452; E-mail:
| |
Collapse
|
71
|
Alternative Treatment Options to ALK Inhibitor Monotherapy for EML4-ALK-Driven Lung Cancer. Cancers (Basel) 2022; 14:cancers14143452. [PMID: 35884511 PMCID: PMC9325236 DOI: 10.3390/cancers14143452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
EML4-ALK is an oncogenic fusion protein that accounts for approximately 5% of NSCLC cases. Targeted inhibitors of ALK are the standard of care treatment, often leading to a good initial response. Sadly, some patients do not respond well, and most will develop resistance over time, emphasizing the need for alternative treatments. This review discusses recent advances in our understanding of the mechanisms behind EML4-ALK-driven NSCLC progression and the opportunities they present for alternative treatment options to ALK inhibitor monotherapy. Targeting ALK-dependent signalling pathways can overcome resistance that has developed due to mutations in the ALK catalytic domain, as well as through activation of bypass mechanisms that utilise the same pathways. We also consider evidence for polytherapy approaches that combine targeted inhibition of these pathways with ALK inhibitors. Lastly, we review combination approaches that use targeted inhibitors of ALK together with chemotherapy, radiotherapy or immunotherapy. Throughout this article, we highlight the importance of alternative breakpoints in the EML4 gene that result in the generation of distinct EML4-ALK variants with different biological and pathological properties and consider monotherapy and polytherapy approaches that may be selective to particular variants.
Collapse
|
72
|
Zhu H, Gao H, Ji Y, Zhou Q, Du Z, Tian L, Jiang Y, Yao K, Zhou Z. Targeting p53-MDM2 interaction by small-molecule inhibitors: learning from MDM2 inhibitors in clinical trials. J Hematol Oncol 2022; 15:91. [PMID: 35831864 PMCID: PMC9277894 DOI: 10.1186/s13045-022-01314-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/07/2022] [Indexed: 12/17/2022] Open
Abstract
p53, encoded by the tumor suppressor gene TP53, is one of the most important tumor suppressor factors in vivo and can be negatively regulated by MDM2 through p53–MDM2 negative feedback loop. Abnormal p53 can be observed in almost all tumors, mainly including p53 mutation and functional inactivation. Blocking MDM2 to restore p53 function is a hotspot in the development of anticancer candidates. Till now, nine MDM2 inhibitors with different structural types have entered clinical trials. However, no MDM2 inhibitor has been approved for clinical application. This review focused on the discovery, structural modification, preclinical and clinical research of the above compounds from the perspective of medicinal chemistry. Based on this, the possible defects in MDM2 inhibitors in clinical development were analyzed to suggest that the multitarget strategy or targeted degradation strategy based on MDM2 has the potential to reduce the dose-dependent hematological toxicity of MDM2 inhibitors and improve their anti-tumor activity, providing certain guidance for the development of agents targeting the p53–MDM2 interaction.
Collapse
Affiliation(s)
- Haohao Zhu
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Hui Gao
- Jiangyin People's Hospital, Wuxi, 214400, Jiangsu, China
| | - Yingying Ji
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Qin Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Zhiqiang Du
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Lin Tian
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China
| | - Ying Jiang
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Kun Yao
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| | - Zhenhe Zhou
- The Affiliated Wuxi Mental Health Center of Jiangnan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, 214151, Jiangsu, China.
| |
Collapse
|
73
|
The Mettl3 epitranscriptomic writer amplifies p53 stress responses. Mol Cell 2022; 82:2370-2384.e10. [PMID: 35512709 PMCID: PMC9807187 DOI: 10.1016/j.molcel.2022.04.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 01/05/2022] [Accepted: 04/06/2022] [Indexed: 01/04/2023]
Abstract
The p53 transcription factor drives anti-proliferative gene expression programs in response to diverse stressors, including DNA damage and oncogenic signaling. Here, we seek to uncover new mechanisms through which p53 regulates gene expression using tandem affinity purification/mass spectrometry to identify p53-interacting proteins. This approach identified METTL3, an m6A RNA-methyltransferase complex (MTC) constituent, as a p53 interactor. We find that METTL3 promotes p53 protein stabilization and target gene expression in response to DNA damage and oncogenic signals, by both catalytic activity-dependent and independent mechanisms. METTL3 also enhances p53 tumor suppressor activity in in vivo mouse cancer models and human cancer cells. Notably, METTL3 only promotes tumor suppression in the context of intact p53. Analysis of human cancer genome data further supports the notion that the MTC reinforces p53 function in human cancer. Together, these studies reveal a fundamental role for METTL3 in amplifying p53 signaling in response to cellular stress.
