51
|
Karlowsky JA, Kazmierczak KM, Valente MLNDF, Luengas EL, Baudrit M, Quintana A, Irani P, Stone GG, Sahm DF. In vitro activity of ceftazidime-avibactam against Enterobacterales and Pseudomonas aeruginosa isolates collected in Latin America as part of the ATLAS global surveillance program, 2017-2019. Braz J Infect Dis 2021; 25:101647. [PMID: 34774471 PMCID: PMC9392196 DOI: 10.1016/j.bjid.2021.101647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 12/24/2022] Open
Abstract
The Antimicrobial Testing Leadership and Surveillance (ATLAS) global surveillance program collected clinical isolates of Enterobacterales (n = 8416) and Pseudomonas aeruginosa (n = 2521) from 41 medical centers in 10 Latin American countries from 2017 to 2019. In vitro activities of ceftazidime-avibactam and comparators were determined using the Clinical and Laboratory Standards Institute (CLSI) broth microdilution method. Overall, 98.1% of Enterobacterales and 86.9% of P. aeruginosa isolates were susceptible to ceftazidime-avibactam. When isolates were analyzed by country of origin, susceptibility to ceftazidime-avibactam for Enterobacterales ranged from 97.8% to 100% for nine of 10 countries (except Guatemala, 86.3% susceptible) and from 75.9% to 98.4% for P. aeruginosa in all 10 countries. For Enterobacterales, 100% of AmpC-positive, ESBL- and AmpC-positive, GES-type carbapenemase-positive, and OXA-48-like-positive isolates were ceftazidime-avibactam-susceptible as were 99.8%, 91.8%, and 74.7% of ESBL-positive, multidrug-resistant (MDR), and meropenem-nonsusceptible isolates. Among meropenem-nonsusceptible isolates of Enterobacterales, 24.4% (139/570) carried a metallo-β-lactamase (MBL); 83.3% of the remaining meropenem-nonsusceptible isolates carried another class of carbapenemase and 99.4% of those isolates were ceftazidime-avibactam-susceptible. Among meropenem-non-susceptible isolates of P. aeruginosa (n = 835), 25.6% carried MBLs; no acquired β-lactamase was identified in the majority of isolates (64.8%; 87.2% of those isolates were ceftazidime-avibactam-susceptible). Overall, clinical isolates of Enterobacterales collected in Latin America from 2017 to 2019 were highly susceptible to ceftazidime-avibactam, including isolates carrying ESBLs, AmpCs, and KPCs. Country-specific variation in susceptibility to ceftazidime-avibactam was more common among isolates of P. aeruginosa than Enterobacterales. The frequency of MBL-producers among Enterobacterales from Latin America was low (1.7% of all isolates; 146/8,416), but higher than reported in previous surveillance studies.
Collapse
Affiliation(s)
- James A Karlowsky
- University of Manitoba, Max Rady College of Medicine, Department of Medical Microbiology and Infectious Diseases, Winnipeg, Canada
| | | | | | | | | | | | - Paurus Irani
- Pfizer UK ltd, Walton Oaks, Tadworth, Surrey, UK
| | | | | |
Collapse
|
52
|
Abstract
Intravenous cefiderocol (Fetroja®; Fetcroja®) is the first siderophore cephalosporin approved for the treatment of adults with serious Gram-negative bacterial infections. Cefiderocol is stable against all four Ambler classes of β-lactamases (including metallo-β-lactamases) and exhibits excellent in vitro activity against many clinically relevant Gram-negative pathogens, including multidrug resistant strains. In randomized, double-blind clinical trials, cefiderocol was noninferior to imipenem/cilastatin for the treatment of complicated urinary tract infections (cUTI) and to meropenem for nosocomial pneumonia. Furthermore, in a pathogen-focused clinical trial in patients with carbapenem-resistant (CR) infections, cefiderocol showed comparable efficacy to best available therapy (BAT), albeit all-cause mortality rate was higher in the cefiderocol arm, the cause of which has not been established. Cefiderocol had a good tolerability and safety profile in clinical trials. Thus cefiderocol is a novel, emerging, useful addition to the current treatment options for adults with susceptible Gram-negative bacterial infections (including cUTI and nosocomial pneumonia) for whom there are limited treatment options.
Collapse
Affiliation(s)
- Yahiya Y Syed
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
53
|
Senchyna F, Tamburini FB, Murugesan K, Watz N, Bhatt AS, Banaei N. Comparative genomics of Enterobacter cloacae complex before and after acquired clinical resistance to Ceftazidime-Avibactam. Diagn Microbiol Infect Dis 2021; 101:115511. [PMID: 34418822 DOI: 10.1016/j.diagmicrobio.2021.115511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/23/2021] [Indexed: 11/27/2022]
Abstract
Resistance to Ceftazidime-Avibactam in Enterobacter cloacae is poorly understood. Whole genome sequencing identified 6 variants in isolates collected from a patient before and after acquiring Ceftazidime-Avibactam resistance. This included a Phe396Leu mutation in acrB, a component of the AcrAB-TolC efflux pump, possibly mediating enhanced efflux of Ceftazidime and/ or Avibactam.
Collapse
Affiliation(s)
- Fiona Senchyna
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Fiona B Tamburini
- Division of Hematology, Department of Medicine and Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nancy Watz
- Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA
| | - Ami S Bhatt
- Division of Hematology, Department of Medicine and Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Niaz Banaei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Clinical Microbiology Laboratory, Stanford University Medical Center, Palo Alto, CA, USA.
| |
Collapse
|
54
|
Abdul-Mutakabbir JC, Nguyen L, Maassen PT, Stamper KC, Kebriaei R, Kaye KS, Castanheira M, Rybak MJ. In Vitro Antibacterial Activity of Cefiderocol against Multidrug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2021; 65:e0264620. [PMID: 34125590 PMCID: PMC8370208 DOI: 10.1128/aac.02646-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
Cefiderocol (CFDC), a novel siderophore cephalosporin, demonstrates strong activity against multidrug-resistant (MDR) Acinetobacter baumannii. Limited studies have evaluated CFDC alone and in combination with other Gram-negative antibiotics against MDR A. baumannii isolates. Susceptibility testing revealed lower CFDC MIC values (87% of MICs ≤ 4mg/liter) than the comparator Gram-negative agents. Six isolates, with elevated CFDC MICs (16 to 32 mg/liter) were selected for further experiments. Time-kill analyses presented with synergistic activity and beta-lactamase inhibitors increased CFDC susceptibility in each of the isolates.
Collapse
Affiliation(s)
- Jacinda C. Abdul-Mutakabbir
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Logan Nguyen
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Philip T. Maassen
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Kyle C. Stamper
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Razieh Kebriaei
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Keith S. Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Michael J. Rybak
- Anti-Infective Research Laboratory, Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit Medical Center, Detroit, Michigan, USA
| |
Collapse
|
55
|
McCreary EK, Heil EL, Tamma PD. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob Agents Chemother 2021; 65:e0217120. [PMID: 34031052 PMCID: PMC8373209 DOI: 10.1128/aac.02171-20] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacterial resistance to carbapenem agents has reached alarming levels. Accordingly, collaborative efforts between national and international organizations and the pharmaceutical industry have led to an impressive expansion of commercially available β-lactam agents in recent years. No available agent comes close to the broad range of activity afforded by cefiderocol, a novel siderophore-cephalosporin conjugate. The novelty of and need for cefiderocol are clear, but available clinical data are conflicting, leaving infectious diseases specialists puzzled as to when to prescribe this agent in clinical practice. After a brief overview of cefiderocol pharmacokinetics and pharmacodynamics, safety data, cefiderocol susceptibility testing, and putative mechanisms of cefiderocol resistance, this review focuses on determining cefiderocol's role in the management of specific pathogens, including carbapenem-resistant Acinetobacter baumannii complex, carbapenem-resistant Pseudomonas aeruginosa, carbapenem-resistant Enterobacterales, and less commonly identified glucose-nonfermenting organisms such as Stenotrophomonas maltophilia, Burkholderia species, and Achromobacter species. Available preclinical, clinical trial, and postmarketing data are summarized for each organism, and each section concludes with our opinions on where to position cefiderocol as a clinical therapeutic.