Collapse
|
74
|
Zhao X, Xiong D, Luo S, Duan L. Molecular investigation of the dual inhibition mechanism for targeted P53 regulator MDM2/MDMX inhibitors. Phys Chem Chem Phys 2022; 24:16799-16815. [PMID: 35775962 DOI: 10.1039/d2cp01780f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inhibitors that competitively bind MDM2/MDMX can block the inhibition of P53 by MDM2/MDMX and restart its tumor-suppressive effect. Molecular studies targeting MDM2/MDMX inhibitors have always been a hot topic in anticancer drug design. Although numerous inhibitors have been designed previously against MDM2/MDMX, their dual inhibition efficacy has not been demonstrated, and few studies assessed the general causes affecting the dual inhibition of MDM2/MDMX by these inhibitors. Here, molecular dynamics simulations and alanine scanning combined with the interaction entropy method were employed to precisely investigate whether 16 inhibitors could dually inhibit MDM2/MDMX and the similarities and differences in the interaction modes. Thereby addressing the key residue sites affecting dual inhibition. Residues L54/M53, I61/60, M62/61, Y67/66, and V93/92 of MDM2/MDMX, which are in corresponding positions in both protein structures, provide significant conditions for these inhibitors to bind to MDM2/MDMX tightly. In addition, most of these inhibitors prefer to bind MDM2 than MDMX, and residues H96 and I99 in MDM2 are attractive targets for inhibitors, resulting in inhibitors binding to MDM2/MDMX with different affinity. These key residues should be considered in the development of dual inhibitors. For these 16 inhibitors, most have dual inhibitory potential for MDM2/MDMX based on the binding affinity of the complexes. Still, it is questionable whether they can exert excellent dual inhibition considering the assessment of the hot-spots. At least their binding affinity for MDMX is not superior to that for MDM2 due to the difference in energy of the van der Waals interactions at the key sites. Furthermore, based on the analysis of three representative inhibitors (TUZ/HRH and HRQ with different binding preferences for MDM2/MDMX), 3-chloropyridine in TUZ leads to the differential binding affinity between the inhibitor and MDM2/MDMX. It readily forms hydrophobic interactions with the surrounding residues H96 and I99. But this phenomenon does not occur in the TUZ-MDMX system, implying the critical role of residues H96/P95 and I99/L98. And the completely different binding mechanism of HRQ binding to MDM2/MDMX explains its inability to inhibit MDM2 well. Thus, we are cautious about its dual inhibitory ability. Besides, HRH is more prone to strong van der Waals interactions with MDM2 than MDMX whereas its 2-chlorofluorobenzene is detrimental to this. We hope that these findings will provide reliable molecular insights for the screening and optimization of targeting MDM2/MDMX dual inhibitors.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
75
|
The Therapeutic Potential of the Restoration of the p53 Protein Family Members in the EGFR-Mutated Lung Cancer. Int J Mol Sci 2022; 23:ijms23137213. [PMID: 35806218 PMCID: PMC9267050 DOI: 10.3390/ijms23137213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the recent development of precision medicine and targeted therapies, lung cancer remains the top cause of cancer-related mortality worldwide. The patients diagnosed with metastatic disease have a five-year survival rate lower than 6%. In metastatic disease, EGFR is the most common driver of mutation, with the most common co-driver hitting TP53. EGFR-positive patients are offered the frontline treatment with tyrosine kinase inhibitors, yet the development of resistance and the lack of alternative therapies make this group of patients only fit for clinical trial participation. Since mutant p53 is the most common co-driver in the metastatic setting, therapies reactivating the p53 pathway might serve as a promising alternative therapeutic approach in patients who have developed a resistance to tyrosine kinase inhibitors. This review focuses on the molecular background of EGFR-mutated lung cancer and discusses novel therapeutic options converging on the reactivation of p53 tumor suppressor pathways.
Collapse
|
76
|
Tian Y, Tirrell MV, LaBelle JL. Harnessing the Therapeutic Potential of Biomacromolecules through Intracellular Delivery of Nucleic Acids, Peptides, and Proteins. Adv Healthc Mater 2022; 11:e2102600. [PMID: 35285167 PMCID: PMC9232950 DOI: 10.1002/adhm.202102600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 12/19/2022]
Abstract
Biomacromolecules have long been at the leading edge of academic and pharmaceutical drug development and clinical translation. With the clinical advances of new therapeutics, such as monoclonal antibodies and nucleic acids, the array of medical applications of biomacromolecules has broadened considerably. A major on-going effort is to expand therapeutic targets within intracellular locations. Owing to their large sizes, abundant charges, and hydrogen-bond donors and acceptors, advanced delivery technologies are required to deliver biomacromolecules effectively inside cells. In this review, strategies used for the intracellular delivery of three major forms of biomacromolecules: nucleic acids, proteins, and peptides, are highlighted. An emphasis is placed on synthetic delivery approaches and the major hurdles needed to be overcome for their ultimate clinical translation.
Collapse
Affiliation(s)
- Yu Tian
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - Matthew V. Tirrell
- Pritzker School of Molecular EngineeringThe University of Chicago5640 S Ellis AveChicagoIL60637USA
| | - James L. LaBelle
- Department of Pediatrics, Section of Hematology/OncologyThe University of Chicago900 E 57th StChicagoIL60637USA
| |
Collapse
|
77
|
Leukemic Stem Cells as a Target for Eliminating Acute Myeloid Leukemia: Gaps in Translational Research. Crit Rev Oncol Hematol 2022; 175:103710. [DOI: 10.1016/j.critrevonc.2022.103710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
|
78
|
Teng M, Zhao X, Wu F, Wang C, Wang C, White JC, Zhao W, Zhou L, Yan S, Tian S. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. ENVIRONMENT INTERNATIONAL 2022; 163:107154. [PMID: 35334375 DOI: 10.1016/j.envint.2022.107154] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics are being detected with increasing frequency in aquatic environments. Although evidence suggests that nanoplastics can cause overt toxicity to biota across different trophic levels, but there is little understanding of how materials such as differently charged polystyrene nanoplastics (PS-NP) impact fish development and behavior. Following exposure to amino-modified (positive charge) PS-NP, fluorescence accumulation was observed in the zebrafish brain and gastrointestinal tract. Positively charged PS-NP induced stronger developmental toxicity (decreased spontaneous movement, heartbeat, hatching rate, and length) and cell apoptosis in the brain and induced greater neurobehavioral impairment as compared to carboxyl-modified (negative charge) PS-NP. These findings correlated well with fluorescence differences indicating PS-NP presence. Targeted neuro-metabolite analysis by UHPLC-MS/MS reveals that positively charged PS-NP decreased levels of glycine, cysteine, glutathione, and glutamic acid, while the increased levels of spermine, spermidine, and tyramine were induced by negatively charged PS-NP. Positively charged PS-NP interacted with the neurotransmitter receptor N-methyl-D-aspartate receptor 2B (NMDA2B), whereas negatively charged PS-NP impacted the G-protein-coupled receptor 1 (GPR1), each with different binding energies that led to behavioral differences. These findings reveal the charge-specific toxicity of nanoplastics to fish and provide new perspective for understanding PS-NP neurotoxicity that is needed to accurately assess potential environmental and health risks of these emerging contaminants.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
79
|
Szabó I, Yousef M, Soltész D, Bató C, Mező G, Bánóczi Z. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022; 14:pharmaceutics14050907. [PMID: 35631493 PMCID: PMC9146218 DOI: 10.3390/pharmaceutics14050907] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Cell-penetrating peptides (CPP) are promising tools for the transport of a broad range of compounds into cells. Since the discovery of the first members of this peptide family, many other peptides have been identified; nowadays, dozens of these peptides are known. These peptides sometimes have very different chemical–physical properties, but they have similar drawbacks; e.g., non-specific internalization, fast elimination from the body, intracellular/vesicular entrapment. Although our knowledge regarding the mechanism and structure–activity relationship of internalization is growing, the prediction and design of the cell-penetrating properties are challenging. In this review, we focus on the different modifications of well-known CPPs to avoid their drawbacks, as well as how these modifications may increase their internalization and/or change the mechanism of penetration.
Collapse
Affiliation(s)
- Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Correspondence: (I.S.); (Z.B.)
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Dóra Soltész
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
- Correspondence: (I.S.); (Z.B.)
| |
Collapse
|
80
|
Dinavahi SS, Chen YC, Punnath K, Berg A, Herlyn M, Foroutan M, Huntington ND, Robertson GP. Targeting WEE1/AKT restores p53-dependent NK cell activation to induce immune checkpoint blockade responses in 'cold' melanoma. Cancer Immunol Res 2022; 10:757-769. [PMID: 35439317 DOI: 10.1158/2326-6066.cir-21-0587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/19/2021] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Immunotherapy has revolutionized cancer treatment. Unfortunately, most tumor types do not respond to immunotherapy due to a lack of immune infiltration or 'cold' tumor microenvironment (TME), a contributing factor in treatment failure. Activation of the p53 pathway can increase apoptosis of cancer cells, leading to enhanced antigen presentation, and can stimulate natural killer (NK) cells through expression of stress ligands. Therefore, modulation of the p53 pathway in cancer cells with wildtype TP53 has the potential to enhance tumor immunogenicity to NK cells, produce an inflammatory TME, and ultimately lead to tumor regression. In this study, we report simultaneous targeting of the AKT/WEE1 pathways is a novel and tolerable approach to synergistically induce p53 activation to inhibit tumor development. This approach reduced the growth of melanoma cells and induced plasma membrane surface localization of the ER-resident protein calreticulin, an indicator of immunogenic cell death (ICD). Increase in ICD led to enhanced expression of stress ligands recognized by the activating NK cell receptor NKG2D, promoting tumor lysis. WEE1/AKT inhibition resulted in recruitment and activation of immune cells, including NK cells, in the TME, triggering an inflammatory cascade that transformed the 'cold' TME of B16F10 melanoma into a 'hot' TME that responded to anti-PD-1, resulting in complete regression of established tumors. These results suggest that AKT/WEE1 pathway inhibition is a potential approach to broaden the utility of class-leading anti-PD-1 therapies by enhancing p53-mediated, NK cell-dependent tumor inflammation and supports the translation of this novel approach to further improve response rates for metastatic melanoma.
Collapse
Affiliation(s)
| | - Yu-Chi Chen
- Penn State College of Medicine, Hershey, PA, United States
| | - Kishore Punnath
- Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Arthur Berg
- Pennsylvania State University College of Medicine, Hershey, PA, United States
| | | | | | | | - Gavin P Robertson
- Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
81
|
Zhang S, Yan Z, Li Y, Gong Y, Lyu X, Lou J, Zhang D, Meng X, Zhao Y. Structure-Based Discovery of MDM2/4 Dual Inhibitors that Exert Antitumor Activities against MDM4-Overexpressing Cancer Cells. J Med Chem 2022; 65:6207-6230. [PMID: 35420431 DOI: 10.1021/acs.jmedchem.2c00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent clinical progress in peptide-based dual inhibitors of MDM2/4, small-molecule ones with robust antitumor activities remain challenging. To tackle this issue, 31 (YL93) was structure-based designed and synthesized, which had MDM2/4 binding Ki values of 1.1 and 642 nM, respectively. In three MDM4-overexpressing cancer cell lines harboring wild-type p53, 31 shows improved cell growth inhibition activities compared to RG7388, an MDM2-selective inhibitor in late-stage clinical trials. Mechanistic studies show that 31 increased cellular protein levels of p53 and p21 and upregulated the expression of p53-targeted genes in RKO cells with MDM4 amplification. In addition, 31 induced cell-cycle arrest and apoptosis in western blot and flow cytometry assays. Taken together, dual inhibition of MDM2/4 by 31 elicited stronger antitumor activities in vitro compared to selective MDM2 inhibitors in wild-type p53 and MDM4-overexpressing cancer cells.
Collapse
Affiliation(s)
- Shiyan Zhang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yang Gong
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xiangjing Meng
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| |
Collapse
|
82
|
Advanced Strategies for Therapeutic Targeting of Wild-Type and Mutant p53 in Cancer. Biomolecules 2022; 12:biom12040548. [PMID: 35454137 PMCID: PMC9029346 DOI: 10.3390/biom12040548] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/28/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
TP53 is a tumor suppressor gene that encodes a sequence-specific DNA-binding transcription factor activated by stressful stimuli; it upregulates target genes involved in growth suppression, cell death, DNA repair, metabolism, among others. TP53 is the most frequently mutated gene in tumors, with mutations not only leading to loss-of-function (LOF), but also gain-of-function (GOF) that promotes tumor progression, and metastasis. The tumor-specific status of mutant p53 protein has suggested it is a promising target for cancer therapy. We summarize the current progress of targeting wild-type and mutant p53 for cancer therapy through biotherapeutic and biopharmaceutical methods for (1) boosting p53 activity in cancer, (2) p53-dependent and p53-independent strategies for targeting p53 pathway functional restoration in p53-mutated cancer, (3) targeting p53 in immunotherapy, and (4) combination therapies targeting p53, p53 checkpoints, or mutant p53 for cancer therapy.