Collapse
Affiliation(s)
- Erin K. McCreary
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Emily L. Heil
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Pranita D. Tamma
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Baltimore, Maryland, USA
| |
Collapse
|
56
|
Simner PJ, Beisken S, Bergman Y, Posch AE, Cosgrove SE, Tamma PD. Cefiderocol Activity Against Clinical Pseudomonas aeruginosa Isolates Exhibiting Ceftolozane-Tazobactam Resistance. Open Forum Infect Dis 2021; 8:ofab311. [PMID: 34262990 PMCID: PMC8275882 DOI: 10.1093/ofid/ofab311] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/10/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mutations in the AmpC-AmpR region are associated with treatment-emergent ceftolozane-tazobactam (TOL-TAZ) and ceftazidime-avibactam (CAZ-AVI) resistance. We sought to determine if these mutations impact susceptibility to the novel cephalosporin-siderophore compound cefiderocol. METHODS Thirty-two paired isolates from 16 patients with index P. aeruginosa isolates susceptible to TOL-TAZ and subsequent P. aeruginosa isolates available after TOL-TAZ exposure from January 2019 to December 2020 were included. TOL-TAZ, CAZ-AVI, imipenem-relebactam (IMI-REL), and cefiderocol minimum inhibitory concentrations (MICs) were determined using broth microdilution. Whole-genome sequencing of paired isolates was used to identify mechanisms of resistance to cefiderocol that emerged, focusing on putative mechanisms of resistance to cefiderocol or earlier siderophore-antibiotic conjugates based on the previously published literature. RESULTS Analyzing the 16 pairs of P. aeruginosa isolates, ≥4-fold increases in cefiderocol MICs occurred in 4 of 16 isolates. Cefiderocol nonsusceptibility criteria were met for only 1 of the 4 isolates, using Clinical and Laboratory Standards Institute criteria. Specific mechanisms identified included the following: AmpC E247K (2 isolates), MexR A66V and L57D (1 isolate each), and AmpD G116D (1 isolate) substitutions. For both isolates with AmpC E247K mutations, ≥4-fold MIC increases occurred for both TOL-TAZ and CAZ-AVI, while a ≥4-fold reduction in IMI-REL MICs was observed. CONCLUSIONS Our findings suggest that alterations in the target binding sites of P. aeruginosa-derived AmpC β-lactamases have the potential to reduce the activity of 3 of 4 novel β-lactams (ie, ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol) and potentially increase susceptibility to imipenem-relebactam. These findings are in need of validation in a larger cohort.
Collapse
Affiliation(s)
- Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Yehudit Bergman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Sara E Cosgrove
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pranita D Tamma
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
57
|
Xu M, Zhao J, Xu L, Yang Q, Xu H, Kong H, Zhou J, Fu Y. Emergence of transferable ceftazidime-avibactam resistance in KPC-producing Klebsiella pneumoniae due to a novel CMY AmpC β-lactamase in China. Clin Microbiol Infect 2021; 28:136.e1-136.e6. [PMID: 34044150 DOI: 10.1016/j.cmi.2021.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To evaluate the molecular mechanisms of ceftazidime/avibactam (CAZ/AVI) resistance in six Klebsiella pneumoniae strains that co-produce K. pneumoniae carbapenemase (KPC)-2 and a novel variant of CMY cephalosporinase in a Chinese hospital. METHODS Antimicrobial susceptibility was determined by broth microdilution. Whole-genome sequencing (WGS) was performed to investigate potential resistance determinants. Plasmid conjugation, electroporation, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) hybridization and cloning experiment were carried out to investigate the resistance plasmids and genes. RESULTS A high level of CAZ/AVI resistance was observed in six KPC-Kp strains (MIC 128 mg/L). Five strains were isolated in 2015 and one in 2016, before the approval of CAZ/AVI in China. Sequence analysis indicated that all the strains belonged to sequence type (ST) 11 and uniformly carried a novel CMY AmpC β-lactamase gene, designated blaCMY-172. When compared with CMY-2, CMY-172 has a deletion of three consecutive amino acids (K290, V291 and A292) in the R2-loop region and a non-synonymous amino acid substitution at position 346 (N346I). The blaCMY-172-bearing plasmid, pKPCZA02_4, was 93.3 Kb, IncI1-I type, and conjugative; blaCMY-172 was located in an IS1294-mediated transposon. Plasmid conjugation and DNA fragment cloning proved that blaCMY-172 was responsible for CAZ/AVI resistance. CONCLUSIONS Our study identified conjugative plasmid-mediated blaCMY-172 as a new mechanism for CAZ/AVI resistance in clinical KPC-Kp strains. Careful monitoring of CAZ/AVI susceptibility is imperative for preventing the spread of the resistance gene.