Collapse
|
83
|
Andreozzi F, Massaro F, Wittnebel S, Spilleboudt C, Lewalle P, Salaroli A. New Perspectives in Treating Acute Myeloid Leukemia: Driving towards a Patient-Tailored Strategy. Int J Mol Sci 2022; 23:3887. [PMID: 35409248 PMCID: PMC8999556 DOI: 10.3390/ijms23073887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/16/2022] Open
Abstract
For decades, intensive chemotherapy (IC) has been considered the best therapeutic option for treating acute myeloid leukemia (AML), with no curative option available for patients who are not eligible for IC or who have had failed IC. Over the last few years, several new drugs have enriched the therapeutic arsenal of AML treatment for both fit and unfit patients, raising new opportunities but also new challenges. These include the already approved venetoclax, the IDH1/2 inhibitors enasidenib and ivosidenib, gemtuzumab ozogamicin, the liposomal daunorubicin/cytarabine formulation CPX-351, and oral azacitidine. Venetoclax, an anti BCL2-inhibitor, in combination with hypomethylating agents (HMAs), has markedly improved the management of unfit and elderly patients from the perspective of improved quality of life and better survival. Venetoclax is currently under investigation in combination with other old and new drugs in early phase trials. Recently developed drugs with different mechanisms of action and new technologies that have already been investigated in other settings (BiTE and CAR-T cells) are currently being explored in AML, and ongoing trials should determine promising agents, more synergic combinations, and better treatment strategies. Access to new drugs and inclusion in clinical trials should be strongly encouraged to provide scientific evidence and to define the future standard of treatment in AML.
Collapse
Affiliation(s)
- Fabio Andreozzi
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Fulvio Massaro
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
- PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Sebastian Wittnebel
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Chloé Spilleboudt
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Philippe Lewalle
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| | - Adriano Salaroli
- Hematology Department, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Bruxelles, Belgium; (F.M.); (S.W.); (C.S.); (P.L.); (A.S.)
| |
Collapse
|
84
|
Bioactive Peptides and Proteins from Wasp Venoms. Biomolecules 2022; 12:biom12040527. [PMID: 35454116 PMCID: PMC9025469 DOI: 10.3390/biom12040527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wasps, members of the order Hymenoptera, use their venom for predation and defense. Accordingly, their venoms contain various constituents acting on the circulatory, immune and nervous systems. Wasp venom possesses many allergens, enzymes, bioactive peptides, amino acids, biogenic amines, and volatile matters. In particular, some peptides show potent antimicrobial, anti-inflammatory, antitumor, and anticoagulant activity. Additionally, proteinous components from wasp venoms can cause tissue damage or allergic reactions in organisms. These bioactive peptides and proteins involved in wasp predation and defense may be potential sources of lead pharmaceutically active molecules. In this review, we focus on the advances in bioactive peptides and protein from the venom of wasps and their biological effects, as well as the allergic reactions and immunotherapy induced by the wasp venom.
Collapse
|
85
|
Luo J, Chen J, Zhou J, Han K, Li S, Duan J, Cao C, Lin J, Xie D, Wang F. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ‐mediated DNA repair. Cancer Sci 2022; 113:2008-2021. [PMID: 35348274 PMCID: PMC9207377 DOI: 10.1111/cas.15348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022] Open
Abstract
DNA high methylation is one of driving force for colorectal carcinoma (CRC) pathogenesis. Transcription factors (TFs) can determine cell fate and play fundamental roles in multistep process of tumorigenesis. Dysregulation of DNA methylation of TFs should be vital for the progression of CRC. Here, we demonstrated that TBX20, a T‐box TF family protein, was downregulated with hypermethylation of promoter in early‐stage CRC tissues and correlated with a poor prognosis for CRC patients. Moreover, we identified PDZRN3 as the E3 ubiquitin ligase of TBX20 protein, which mediated the ubiquitination and degradation of TBX20. Furthermore, we revealed that TBX20 suppressed cell proliferation and tumor growth through impairing non‐homologous DNA end joining (NHEJ)‐mediated double‐stranded break repair by binding the middle domain of both Ku70 and Ku80 and therefore inhibiting their recruitment on chromatin in CRC cells. Altogether, our results reveal the tumor‐suppressive role of TBX20 by inhibiting NHEJ‐mediated DNA repair in CRC cells, and provide a potential biomarker for predicting the prognosis of patients with early‐stage CRC and a therapeutic target for combination therapy.
Collapse
Affiliation(s)
- Jie Luo
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jie‐Wei Chen
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Jie Zhou
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Kai Han
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Colorectal Surgery Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Si Li
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Ling Duan
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Chen‐Hui Cao
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Jin‐Long Lin
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| | - Dan Xie
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
- Department of Pathology Sun Yat‐sen University Cancer Center Guangzhou 510060 China
| | - Feng‐Wei Wang
- State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Sun Yat‐sen University Cancer Center Guangzhou Guangdong China
| |
Collapse
|
86
|
Sidorova OA, Sayed S, Paszkowski-Rogacz M, Seifert M, Camgöz A, Roeder I, Bornhäuser M, Thiede C, Buchholz F. RNAi-Mediated Screen of Primary AML Cells Nominates MDM4 as a Therapeutic Target in NK-AML with DNMT3A Mutations. Cells 2022; 11:cells11050854. [PMID: 35269477 PMCID: PMC8909053 DOI: 10.3390/cells11050854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/22/2022] Open
Abstract
DNA-methyltransferase 3A (DNMT3A) mutations belong to the most frequent genetic aberrations found in adult acute myeloid leukemia (AML). Recent evidence suggests that these mutations arise early in leukemogenesis, marking leukemic progenitors and stem cells, and persist through consolidation chemotherapy, providing a pool for AML relapse. Currently, there are no therapeutic approaches directed specifically against this cell population. To unravel therapeutically actionable targets in mutant DNMT3A-driven AML cells, we have performed a focused RNAi screen in a panel of 30 primary AML samples, all carrying a DNMT3A R882 mutation. As one of the strongest hits, we identified MDM4 as a gene essential for proliferation of primary DNMT3AWT/R882X AML cells. We analyzed a publicly available RNA-Seq dataset of primary normal karyotype (NK) AML samples and found a trend towards MDM4 transcript overexpression particularly in DNMT3A-mutant samples. Moreover, we found that the MDM2/4 inhibitor ALRN-6924 impairs growth of DNMT3AWT/R882X primary cells in vitro by inducing cell cycle arrest through upregulation of p53 target genes. Our results suggest that MDM4 inhibition is a potential target in NK-AML patients bearing DNMT3A R882X mutations.
Collapse
Affiliation(s)
- Olga Alexandra Sidorova
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Shady Sayed
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Maciej Paszkowski-Rogacz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Aylin Camgöz
- Hopp Children’s Cancer Center Heidelberg, 69120 Heidelberg, Germany;
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
| | - Ingo Roeder
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany; (M.S.); (I.R.)
| | - Martin Bornhäuser
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Christian Thiede
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- Medical Clinic and Polyclinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany; (O.A.S.); (S.S.); (M.P.-R.)
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (M.B.); (C.T.)
- National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
87
|
Molecular glues modulate protein functions by inducing protein aggregation: A promising therapeutic strategy of small molecules for disease treatment. Acta Pharm Sin B 2022; 12:3548-3566. [PMID: 36176907 PMCID: PMC9513498 DOI: 10.1016/j.apsb.2022.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Molecular glues can specifically induce aggregation between two or more proteins to modulate biological functions. In recent years, molecular glues have been widely used as protein degraders. In addition, however, molecular glues play a variety of vital roles, such as complex stabilization, interactome modulation and transporter inhibition, enabling challenging therapeutic targets to be druggable and offering an exciting novel approach for drug discovery. Since most molecular glues are identified serendipitously, exploration of their systematic discovery and rational design are important. In this review, representative examples of molecular glues with various physiological functions are divided into those mediating homo-dimerization, homo-polymerization and hetero-dimerization according to their aggregation modes, and we attempt to elucidate their mechanisms of action. In particular, we aim to highlight some biochemical techniques typically exploited within these representative studies and classify them in terms of three stages of molecular glue development: starting point, optimization and identification.
Collapse
|
88
|
Shabashvili DE, Feng Y, Kaur P, Venugopal K, Guryanova OA. Combination strategies to promote sensitivity to cytarabine-induced replication stress in acute myeloid leukemia with and without DNMT3A mutations. Exp Hematol 2022; 110:20-27. [DOI: 10.1016/j.exphem.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/27/2022]
|
89
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 804] [Impact Index Per Article: 268.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
90
|
Kung CP, Weber JD. It’s Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Front Cell Dev Biol 2022; 10:818744. [PMID: 35155432 PMCID: PMC8833255 DOI: 10.3389/fcell.2022.818744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 01/31/2023] Open
Abstract
Anti-tumorigenic mechanisms mediated by the tumor suppressor p53, upon oncogenic stresses, are our bodies’ greatest weapons to battle against cancer onset and development. Consequently, factors that possess significant p53-regulating activities have been subjects of serious interest from the cancer research community. Among them, MDM2 and ARF are considered the most influential p53 regulators due to their abilities to inhibit and activate p53 functions, respectively. MDM2 inhibits p53 by promoting ubiquitination and proteasome-mediated degradation of p53, while ARF activates p53 by physically interacting with MDM2 to block its access to p53. This conventional understanding of p53-MDM2-ARF functional triangle have guided the direction of p53 research, as well as the development of p53-based therapeutic strategies for the last 30 years. Our increasing knowledge of this triangle during this time, especially through identification of p53-independent functions of MDM2 and ARF, have uncovered many under-appreciated molecular mechanisms connecting these three proteins. Through recognizing both antagonizing and synergizing relationships among them, our consideration for harnessing these relationships to develop effective cancer therapies needs an update accordingly. In this review, we will re-visit the conventional wisdom regarding p53-MDM2-ARF tumor-regulating mechanisms, highlight impactful studies contributing to the modern look of their relationships, and summarize ongoing efforts to target this pathway for effective cancer treatments. A refreshed appreciation of p53-MDM2-ARF network can bring innovative approaches to develop new generations of genetically-informed and clinically-effective cancer therapies.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| | - Jason D. Weber
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| |
Collapse
|
91
|
Wang SSY. Relationship between leukaemic stem cells and hematopoietic stem cells and their clinical application. Leuk Lymphoma 2022; 63:1524-1533. [PMID: 35067128 DOI: 10.1080/10428194.2022.2027401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The world is aging and with it an associated increase in malignancies. Haematological malignancies especially Acute Myeloid Leukemia (AML) are no exception to this trend. With scientific advances, development of new AML treatments has improved patient mortality. One future research interest would be Leukeamic Stem Cells (LSC). This review aims to briefly highlight main LSC characteristics and their relationship with hematopoietic stem cells. Key LSC characteristics include dysregulated apoptosis, capacity for self-renewal, genomic instability, dysregulated energetics, immune privilege and an altered tumor microenvironment. Similar characteristics are also found in HSCs though in a regulated form. Classifying these characteristics will aid in the development of clinical biomarkers for LSC which is a potential clinical application of LSC biology. LSC biomarkers might prove to be critical in future AML management through improving accuracy of AML diagnosis, providing targeted treatment to minimize side effects, refinement of prognosis and relapse risk for earlier intervention.