Collapse
Affiliation(s)
- Min Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Zhao
- Department of Respiratory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Xu
- Department of Clinical Laboratory, Yangzhou Centre for Disease Control and Prevention, Yangzhou, China
| | - Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haishen Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianying Zhou
- Department of Respiratory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yiqi Fu
- Department of Respiratory Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
58
|
Structural Investigations of the Inhibition of Escherichia coli AmpC β-Lactamase by Diazabicyclooctanes. Antimicrob Agents Chemother 2021; 65:AAC.02073-20. [PMID: 33199391 PMCID: PMC7849013 DOI: 10.1128/aac.02073-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
β-Lactam antibiotics are presently the most important treatments for infections by pathogenic Escherichia coli, but their use is increasingly compromised by β-lactamases, including the chromosomally encoded class C AmpC serine-β-lactamases (SBLs). The diazabicyclooctane (DBO) avibactam is a potent AmpC inhibitor; the clinical success of avibactam combined with ceftazidime has stimulated efforts to optimize the DBO core. We report kinetic and structural studies, including four high-resolution crystal structures, concerning inhibition of the AmpC serine-β-lactamase from E. coli (AmpC EC ) by clinically relevant DBO-based inhibitors: avibactam, relebactam, nacubactam, and zidebactam. Kinetic analyses and mass spectrometry-based assays were used to study their mechanisms of AmpC EC inhibition. The results reveal that, under our assay conditions, zidebactam manifests increased potency (apparent inhibition constant [K iapp], 0.69 μM) against AmpC EC compared to that of the other DBOs (K iapp = 5.0 to 7.4 μM) due to an ∼10-fold accelerated carbamoylation rate. However, zidebactam also has an accelerated off-rate, and with sufficient preincubation time, all the DBOs manifest similar potencies. Crystallographic analyses indicate a greater conformational freedom of the AmpC EC -zidebactam carbamoyl complex compared to those for the other DBOs. The results suggest the carbamoyl complex lifetime should be a consideration in development of DBO-based SBL inhibitors for the clinically important class C SBLs.
Collapse
|
59
|
Simner PJ, Patel R. Cefiderocol Antimicrobial Susceptibility Testing Considerations: the Achilles' Heel of the Trojan Horse? J Clin Microbiol 2020; 59:e00951-20. [PMID: 32727829 PMCID: PMC7771437 DOI: 10.1128/jcm.00951-20] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cefiderocol (formerly S-649266) is a novel siderophore-conjugated cephalosporin with activity against a broad array of multidrug-resistant (MDR), aerobic Gram-negative bacilli. The siderophore component binds iron and uses active iron transport for drug entry into the bacterial periplasmic space. The cephalosporin moiety is the active antimicrobial component, structurally resembling a hybrid between ceftazidime and cefepime. Like other β-lactam agents, the principal bactericidal activity of cefiderocol occurs via inhibition of bacterial cell wall synthesis by binding of penicillin-binding proteins (PBPs) and inhibiting peptidoglycan synthesis, leading to cell death. Iron concentrations need to be taken into consideration when in vitro antimicrobial susceptibility to cefiderocol is determined. Broth microdilution (BMD) and disk diffusion methods have been developed to determine in vitro activity of cefiderocol. For BMD, cation-adjusted Mueller-Hinton broth (CAMHB) requires iron depletion to provide MICs predictive of in vivo activity. A method to prepare iron-depleted CAMHB (ID-CAMHB) has been described by the Clinical and Laboratory Standards Institute (CLSI). For disk diffusion, standard Mueller-Hinton agar is recommended, presumably because iron is bound in the medium. Currently, clinical FDA and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints and investigational (research-use-only) CLSI breakpoints exist for interpreting cefiderocol susceptibility results for certain Gram-negative bacilli. Cefiderocol does not have clinically relevant activity against Gram-positive or anaerobic organisms. FDA or EUCAST breakpoints should be applied to interpret results for Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii complex for patient care until the investigational status has been removed from CLSI breakpoints. Further clinical outcome data are required to assess the effectiveness of cefiderocol for treatment of other Acinetobacter species (non-baumannii complex) and Stenotrophomonas maltophilia at this time, and, as such, antimicrobial susceptibility testing of these organisms should be limited to research use in the scenario of limited treatment options.