Collapse
Affiliation(s)
- Samuel S Y Wang
- Department of Haematology, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
92
|
Ettl T, Schulz D, Bauer RJ. The Renaissance of Cyclin Dependent Kinase Inhibitors. Cancers (Basel) 2022; 14:293. [PMID: 35053461 PMCID: PMC8773807 DOI: 10.3390/cancers14020293] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinases (CDK) regulate cell cycle progression. During tumor development, altered expression and availability of CDKs strongly contribute to impaired cell proliferation, a hallmark of cancer. In recent years, targeted inhibition of CDKs has shown considerable therapeutic benefit in a variety of tumor entities. Their success is reflected in clinical approvals of specific CDK4/6 inhibitors for breast cancer. This review provides a detailed insight into the molecular mechanisms of CDKs as well as a general overview of CDK inhibition. It also summarizes the latest research approaches and current advances in the treatment of head and neck cancer with CDK inhibitors. Instead of monotherapies, combination therapies with CDK inhibitors may especially provide promising results in tumor therapy. Indeed, recent studies have shown a synergistic effect of CDK inhibition together with chemo- and radio- and immunotherapy in cancer treatment to overcome tumor evasion, which may lead to a renaissance of CDK inhibitors.
Collapse
Affiliation(s)
- Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
- Center for Medical Biotechnology, Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
93
|
Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Cell Mol Biol Lett 2021; 26:53. [PMID: 34911439 PMCID: PMC8903693 DOI: 10.1186/s11658-021-00293-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the first MDM2 inhibitors, we have gained deeper insights into the cellular roles of MDM2 and p53. In this review, we focus on MDM2 inhibitors that bind to the p53-binding domain of MDM2 and aim to disrupt the binding of MDM2 to p53. We describe the basic mechanism of action of these MDM2 inhibitors, such as nutlin-3a, summarise the determinants of sensitivity to MDM2 inhibition from p53-dependent and p53-independent points of view and discuss the problems with innate and acquired resistance to MDM2 inhibition. Despite progress in MDM2 inhibitor design and ongoing clinical trials, their broad use in cancer treatment is not fulfilling expectations in heterogenous human cancers. We assess the MDM2 inhibitor types in clinical trials and provide an overview of possible sources of resistance to MDM2 inhibition, underlining the need for patient stratification based on these aspects to gain better clinical responses, including the use of combination therapies for personalised medicine.
Collapse
Affiliation(s)
- Lucia Haronikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| | - Ondrej Bonczek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
| | - Pavlina Zatloukalova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Filip Kokas-Zavadil
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Martina Kucerikova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Robin Fahraeus
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
- Department of Medical Biosciences, Umea University, 901 87, Umea, Vasterbotten, Sweden
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, 75010, Paris, France
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
94
|
Wu J, Lu G, Wang X. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Am J Cancer Res 2021; 11:5864-5880. [PMID: 35018230 PMCID: PMC8727814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023] Open
Abstract
The oncogenic MDM4, initially named MDMX, has been identified as a p53-interacting protein and a key upstream negative regulator of the tumor suppressor p53. Accumulating evidence indicates that MDM4 plays critical roles in the initiation and progression of multiple human cancers. MDM4 is frequently amplified and upregulated in human cancers, contributing to overgrowth and apoptosis inhibition by blocking the expression of downstream target genes of p53 pathway. Disruptors for MDM4-p53 interaction have been shown to restore the anti-tumor activity of p53 in cancer cells. MDM4 possesses multiple splicing isoforms whose expressions are driven by the presence of oncogenes in cancer cells. Some of the MDM4 splicing isoforms lack p53 binding domain and may exhibit p53-independent oncogenic functions. These features render MDM4 to be an attractive therapeutic target for cancer therapy. In the present review, we primarily focus on the detailed molecular structure of MDM4 splicing isoforms, candidate regulators for initiating MDM4 splicing, deregulation of MDM4 isoforms in cancer and potential therapy strategies by targeting splicing isoforms of MDM4.
Collapse
Affiliation(s)
- Jin Wu
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| | - Guanting Lu
- Department of Pathology, Key Laboratory of Tumor Molecular Research, People’s Hospital of Deyang City173 Tai Shan North Road, Deyang 618000, Sichuan, P. R. China
| | - Xinjiang Wang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
| |
Collapse
|
95
|
|
96
|
Mabonga L, Masamba P, Basson AK, Kappo AP. Microscale thermophoresis analysis of the molecular interaction between small nuclear ribonucleoprotein polypeptide G and the RING finger domain of RBBP6 towards anti-cancer drug discovery. Am J Transl Res 2021; 13:12775-12785. [PMID: 34956492 PMCID: PMC8661184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Regulatory core-splicing proteins are now becoming highly promising therapeutic targets for the development of anti-cancer drugs. SNRPG and RBBP6 are two good examples of regulatory core-splicing proteins involved in tumorigenesis and tumor development whose multi-functional role is primarily mediated by protein-protein interactions. Over the years, skepticism abutting from the two onco-proteins has been mounting. Suggestive evidence using yeast 2-hybrid technique observed possible involvement between SNRPG and the RING finger domain of RBBP6. However, the putative interaction remains elusive and yet to be characterized. In this study, we developed the first MST-based assay to confirm the interaction between SNRPG and the RING finger domain of RBBP6. The results demonstrated a strong binding affinity between SNRPG and the RING finger domain of RBBP6 with a KD in the low nanomolar concentration range of 3.1596 nM. The results are congruent with previous findings suggesting possible involvement between the two proteins in cancer-cell networks, thereby providing a new mechanistic insight into the interaction between SNRPG and the RING finger domain of RBBP6. The interaction is therapeutically relevant and represents a great milestone in the anti-cancer drug discovery space. Identification of small molecule inhibitors to modulate the binding affinity between the two proteins would therefore be a major breakthrough in the development of new PPI-focused anti-cancer drugs.
Collapse
Affiliation(s)
- Lloyd Mabonga
- Department of Biochemistry and Microbiology, University of ZululandKwaDlangezwa 3886, South Africa
| | - Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Kingsway CampusAuckland Park 2006, South Africa
| | - Albertus Kotze Basson
- Department of Biochemistry and Microbiology, University of ZululandKwaDlangezwa 3886, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Faculty of Science, University of Johannesburg, Kingsway CampusAuckland Park 2006, South Africa
| |
Collapse
|
97
|
Chen YL, Zhang ZM, Li XL, Tao YF, Wu SY, Fang F, Xie Y, Liao XM, Li G, Wu D, Wang HR, Zuo R, Cao HB, Pan JJ, Yu JJ, Zhang Z, Chu XR, Zhang YP, Feng CX, Wang JW, Lu J, Hu SY, Li ZH, Pan J. MI-773, a breaker of the MDM2/p53 axis, exhibits anticancer effects in neuroblastoma via downregulation of INSM1. Oncol Lett 2021; 22:838. [PMID: 34712362 DOI: 10.3892/ol.2021.13099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022] Open
Abstract
Neuroblastoma (NB) is a common pediatric malignancy associated with poor outcomes. Recent studies have shown that murine double minute2 homolog (MDM2) protein inhibitors are promising anticancer agents. MI-773 is a novel and specific antagonist of MDM2, however, the molecular mechanism of its anti-NB activity remains unclear. NB cell viability was measured by Cell Counting Kit-8 assay following MI-773 treatment. Cell cycle progression was analyzed using PI staining and apoptosis was assessed using Annexin V/PI staining. The molecular mechanisms by which MI-773 exerted its effects were investigated using a microarray. The results showed that disturbance of the MDM2/p53 axis by MI-773 resulted in potent suppression of proliferation, induction of apoptosis and cell cycle arrest in NB cells. In addition, microarray analysis showed that MI-773 led to significant downregulation of genes involved in the G2/M phase checkpoint and upregulation of hallmark gene associated with the p53 pathway. Meanwhile, knockdown of insulinoma-associated 1 decreased proliferation and increased apoptosis of NB cells. In conclusion, the present study demonstrated that MI-773 exhibited high selectivity and blockade affinity for the interaction between MDM2 and TP53 and may serve as a novel strategy for the treatment of NB.
Collapse
Affiliation(s)
- Yan-Ling Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215003, P.R. China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Zi-Mu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xiao-Lu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yan-Fang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Shui-Yan Wu
- Intensive Care Unit, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xin-Mei Liao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Hai-Rong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Ran Zuo
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215003, P.R. China.,Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Hai-Bo Cao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jing-Jing Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Juan-Juan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Zheng Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xin-Ran Chu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Yong-Ping Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Chen-Xi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jian-Wei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Shao-Yan Hu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China.,Department of Hematology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Zhi-Heng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
98
|
Venugopal K, Feng Y, Nowialis P, Xu H, Shabashvili DE, Berntsen CM, Kaur P, Krajcik KI, Taragjini C, Zaroogian Z, Casellas Román HL, Posada LM, Gunaratne C, Li J, Dupéré-Richer D, Bennett RL, Pondugula S, Riva A, Cogle CR, Opavsky R, Law BK, Bhaduri-McIntosh S, Kubicek S, Staber PB, Licht JD, Bird JE, Guryanova OA. DNMT3A Harboring Leukemia-Associated Mutations Directs Sensitivity to DNA Damage at Replication Forks. Clin Cancer Res 2021; 28:756-769. [PMID: 34716195 DOI: 10.1158/1078-0432.ccr-21-2863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/10/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE In acute myeloid leukemia (AML), recurrent DNA methyltransferase 3A (DNMT3A) mutations are associated with chemoresistance and poor prognosis, especially in advanced-age patients. Gene-expression studies in DNMT3A-mutated cells identified signatures implicated in deregulated DNA damage response and replication fork integrity, suggesting sensitivity to replication stress. Here, we tested whether pharmacologically induced replication fork stalling, such as with cytarabine, creates a therapeutic vulnerability in cells with DNMT3A(R882) mutations. EXPERIMENTAL DESIGN Leukemia cell lines, genetic mouse models, and isogenic cells with and without DNMT3A(mut) were used to evaluate sensitivity to nucleoside analogues such as cytarabine in vitro and in vivo, followed by analysis of DNA damage and signaling, replication restart, and cell-cycle progression on treatment and after drug removal. Transcriptome profiling identified pathways deregulated by DNMT3A(mut) expression. RESULTS We found increased sensitivity to pharmacologically induced replication stress in cells expressing DNMT3A(R882)-mutant, with persistent intra-S-phase checkpoint activation, impaired PARP1 recruitment, and elevated DNA damage, which was incompletely resolved after drug removal and carried through mitosis. Pulse-chase double-labeling experiments with EdU and BrdU after cytarabine washout demonstrated a higher rate of fork collapse in DNMT3A(mut)-expressing cells. RNA-seq studies supported deregulated cell-cycle progression and p53 activation, along with splicing, ribosome biogenesis, and metabolism. CONCLUSIONS Together, our studies show that DNMT3A mutations underlie a defect in recovery from replication fork arrest with subsequent accumulation of unresolved DNA damage, which may have therapeutic tractability. These results demonstrate that, in addition to its role in epigenetic control, DNMT3A contributes to preserving genome integrity during replication stress.