Collapse
Affiliation(s)
- Patricia J Simner
- Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
60
|
Bhowmick T, Weinstein MP. Microbiology of Meropenem-Vaborbactam: A Novel Carbapenem Beta-Lactamase Inhibitor Combination for Carbapenem-Resistant Enterobacterales Infections. Infect Dis Ther 2020; 9:757-767. [PMID: 33017041 PMCID: PMC7680474 DOI: 10.1007/s40121-020-00350-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
Vaborbactam is a novel boron-based beta-lactamase inhibitor developed to be effective against Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria. This enzyme is a key driver in the global spread of β-lactam resistance among carbapenem-resistant Enterobacterales. Alone, vaborbactam has no antibacterial activity; however, the combination of meropenem-vaborbactam has enhanced activity against gram-negative organisms, particularly Enterobacterales with class A and C carbapenemases. Multiple in vitro studies evaluating isolates from various geographic regions, and over different time periods, have demonstrated the high potency of meropenem-vaborbactam against organisms containing KPC2 and KPC3. However, meropenem-vaborbactam does not have activity against OXA-48 or metallo-beta lactamases. This review covers the in vitro studies of meropenem-vaborbactam performed to date, which evaluated both large cohorts of clinical isolates and engineered isolates, to determine efficacy in various settings, including the presence of porin mutations and efflux pump upregulation. Meropenem-vaborbactam is a new combination antibiotic that was designed specifically for efficacy against bacteria that produce the Klebsiella pneumoniae carbapenemase (KPC) enzyme, which enables resistance to beta-lactam antibiotics. The global spread and increase of difficult-to-treat infections caused by carbapenem-resistant Enterobacterales (CRE) is in part because they produce KPC enzymes. The authors review the in vitro studies of meropenem-vaborbactam activity, which have included isolates from different geographic regions, time periods, and settings, showing that it has high potency against organisms containing KPC enzymes-KPC2 and KPC3. Meropenem-vaborbactam was tested against globally sourced isolates that carried different resistance mechanisms, including carbapenem resistance, multidrug resistant (MDR), and resistance to colistin and/or tigecycline; it inhibited activity of 99.1% Enterobacterales isolates tested at ≤ 1 µg/ml, and at ≤ 8 µg/ml it inhibited 96.5% of MDR isolates and 82% of XDR isolates. Against OXA-48 or metallo-beta lactamase enzymes, meropenem-vaborbactam has limited or no activity, so in the Asia-Pacific region where MLBs are prevalent it was least effective, but and was most effective against US strains where KPC is prevalent. In multiple studies, meropenem-vaborbactam showed strong in vitro activity against E. coli, Enterobacter spp., and K. pneumoniae. Compared to available antibiotics, against both clinical and engineered isolates, as well as engineered E. coli strains with KPC, SHV, and TEM enzymes, meropenem-vaborbactam demonstrated lower MIC values. Overall, in vitro studies of meropenem-vaborbactam have shown enhanced activity against CRE and KPC producers compared to other antibiotics, which is needed in the current CRE environment where KPC is dominant.
Collapse
Affiliation(s)
- Tanaya Bhowmick
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Melvin P Weinstein
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
61
|
Lee YR, Yeo S. Cefiderocol, a New Siderophore Cephalosporin for the Treatment of Complicated Urinary Tract Infections Caused by Multidrug-Resistant Pathogens: Preclinical and Clinical Pharmacokinetics, Pharmacodynamics, Efficacy and Safety. Clin Drug Investig 2020; 40:901-913. [PMID: 32700154 PMCID: PMC7374078 DOI: 10.1007/s40261-020-00955-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cefiderocol (Fetroja®) is a siderophore cephalosporin and has demonstrated potent activity against extended-spectrum beta-lactamases producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and nonfermenting Gram-negative bacilli, including Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Acinetobacter baumannii, Burkholderia cepacia, and Klebsiella pneumoniae. However, cefiderocol has limited activity against Gram-positive bacteria and anaerobes like Bacterodies fragilis. In the APEKS-cUTI study, 183 (73%) of 252 patients in the cefiderocol group versus 65 (55%) of 119 patients in the imipenem-cilastatin group achieved the composite outcome of clinical and microbiological eradication of Gram-negative bacteria (treatment difference of 18.58%; 95% CI 8.23-28.92, p = 0.0004) in complicated urinary tract infections (cUTIs). Cefiderocol was non-inferior to imipenem-cilastatin in cUTIs caused by Gram-negative bacteria such as E. coli, K. pneumoniae, P. aeruginosa, Proteus mirabilis, Enterobacter cloacae, Morganella morganii, and Citrobacter freundii. Cefiderocol required dose adjustment in patients with renal impairment and percentage of time that free drug concentrations above the minimum inhibitory concentration (%fT > MIC) best correlated with clinical outcomes. The most common adverse events with cefiderocol were gastrointestinal symptoms such as diarrhea, constipation, nausea, vomiting, or upper abdominal pain. Two phase III clinical trials, the CREDIBLE-CR study and the APEKS-NP study, investigated the efficacy and safety of cefiderocol for the treatment of pneumonia or cUTI, and both studies showed higher all-cause mortality associated with cefiderocol. Therefore, the use of cefiderocol should be limited only to the treatment of cUTIs from Gram-negative bacteria, especially in patients who have limited or no alternative treatment options.
Collapse
Affiliation(s)
- Young Ran Lee
- Department of Pharmacy Practice, Adult Medicine Division, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1718 Pine Street, Abilene, TX, 79601, USA.
| | - Suyeon Yeo
- Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|