Collapse
Affiliation(s)
- Kartika Venugopal
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Yang Feng
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida
| | - Huanzhou Xu
- Department of Pediatrics, Division of Infectious Diseases, University of Florida College of Medicine, Gainesville, Florida
| | - Daniil E Shabashvili
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Cassandra M Berntsen
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Prabhjot Kaur
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Kathryn I Krajcik
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Christina Taragjini
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Zachary Zaroogian
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Heidi L Casellas Román
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Luisa M Posada
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Chamara Gunaratne
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Jianping Li
- Department of Medicine, Division of Hematology/ Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Daphné Dupéré-Richer
- Department of Medicine, Division of Hematology/ Oncology, University of Florida College of Medicine, Gainesville, Florida
| | - Richard L Bennett
- Department of Medicine, Division of Hematology/ Oncology, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Health Cancer Center, Gainesville, Florida
| | - Santhi Pondugula
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Alberto Riva
- University of Florida Health Cancer Center, Gainesville, Florida.,Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida
| | - Christopher R Cogle
- Department of Medicine, Division of Hematology/ Oncology, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Health Cancer Center, Gainesville, Florida
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Health Cancer Center, Gainesville, Florida
| | - Brian K Law
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Health Cancer Center, Gainesville, Florida
| | - Sumita Bhaduri-McIntosh
- Department of Pediatrics, Division of Infectious Diseases, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Health Cancer Center, Gainesville, Florida.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philipp B Staber
- Division of Hematology and Hemostaseology, Department of Medicine 1, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Jonathan D Licht
- Department of Medicine, Division of Hematology/ Oncology, University of Florida College of Medicine, Gainesville, Florida.,University of Florida Health Cancer Center, Gainesville, Florida
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, Florida. .,University of Florida Health Cancer Center, Gainesville, Florida
| |
Collapse
|
99
|
Jiang Y, Gao SJ, Soubise B, Douet-Guilbert N, Liu ZL, Troadec MB. TP53 in Myelodysplastic Syndromes. Cancers (Basel) 2021; 13:cancers13215392. [PMID: 34771553 PMCID: PMC8582368 DOI: 10.3390/cancers13215392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary The importance of gene variants in the prognosis of myelodysplastic syndromes (MDSs) has been repeatedly reported in recent years. Especially, TP53 mutations are independently associated with a higher risk category, resistance to conventional therapies, rapid transformation to leukemia, and a poor outcome. In the review, we discuss the features of monoallelic and biallelic TP53 mutations within MDS, the carcinogenic mechanisms, and the predictive value of TP53 variants in current standard treatments including hypomethylating agents, allogeneic hematopoietic stem cell transplantation, and lenalidomide, as well as the latest progress in TP53-targeted therapy strategies in MDS. Abstract Myelodysplastic syndromes (MDSs) are heterogeneous for their morphology, clinical characteristics, survival of patients, and evolution to acute myeloid leukemia. Different prognostic scoring systems including the International Prognostic Scoring System (IPSS), the Revised IPSS, the WHO Typed Prognostic Scoring System, and the Lower-Risk Prognostic Scoring System have been introduced for categorizing the highly variable clinical outcomes. However, not considered by current MDS prognosis classification systems, gene variants have been identified for their contribution to the clinical heterogeneity of the disease and their impact on the prognosis. Notably, TP53 mutation is independently associated with a higher risk category, resistance to conventional therapies, rapid transformation to leukemia, and a poor outcome. Herein, we discuss the features of monoallelic and biallelic TP53 mutations within MDS, their corresponding carcinogenic mechanisms, their predictive value in current standard treatments including hypomethylating agents, allogeneic hematopoietic stem cell transplantation, and lenalidomide, together with the latest progress in TP53-targeted therapy strategies, especially MDS clinical trial data.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China; (Y.J.); (S.-J.G.)
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (N.D.-G.)
| | - Su-Jun Gao
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China; (Y.J.); (S.-J.G.)
| | - Benoit Soubise
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (N.D.-G.)
| | - Nathalie Douet-Guilbert
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Zi-Ling Liu
- Cancer Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence: (Z.-L.L.); (M.-B.T.); Tel.: +86-139-43-00-16-00 (Z.-L.L.); +33-2-98-01-64-55 (M.-B.T.)
| | - Marie-Bérengère Troadec
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: (Z.-L.L.); (M.-B.T.); Tel.: +86-139-43-00-16-00 (Z.-L.L.); +33-2-98-01-64-55 (M.-B.T.)
| |
Collapse
|
100
|
Wang M, Attardi LD. A Balancing Act: p53 Activity from Tumor Suppression to Pathology and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2021; 17:205-226. [PMID: 34699262 DOI: 10.1146/annurev-pathol-042320-025840] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
TP53, encoding the p53 transcription factor, is the most frequently mutated tumor suppressor gene across all human cancer types. While p53 has long been appreciated to induce antiproliferative cell cycle arrest, apoptosis, and senescence programs in response to diverse stress signals, various studies in recent years have revealed additional important functions for p53 that likely also contribute to tumor suppression, including roles in regulating tumor metabolism, ferroptosis, signaling in the tumor microenvironment, and stem cell self-renewal/differentiation. Not only does p53 loss or mutation cause cancer, but hyperactive p53 also drives various pathologies, including developmental phenotypes, premature aging, neurodegeneration, and side effects of cancer therapies. These findings underscore the importance of balanced p53 activity and influence our thinking of how to best develop cancer therapies based on modulating the p53 pathway. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mengxiong Wang
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA;
| | - Laura D Attardi
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University School of Medicine, Stanford, California 94305, USA; .,Department of Genetics and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|